556 research outputs found

    Semi-supervised wildfire smoke detection based on smoke-aware consistency

    Get PDF
    The semi-transparency property of smoke integrates it highly with the background contextual information in the image, which results in great visual differences in different areas. In addition, the limited annotation of smoke images from real forest scenarios brings more challenges for model training. In this paper, we design a semi-supervised learning strategy, named smokeaware consistency (SAC), to maintain pixel and context perceptual consistency in different backgrounds. Furthermore, we propose a smoke detection strategy with triple classification assistance for smoke and smoke-like object discrimination. Finally, we simplified the LFNet fire-smoke detection network to LFNet-v2, due to the proposed SAC and triple classification assistance that can perform the functions of some specific module. The extensive experiments validate that the proposed method significantly outperforms state-of-the-art object detection algorithms on wildfire smoke datasets and achieves satisfactory performance under challenging weather conditions.Peer ReviewedPostprint (published version

    Multi-teacher knowledge distillation as an effective method for compressing ensembles of neural networks

    Full text link
    Deep learning has contributed greatly to many successes in artificial intelligence in recent years. Today, it is possible to train models that have thousands of layers and hundreds of billions of parameters. Large-scale deep models have achieved great success, but the enormous computational complexity and gigantic storage requirements make it extremely difficult to implement them in real-time applications. On the other hand, the size of the dataset is still a real problem in many domains. Data are often missing, too expensive, or impossible to obtain for other reasons. Ensemble learning is partially a solution to the problem of small datasets and overfitting. However, ensemble learning in its basic version is associated with a linear increase in computational complexity. We analyzed the impact of the ensemble decision-fusion mechanism and checked various methods of sharing the decisions including voting algorithms. We used the modified knowledge distillation framework as a decision-fusion mechanism which allows in addition compressing of the entire ensemble model into a weight space of a single model. We showed that knowledge distillation can aggregate knowledge from multiple teachers in only one student model and, with the same computational complexity, obtain a better-performing model compared to a model trained in the standard manner. We have developed our own method for mimicking the responses of all teachers at the same time, simultaneously. We tested these solutions on several benchmark datasets. In the end, we presented a wide application use of the efficient multi-teacher knowledge distillation framework. In the first example, we used knowledge distillation to develop models that could automate corrosion detection on aircraft fuselage. The second example describes detection of smoke on observation cameras in order to counteract wildfires in forests.Comment: Doctoral dissertation in the field of computer science, machine learning. Application of knowledge distillation as aggregation of ensemble models. Along with several uses. 140 pages, 67 figures, 13 table

    Fire Detection in Video Stream by Using Simple Artificial Neural Network

    Get PDF
    This paper deals with the preliminary research of the fire detection in a video stream. Early fire detection can save lives and properties from huge losses and damages. Therefore the surveillance of the areas is necessary. Early fire discovery with high accuracy, i.e. a low number of false positive or false negative cases, is essential in any environment, especially in places with the high motion of people. The traditional fire detection sensors have some drawbacks: they need separate systems and infrastructure to be implemented, to use sensors in the case of the industrial environment with open fire technologies is often impossible, and others. The fire detection in a video stream is one of the possible and feasible solutions suitable for replacement or supplement of conventional fire detection sensors without a need for installation a huge infrastructure. The paper provides the state of the art in the fire detection. The following part of the paper proposes the new system of feature extraction and describes the feedforward neural network which was used for the training and testing of the proposed idea. The promising results are presented with over 93% accuracy on a selected dataset of movies which consist of more and highly varied instances than published by other researchers involved in the fire detection field. The structure of the neural networks promises higher computational speed than currently implemented deep learning systems

    OpenPose based Smoking Gesture Recognition System using Artificial Neural Network

    Get PDF
    Smoking is an extremely important health problem in modern society. This study focuses on a method for preventing smoking in non-smoking areas, such as public places, as well as the development of an artificial neural network based smoking motion recognition system for more accurately recognizing smokers in such areas. In particular, we attempted to increase the rate of recognition of smoking behaviors using an OpenPose based algorithm and the accuracy of such recognition by additionally applying a hardware device for recognizing cigarette smoke. In addition, a preprocessing method for inputting a dataset into the proposed system is proposed. To improve the recognition performance, four types of dataset models were created, and the most suitable dataset model was selected experimentally. Based on this dataset model, test data were created and input into the proposed neural network based smoking behavior recognition system. In addition, the nearest neighbor interpolation method was selected experimentally as an image interpolation approach and applied to the image preprocessing. When applying experimental data based on learned data, the developed system showed a recognition rate of 70-75%, and the smoking recognition accuracy was increased through the addition of the hardware device

