486 research outputs found

    SEN-Iot: A Smart Emergency Notification System Suitable for Developing Countries using Internet of Things

    Get PDF
    Research has shown that disaster effects on properties and lives can be drastically reduced through wide dissemination of information on the impending danger to people at the appropriate time. Generally, the emergency alert systems are usually proactive systems; they are meant to gather data in surrounding using the necessary tools, alert the specified listeners about an impending danger and gives suggestion on the necessary actions to be taken in each situation. In addition, some emergency alert systems also activate automatic responses. Furthermore, the integration of Internet of things (IoT) technology with emergency notification systems is rapidly attracting new discovery in this domain. In this paper, an effective smart emergency notification system named SEN-IoT was design using IOT technology. SEN-IoT was modeled to manage domestic hazard with a scope of water, fire and gas leaks; by creating an emergence notification and immediate response systems. The SEN- IOT was implemented using arduino, sensors and the GSM module. The system was tested for maintainability, functionality, efficiency, usability and reliability, and results revealed that SEN-IoT can effectively handle domestic hazard

    Design and Implementation of an Intelligent Safety and Security System for Vehicles Based on GSM Communication and IoT Network for Real-Time Tracking

    Get PDF
    In recent years, the surge in car theft cases, often linked to illicit activities, has become a growing concern. Simultaneously, countries grappling with oil shortages have shifted towards converting vehicles to run on liquid propane gas, presenting new safety challenges for car owners. This paper introduces a novel integrated intelligent system designed to address the challenges of car theft and safety concerns associated with gas-based vehicles. By seamlessly integrating these concerns into a single system, it aims to achieve significantly improved performance compared to traditional alarm systems. The proposed system consists of three primary parts: the car security subsystem, an Internet of Things (IoT)-based real-time car tracking subsystem, and the car safety subsystem. Utilizing key technologies such as the Arduino Microcontroller, Bluetooth module, vibration sensor, keypad, solenoid lock, GSM module, NodeMCU microcontroller, GPS module, MQ-4 gas sensor, flame sensor, temperature sensor, and Bluetooth module, the system aims to provide a comprehensive solution for the mentioned issues. Furthermore, the vibration sensor plays a crucial role in identifying unauthorized vehicle operations. Its significance lies in detecting the vibrations emanating from the running engine. Concurrently, other modules and sensors are utilized for real-time tracking and enhancing vehicle safety. These measures include safeguarding against incidents like fire outbreaks or gas leaks within the gas container. Finally, after assembling the system, a practical test was conducted, yielding favourable performance results. This paper describes a meaningful step towards improving the protection and safety for the cars, simultaneously addressing the stealing prevention and gas-related accident alleviation

    Low-cost multipurpose sensor network integrated with iot and webgis for fire safety concerns

    Get PDF
    Fire emergencies cause severe damage to Brazilian federal universities. An appropriate and efficient tool to prevent or detect such events early is multisensory networks from the Internet of Things (IoT). In this study, we present the stages of development of a WebGIS system which integrates the IoT that allows the detection and helps manage such incidents. The approach consists of a network of multipurpose sensors that can identify different sources of fire hazards. If a potential source is registered, information about environmental conditions is transmitted in real-time to the system. Depending on the severity level, an alert is issued to WebGIS. Location is represented on a map. The entire system consists of single-board devices. Software components are based on open-source tools. The whole network only needs little power and, therefore, theoretically, could be carried out as an autonomous system powered by batteries. The entire system has been tested with flame, temperature, gas, smoke, and humidity sensors. The experiments allowed us to show its potential, formulate recommendations and indications for future studies

    Development in building fire detection and evacuation system-a comprehensive review

    Get PDF
    Fire is both beneficial to man and his environment as well as destructive and deadly among all the natural disasters. A fire Accident occurs very rarely, but once it crops up its consequences will be devastating. The early detection of fire will help to avoid further consequences and saves the life of people. During the fire accidents, it is also important to guide people within the building to exit safely. Because of this, the paper gives a review of literature related to recent advancements in building fire detection and emergency evacuation system. It is intended to provide details about fire simulation tools with features, suitable hardware, communication methods, and effective user interface

    IOT based Security System for Auto Identifying Unlawful Activities using Biometric and Aadhar Card

    Get PDF
    In today’s era, where thefts are consecutively increasing, especially in banks, jewelry shops, stores, ATMs, etc, there is a need to either develop a new system or to improve the existing system, due to which the security in these areas can be enhanced. However, the traditional methods (CCTV cameras, alarm buttons) to handle the security issues in these areas are still available, but they have lots of limitations and drawbacks. So, in order to handle the security issues, this paper describes how the biometric and IoT (Internet of Things) techniques can greatly improve the existing traditional security system. Our proposed system uses biometric authentication using the fingerprint and iris pattern with the strength of IoT sensors, microcontroller and UIDAI aadhar server to enhance the security model and to cut the need of keeping extra employees in monitoring the security system

