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Decomposition of Higher-Order Homogeneous Tensors
and Applications to HARDI

E. Balmashnova, A. Fuster and L.M.J. Florack

Eindhoven University of Technology, The Netherlands
E.Balmachnova@tue.nl

Abstract. High Angular Resolution Diffusion Imaging (HARDI) holds the promise
to provide insight in connectivity of the human brain in vivo. Based on this tech-
nique a number of different approaches has been proposed to estimate the fiber
orientation distribution, which is crucial for fiber tracking. A spherical harmonic
representation is convenient for regularization and the construction of orientation
distribution functions (ODFs), whereas maxima detection and fiber tracking tech-
niques are most naturally formulated using a tensor representation. We give an
analytical formulation to bridge the gap between the two representations, which
admits regularization and ODF construction directly in the tensor basis.

1 Introduction

Diffusion MRI provides information about the fiber structure of brain white matter in
a noninvasive way. It is based on the measurement of the Brownian motion of wa-
ter molecules in tissue, which can be related to the tissue’s microstructure. In the last
decade several techniques have been proposed, from Diffusion Tensor Imaging (DTI)
[1,2] to the more general High Angular Resolution Diffusion Imaging (HARDI) [3].
In order to perform classification or fiber tracking one needs accurate estimation of the
orientation distribution function (ODF) from the original HARDI signal.

Most HARDI approaches are based on two alternative function representations on the
sphere. The first one is the well-known spherical harmonic decomposition [4,5] and the
second one is the homogeneous tensor decomposition proposed by Özarslan and Mareci
[6]. These representations have the same number of basis functions and span the same
vector space provided that the rank of the tensor representation equals the spherical har-
monics highest order. Each has its pros and cons. The spherical harmonic representation
permits efficient ways of computing the ODF from the data, as demonstrated in the con-
text of the diffusion orientation transform (DOT) [7], and Q-ball technique and its gen-
eralizations [8,9,10]. It also permits regularization in a relatively straightforward way
[11,12,13]. On the other hand, the tensor representation attracts nowadays more and
more attention due to applications such as ODF maxima extraction [14,15], the com-
putation of rotationally invariant scalar measures [16,17,18] and for parametrization of
the space of positive-definite higher-order tensors [19,20]. The tensorial representation
offers the additional advantage that it has the natural format for a Finsler geometric
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approach towards HARDI tractography and connectivity analysis [21,22,23]. On the
other hand, the initial step of obtaining the diffusion ODF requires a SH representation,
after which a linear transformation to a tensor description is performed [24]. Florack
and Balmashnova [12] offer a third representation, based on an inhomogeneous ten-
sor decomposition. Their representation reconciles the tensor representation with the
regularization rationale obviating the need for an intermediate spherical harmonic de-
composition. A first attempt to construct the diffusion ODF directly in tensor basis was
recently presented [25]. Their recipe requires lengthy manual derivation for each ten-
sor order, which becomes very cumbersome for high orders. In this work, however, we
present an analytic approach.

In this paper we describe how to obtain the diffusion ODF (Q-ball and constant solid an-
gle) and regularization analytically for a tensor representation of arbitrary order directly
from data evidence, by fitting a homogeneous tensor to the data and then analytically
decomposing the resulting homogeneous tensor in order to benefit from the inhomo-
geneous representation. The final algorithm for regularization or ODF computation is
based on simple matrix multiplication of the tensor coefficients.

2 Higher-Order Tensor Representations

An interesting alternative to spherical harmonics is provided by a higher-order tensor
representation (higher than order two). Originally Özarslan and Mareci [6] proposed a
homogeneous high-rank tensor representation1

Shom
n (y) = Di1...inyi1 . . . yin , (1)

where y = (y1, y2, y3) is a unit vector and D is a higher-order diffusion tensor of
rank n. This is a generalization of the diffusion tensor model in which a 2-rank ten-
sor is used. These high-rank Cartesian diffusion tensors can be computed avoiding the
computationally costly spherical harmonics. Regularization plays a very important role
for robustness purposes. In case of a homogeneous high-rank tensor representation, the
only explicit type of regularization that is easily enforced is by constraining the rank
(lower rank implies higher degree of regularization) as explained in [26]. In fact, DTI
is reasonably robust because of the 2nd order rank constraint explicitly built in. The
alternative inhomogeneous higher-order tensor decomposition resolves this robustness
problem by exploiting redundancy of the polynomial basis on the sphere in such a way
that terms of the same order in the resulting decomposition become eigenfunctions un-
der regularization [12]. The nonregularized data decomposition has the form