    Smoke plume segmentation of wildfire images

    Get PDF
    Aquest treball s'emmarca dins del camp d'estudi de les xarxes neuronals en Aprenentatge profund. L'objectiu del projecte és analitzar i aplicar les xarxes neuronals que hi ha avui dia en el mercat per resoldre un problema en específic. Aquest és tracta de la segmentació de plomalls de fum en incendis forestals. S'ha desenvolupat un estudi de les xarxes neuronals utilitzades per resoldre problemes de segmentació d'imatges i també una reconstrucció posterior en 3D d'aquests plomalls de fum. L'algorisme finalment escollit és tracta del model UNet, una xarxa neuronal convolucional basada en l'estructura d'autoencoders amb connexions de pas, que desenvolupa tasques d'autoaprenentatge per finalment obtenir una predicció de la classe a segmentar entrenada, en aquest cas plomalls. de fum. Posteriorment, una comparativa entre algoritmes tradicionals i el model UNet aplicat fent servir aprenentatge profund s'ha realitzat, veient que tant quantitativament com qualitativament s'aconsegueix els millors resultats aplicant el model UNet, però a la vegada comporta més temps de computació. Tots aquests models s'han desenvolupat amb el llenguatge de programació Python utilitzant els llibres d'aprenentatge automàtic Tensorflow i Keras. Dins del model UNet s'han dut a terme múltiples experiments per obtenir els diferents valors dels hiperparàmetres més adequats per a l'aplicació del projecte, obtenint una precisió del 93.45 % en el model final per a la segmentació de fum en imatges d'incendis. forestals.Este trabajo se enmarca dentro del campo de estudio de las redes neuronales en aprendizaje profundo. El objetivo del proyecto es analizar y aplicar las redes neuronales que existen hoy en día en el mercado para resolver un problema en específico. Éste se trata de la segmentación de penachos de humo en incendios forestales. Se ha desarrollado un estudio de las redes neuronales utilizadas para resolver problemas de segmentación de imágenes y también una reconstrucción posterior en 3D de estos penachos de humo. El algoritmo finalmente escogido se trata del modelo UNet, una red neuronal convolucional basada en la estructura de autoencoders con conexiones de paso, que desarrolla tareas de autoaprendizaje para finalmente obtener una predicción de la clase a segmentar entrenada, en este caso penachos de humo. Posteriormente, una comparativa entre algoritmos tradicionales y el modelo UNet aplicado utilizando aprendizaje profundo se ha realizado, viendo que tanto cuantitativa como cualitativamente se consigue los mejores resultados aplicando el modelo UNet, pero a la vez conlleva más tiempo de computación. Todos estos modelos se han desarrollado con el lenguaje de programación Python utilizando libros de aprendizaje automático Tensorflow y Keras. Dentro del modelo UNet se han llevado a cabo múltiples experimentos para obtener los distintos valores de los hiperparámetros más adecuados para la aplicación del proyecto, obteniendo una precisión del 93.45 % en el modelo final para la segmentación de humo en imágenes de incendios forestales.This work is framed within the field of study of neural networks in Deep Learning. The aim of the project is to analyse and apply the neural networks that exist today in the market to solve a specific problem. This is about the segmentation of smoke plumes in forest fires. A study of the neural networks used to solve image segmentation problems and also a subsequent 3D reconstruction of these smoke plumes has been developed. The algorithm finally chosen is the UNet model, a convolutional neural network based on the structure of autoencoders with step connections, which develops self-learning tasks to finally obtain a prediction of the class to be trained, in this case smoke plumes. Also, a comparison between traditional algorithms and the UNet model applied using deep learning has been carried out, seeing that both quantitatively and qualitatively the best results are achieved by applying the UNet model, but at the same time it involves more computing time. All these models have been developed in the Python programming language using the Tensorflow and Keras machine learning books. Within the UNet model, multiple experiments have been carried out to obtain the different hyperparameter values most suitable for the project application, obtaining an accuracy of 93.45% in the final model for smoke segmentation in wildfire images
    corecore