    A Smart IoT-Aware System For Crisis Scenario Management

    Get PDF
    In most dangerous events, involving many people in large buildings, rescue workers need to intervene in a timely and targeted manner in order to help most number of people and secure the environments without wasting resources. This work presents an Internet of Things(IoT)-based framework, aiming at monitoring environmental parameters in order to alert rescuers when they exceed some alarm thresholds. A hardware infrastructure driven by a software layer adds flexibility and adaptability to the Complex Event Processing engine and to a rule engine-based reflective middleware that manages and analyzes raw data in conjunction with a knowledge base modeling the application domain

    The Emerging Internet of Things Marketplace From an Industrial Perspective: A Survey

    Get PDF
    The Internet of Things (IoT) is a dynamic global information network consisting of internet-connected objects, such as Radio-frequency identification (RFIDs), sensors, actuators, as well as other instruments and smart appliances that are becoming an integral component of the future internet. Over the last decade, we have seen a large number of the IoT solutions developed by start-ups, small and medium enterprises, large corporations, academic research institutes (such as universities), and private and public research organisations making their way into the market. In this paper, we survey over one hundred IoT smart solutions in the marketplace and examine them closely in order to identify the technologies used, functionalities, and applications. More importantly, we identify the trends, opportunities and open challenges in the industry-based the IoT solutions. Based on the application domain, we classify and discuss these solutions under five different categories: smart wearable, smart home, smart, city, smart environment, and smart enterprise. This survey is intended to serve as a guideline and conceptual framework for future research in the IoT and to motivate and inspire further developments. It also provides a systematic exploration of existing research and suggests a number of potentially significant research directions.Comment: IEEE Transactions on Emerging Topics in Computing 201

    Architecture and Applications of IoT Devices in Socially Relevant Fields

    Full text link
    Number of IoT enabled devices are being tried and introduced every year and there is a healthy competition among researched and businesses to capitalize the space created by IoT, as these devices have a great market potential. Depending on the type of task involved and sensitive nature of data that the device handles, various IoT architectures, communication protocols and components are chosen and their performance is evaluated. This paper reviews such IoT enabled devices based on their architecture, communication protocols and functions in few key socially relevant fields like health care, farming, firefighting, women/individual safety/call for help/harm alert, home surveillance and mapping as these fields involve majority of the general public. It can be seen, to one's amazement, that already significant number of devices are being reported on these fields and their performance is promising. This paper also outlines the challenges involved in each of these fields that require solutions to make these devices reliableComment: 1

    IoT-Based Fire Safety System Using MQTT Communication Protocol

    Get PDF
    Fire can be made useful for various purposes. However, uncontrollable fire may result in property damage and human death. The major factor of fire deaths is due to excessive smoke inhalation. Therefore, early detection of fire is crucial in fire detection systems. The conventional fire detection system does not come with a false alarm prevention system. Besides, the system is unable to tell the exact location of the fire. In this project, an Internet of Things (IoT) based fire safety system is developed to overcome these problems. The proposed system consists of three major parts which are the detector, processing unit and surveillance. The detector unit is an integration of ESP32, carbon monoxide sensor, ionization smoke detector, buzzer, temperature and humidity sensor. As the processing unit, Raspberry Pi is used to run the Node-RED application, which processes the data and performs monitoring. The communication between the detector and processing unit is based on the Message Queuing Telemetry Transport (MQTT) protocol. A surveillance unit is where a camera is installed to monitor the condition of the surrounding. The response of the system is based upon the sensor’s values or the user’s response.  Once the fire breakout is confirmed, the system will immediately sound the alarm, and Global Positioning System (GPS) coordinates and floor plan of the accommodation will send to the nearby fire station. The floor plan is developed to track the exact location of the fire. Experiments are carried out on the proposed fire safety system, and encouraging results are produced

    Adaptive Control of IoT/M2M Devices in Smart Buildings using Heterogeneous Wireless Networks

    Full text link
    With the rapid development of wireless communication technology, the Internet of Things (IoT) and Machine-to-Machine (M2M) are becoming essential for many applications. One of the most emblematic IoT/M2M applications is smart buildings. The current Building Automation Systems (BAS) are limited by many factors, including the lack of integration of IoT and M2M technologies, unfriendly user interfacing, and the lack of a convergent solution. Therefore, this paper proposes a better approach of using heterogeneous wireless networks consisting of Wireless Sensor Networks (WSNs) and Mobile Cellular Networks (MCNs) for IoT/M2M smart building systems. One of the most significant outcomes of this research is to provide accurate readings to the server, and very low latency, through which users can easily control and monitor remotely the proposed system that consists of several innovative services, namely smart parking, garden irrigation automation, intrusion alarm, smart door, fire and gas detection, smart lighting, smart medication reminder, and indoor air quality monitoring. All these services are designed and implemented to control and monitor from afar the building via our free mobile application named Raniso which is a local server that allows remote control of the building. This IoT/M2M smart building system is customizable to meet the needs of users, improving safety and quality of life while reducing energy consumption. Additionally, it helps prevent the loss of resources and human lives by detecting and managing risks.Comment: Accepted in IEEE Sensors Journa
    • …
    corecore