Sinhom
n (y) =

nX

j=0

Di1...ijyi1 . . . yij (2)

in the redundant basis of polynomials {yi1 . . . yij | j = 0, 2, . . . n} on the unit sphere2.
The idea is to encode in the higher-order part the residual information which cannot

1 Here and henceforth summation convention for repeated indices applies.
2 It is assumed that Sn(y) = Sn(�y), whence only even order monomials are used.
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be revealed by lower-order terms. The algorithm for computing the coefficients has a
hierarchical structure [12]:

1. D0 is found by minimization of the energy (⌦ denotes the unit sphere, and d⌦ the
appropriate measure)

E0(D
0) =

Z

⌦
(S(y)�D0)2d⌦, (3)

2. If all terms of order up to j � 1 are known, the j-th order coefficients are obtained
from minimization of the energy

Ej(D
i1...ij ) =

Z

⌦
((S(y)�

j�1X

k=0

Di1...ikyi1 . . . yik)�Di1...ijyi1 . . . yij )
2d⌦ (4)

The solution requires only one data term of the resulting linear system to be computed
numerically, analytic expressions for all other integrals are given in [12]. Although both
tensor decompositions, homogeneous and inhomogeneous, are equivalent on the sphere
in the sense that Sinhom

n (y) = Shom
n (y), the inhomogeneous one has important advan-

tages. It allows to regularize and construct the ODF directly, without going to a spherical
harmonics basis. This is possible due to the following properties:

1. The polynomials Di1...ikyi1 . . . yik for fixed k belong to the span {Ykm(y), m =
�k, . . . , k} of the spherical harmonics of the same order k.

2. The polynomials Di1...ikyi1 . . . yik are eigenfunctions of the Laplace-Beltrami op-
erator 4LB, thus in practice they are easily regularized by Tikhonov regularization
[11,12].

3. Sinhom
n (y, t) satisfies the heat equation on the unit sphere with the initial condition

Sinhom
n (y, 0) = Sinhom

n (y).

However, the inhomogeneous representation also poses a few drawbacks:

1. Due to the fact that the algorithm requires several steps with least squared fittings,
it is less robust compared to one for the homogeneous representation.

2. It requires to store more coefficients for each point. Instead of the (n+1)(n+2)/2
coefficients required in the homogeneous case, (n + 2)(n + 4)(2n + 3)/24 are
needed, unless one is able to make all mutual dependencies among the coefficients
explicit beforehand (which is not an easy task).

3 Decomposition of Homogeneous Tensors

Starting point is a homogeneous tensor representation, Eq. (1), fitted to HARDI data
(see, for example, [27]). We propose to decompose such a homogeneous tensor into
the inhomogeneous representation given by Eq. (2). Instead of tensor index notation
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we adopt the multi-index notation used in [19]. The signal S can then be written as a
homogenous polynomial of even order n:

Shom
n (y) =

X

|↵|=n

D↵y
↵ =

X

↵1+↵2+↵3=n

D↵1↵2↵3y
↵1
1 y↵2

2 y↵3
3 (5)

For implementation purposes we store the coefficients in Eq. (5) as a 1
2 (n+ 1)(n+ 2)-

dimensional vector D and the monomials as a vector v, so that

Shom
n (y)

def
= DTv. (6)

For example, in the case n = 2, vT = (y21 , y1y2, y
2
2 , y2y3, y

2
3 , y1y3). Given such a

homogeneous polynomial matched to the data S we now wish to map the known coeffi-
cients D↵ to coefficients D2⌫

↵ of the aforementioned equivalent inhomogeneous repre-
sentation3, Eq. (2), in such a way that D2⌫

n (y) belongs to the span of spherical harmonics
of order 2⌫:

Sn(y) = Sinhom
n (y)

def
=

n/2X

⌫=0

D2⌫
n (y). (7)

The vectors of coefficients are related by

D =

n/2X

⌫=0

D2⌫ . (8)

Any polynomial can be decomposed into a sum of harmonic polynomials hl, as follows:

Sn(y) =

n/2X

⌫=0

rn�2⌫h2⌫(y) (9)

where hl is a homogeneous harmonic polynomial of order l (i.e. 4hl(y) = 0, where
4 is the Laplacian operator in 3D) and r2 = y21 + y22 + y23 . The property of spherical
harmonics being homogeneous harmonic polynomials on the unit sphere is of crucial
importance, since it allows us to transfer well-developed algorithms for HARDI relative
to a spherical harmonic basis to the inhomogeneous polynomial basis. This allows us
to conclude that the polynomial rn�khk restricted to the unit sphere for fixed k belongs
to the span of the spherical harmonics of the same order, {Ykm(y), m = �k, . . . , k}.
The polynomial r2⌫hn�2⌫ is explicitly given by [28]:

rn�2⌫h2⌫ = (4⌫+1)!!
(n�2⌫)!!(n+2⌫+1)!!

⌫X

µ=0

(�1)µ(4⌫�2µ�1)!!
(2µ)!!(4⌫�1)!! r2(µ+

n
2 �⌫)4µ+n

2 �⌫Sn(y) (10)

We derive the exact formula by substituting Eq. (5) into Eq. (10) and using the binomial
expansions for both rn�2(⌫�µ) and 4n

2 �(⌫�µ), with changes in the order of summa-
tion4

D2⌫
n (y)

def
= rn�2⌫h2⌫ =

X

|↵|=n

D2⌫
↵ y↵ (11)

3 The reverse mapping from inhomogeneous to homogeneous representation is trivial by insert-
ing powers of r2 = y2

1 + y2
2 + y2

3 into the monomials in Eq. (5).
4 Caveat: ↵ is multi-index, n is integer, so D2⌫

n (y) and D2⌫
↵ should not be confused.
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where for all |↵| = n (cf Eq. (5))

D2⌫
↵ =

X

|�|=n

D�c
2⌫,�
↵ , (12)

c2⌫,�↵ = (4⌫+1)!!
(n�2⌫)!!(n+2⌫+1)!!

⌫X

µ=0

(�1)µ
⇤X

|�|=µ+n
2 �⌫

(4⌫�2µ�1)!!((µ+n
2

�⌫)!)2�!

(2µ)!!(4⌫�1)!!�!(↵��+2�)/2)!(��2�)! (13)

where ⇤ means that summation applies only for the terms for which the following con-
ditions are satisfied:

(� � ↵  2�  �) and (↵i � �i even), (14)

Note that in multi-index notation ↵! = ↵1!↵2!↵3!, and ↵ < � implies ↵i < �i for
all indices i. The values c2⌫,�↵ do not depend on the data and have to be computed
only once. From Eq. (13) we can construct the vector of coefficients D2⌫ , Eq. (12), as
follows:

D2⌫ = C2⌫D, ⌫ = 0, . . . ,
n

2
. (15)

The 1
2 (n+ 1)(n+ 2)⇥ 1

2 (n+ 1)(n+ 2) matrices C2⌫ sum up to the identity:

n/2X

⌫=0

C2⌫ = I. (16)

This decomposition gives the coefficient vector D2⌫ corresponding to a polynomial
from the span of the spherical harmonics of order 2⌫, {Y2⌫,m(y), m = �2⌫, . . . , 2⌫}.
Since most approaches use properties of spherical harmonics, this decomposition allows
one to use the same techniques in the tensor representation. We illustrate this point in
the next section with several examples.

4 Applications

Example 1: Regularization. Laplace-Beltrami regularization is widely used in HARDI
since it is a natural smoothing via diffusion on the sphere [11,12]. Let SSH

n (y) be a
spherical harmonic decomposition of the signal S

SSH
n (y) =

nX

l=0

lX

m=�l

almYlm(y), (17)

and 4LB the Laplace-Beltrami operator on the unit sphere, then the regularized signal
can be readily obtained [12]

SSH
n (y, t) ⌘ et4LBSSH

n (y) =
nX

l=0

lX

m=�l

alm(t)Ylm(y), (18)
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where alm(t) = e�l(l+1)talm. Note that the coefficient transformation depends only on
l and not on m. This allows us to apply this technique to the tensor representation. The
polynomial with the coefficients D2⌫ = C2⌫D belongs to span of spherical harmonics
of order 2⌫. Therefore, the regularized polynomial will have the following coefficients

D2⌫(t) = e�2⌫(2⌫+1)tC2⌫D. (19)

The resulting regularization matrix for the whole polynomial is thus

CLB(t) =

n/2X

⌫=0

e�2⌫(2⌫+1)tC2⌫ (20)

and the regularized polynomial can be written as

D(y1, y2, y3, t) = DTCLB(t)v, (21)

The parameter t can be interpreted as inverse angular resolution. Figures 1 and 2 il-
lustrate the importance of the scale parameter. In the case of noisy data, low t-values
prevent correct detection of fiber orientations. In the interval t 2 [0.05, 0.15] the two
most pronounced modes agree with the crossing fiber orientations with an angular error
of less than 9�, and a minimal error of 6�.

