59 research outputs found

    Finsler geometry on higher order tensor fields and applications to high angular resolution diffusion imaging.

    Get PDF
    We study 3D-multidirectional images, using Finsler geometry. The application considered here is in medical image analysis, specifically in High Angular Resolution Diffusion Imaging (HARDI) (Tuch et al. in Magn. Reson. Med. 48(6):1358–1372, 2004) of the brain. The goal is to reveal the architecture of the neural fibers in brain white matter. To the variety of existing techniques, we wish to add novel approaches that exploit differential geometry and tensor calculus. In Diffusion Tensor Imaging (DTI), the diffusion of water is modeled by a symmetric positive definite second order tensor, leading naturally to a Riemannian geometric framework. A limitation is that it is based on the assumption that there exists a single dominant direction of fibers restricting the thermal motion of water molecules. Using HARDI data and higher order tensor models, we can extract multiple relevant directions, and Finsler geometry provides the natural geometric generalization appropriate for multi-fiber analysis. In this paper we provide an exact criterion to determine whether a spherical function satisfies the strong convexity criterion essential for a Finsler norm. We also show a novel fiber tracking method in Finsler setting. Our model incorporates a scale parameter, which can be beneficial in view of the noisy nature of the data. We demonstrate our methods on analytic as well as simulated and real HARDI data

    Multi-valued geodesic tractography for diffusion weighted imaging

    Get PDF
    Diffusion-Weighted Imaging (DWI) is a Magnetic Resonance(MR) technique that measures water diffusion characteristics in tissue for a given direction. The diffusion profile in a specific location can be obtained by combining the DWI measurements of different directions. The diffusion profile gives information about the underlying fibrous structure, e.g., in human brain white matter, based on the assumption that water molecules are moving less freely perpendicularly to the fibrous structure. From the DW-MRI measurements often a positive definite second-order tensor is defined, the so-called diffusion tensor (DT). Neuroscientists have begun using diffusion tensor images (DTI) to study a host of various disorders and neurodegenerative diseases including Parkinson, Alzheimer and Huntington. The techniques for reconstructing the fiber tracts based on diffusion profiles are known as tractography or fiber tracking. There are several ways to extract fibers from the raw diffusion data. In this thesis, we explain and apply geodesic-based tractography techniques specifically, where the assumption is that fibers follow the most efficient diffusion propagation paths. A Riemannian manifold is defined using as metric the inverse of the diffusion tensor. A shortest path in this manifold is one with the strongest diffusion along this path. Therefore geodesics (i.e., shortest paths) on this manifold follow the most efficient diffusion paths. The geodesics are often computed from the stationary Hamilton-Jacobi equation (HJ). One characteristic of solving the HJ equation is that it gives only the single-valued viscosity solution corresponding to the minimizer of the length functional. It is also well known that the solution of the HJ equation can develop discontinuities in the gradient space, i.e., cusps. Cusps occur when the correct solution should become multi-valued. HJ methods are not able to handle this situation. To solve this, we developed a multi-valued solution algorithm for geodesic tractography in a metric space defined by given by diffusion tensor imaging data. The algorithm can capture all possible geodesics arriving at a single voxel instead of only computing the first arrival. Our algorithm gives the possibility of applying different cost functions in a fast post-processing. Moreover, the algorithm can be used for capturing possible multi-path connections between two points. In this thesis, we first focus on the mathematical and numerical model for analytic and synthetic fields in twodimensional domains. Later, we present the algorithm in three-dimensions with examples of synthetic and brain data. Despite the simplicity of the DTI model, the tractography techniques using DT are shown to be very promising to reveal the structure of brain white matter. However, DTI assumes that each voxel contains fibers with only one main orientation and it is known that brain white matter has multiple fiber orientations, which can be arbitrary many in arbitrary directions. Recently, High Angular Resolution Diffusion Imaging (HARDI) acquisition and its modeling techniques have been developed to overcome this limitation. As a next contribution we propose an extension of the multi-valued geodesic algorithm to HARDI data. First we introduce the mathematical model for more complex geometries using Finsler geometry. Next, we propose, justify and exploit the numerical methods for computing the multi-valued solution of these equations

    Geodesic tractography segmentation for directional medical image analysis

    Get PDF
    Acknowledgements page removed per author's request, 01/06/2014.Geodesic Tractography Segmentation is the two component approach presented in this thesis for the analysis of imagery in oriented domains, with emphasis on the application to diffusion-weighted magnetic resonance imagery (DW-MRI). The computeraided analysis of DW-MRI data presents a new set of problems and opportunities for the application of mathematical and computer vision techniques. The goal is to develop a set of tools that enable clinicians to better understand DW-MRI data and ultimately shed new light on biological processes. This thesis presents a few techniques and tools which may be used to automatically find and segment major neural fiber bundles from DW-MRI data. For each technique, we provide a brief overview of the advantages and limitations of our approach relative to other available approaches.Ph.D.Committee Chair: Tannenbaum, Allen; Committee Member: Barnes, Christopher F.; Committee Member: Niethammer, Marc; Committee Member: Shamma, Jeff; Committee Member: Vela, Patrici

    Decomposition of higher-order homogeneous tensors and applications to HARDI

    Get PDF
    High Angular Resolution Diffusion Imaging (HARDI) holds the promise to provide insight in connectivity of the human brain in vivo. Based on this technique a number of different approaches has been proposed to estimate the Âżber orientation distribution, which is crucial for Âżber tracking. A spherical harmonic representation is convenient for regularization and the construction of orientation distribution functions (ODFs), whereas maxima detection and Âżber tracking techniques are most naturally formulated using a tensor representation. We give an analytical formulation to bridge the gap between the two representations, which admits regularization and ODF construction directly in the tensor basis
    • …
    corecore