Fig. 1. Left: Synthetic noise-free profile induced by two crossing fibers at an angle of 90 degrees.
Right: Same profile with added Rician noise.

Example 2: Q-Ball Imaging. A model-free diffusion ODF reconstruction scheme has
been introduced by Tuch [10]. The diffusion probability function P (r) is related to the
measured MR diffusion signal E(q), where E(q) = S(q)/S0 (S0 is the non-diffusion-
weighted image), by a Fourier integral

P = F [E] (22)
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Fig. 2. Regularized profiles produced from the right image in Fig. 1 up to n = 8, with scale
t 2 [0.007, 1.0] exponentially sampled.

where r is the displacement vector and q is the diffusion wave-vector, which is propor-
tional to the applied magnetic field gradient in the MRI scanner. The three-dimensional
probability density function P (r) contains information about the tissue microstructure.
A problem with using Eq. (22) directly via DFT is that acquisition data E(q) for all q
is needed. This is not feasible since it leads to long acquisition times and the need for
high values of |q|, causing serious noise problems. By considering the diffusion orien-
tation function (ODF) for a direction u defined by the radial projection of the diffusion
function

 (u) =

Z 1

0
P (ru)dr, (23)

where u is a unit vector, the orientation structure of P (r) can be described.

There are several similar analytical Q-ball algorithms [11,13,29]. In this example we
use the approach of Descoteaux et al., based on the 3D Funk-Hecke theorem, since it
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can be adopted for higher-order tensor representations. The Funk-Radon transform G
of a spherical harmonic decomposition, Eq. (17), can now be written as

 (u) = G[Sn](u) = 2⇡
nX

l=0

Pl(0)almYlm(u). (24)

where P2⌫(0) = (�1)⌫ (2⌫�1)!!
(2⌫)!! and the Funk-Radon transform is defined as

G[f ](u) def
=

Z Z

|w|=1
f(w)�(uTw)dw. (25)

Here again the coefficient transformation depends only on the spherical harmonic order,
and as in the regularization example, we can apply the result to our inhomogeneous
tensor representation:

D2⌫
ODF = 2⇡P2⌫(0)C

2⌫D. (26)

Therefore, we can construct the transformation matrix for the whole polynomial as

CODF = 2⇡

n/2X

⌫=0

P2⌫(0)C
2⌫ (27)

and finally we have
 (u) = DTCODFv, (28)

The regularization and ODF reconstruction steps, given by Eqs. (18) and (28), can be
combined in one for implementation purposes. Therefore, the whole algorithm for ob-
taining the diffusion ODF in tensor representation has two steps involving linear oper-
ations only:

1. Fit an nth order homogeneous polynomial to the signal by solving a linear system
of equations.

2. Compute the regularized ODF coefficients DODF(t) = CODFCLB(t)D.

Example 3: Constant Solid Angle Orientation Distribution Function. Several flaws
of the Q-ball approach were pointed out in [30]. One of them is that the ODF definition
does not deal with volume elements in a proper way, the adequate definition being

 (u) =

Z 1

0
P (ru)r2dr. (29)

This definition has been used to compute the ODF in [8]. However, this approach is not
model-free as it requires the Stejskal-Tanner assumption about monoexponential decay
of the signal [31]. The modified formula for the ODF, say instead of Eq. (24), is

 (u) =
1

4⇡
+

1

16⇡2
G[4LB ln(� ln(E(y)))](u), (30)
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In this case the same approach as in the original Q-ball gives

CODF = � 1

8⇡

n/2X

⌫=0

P2⌫(0)2⌫(2⌫ + 1)C2⌫ (31)

and the final expression becomes

 (u1, u2, u3) =
1

4⇡
+DTCODFv (32)

where D is a vector of tensor coefficients of ln(� ln(E(y))).

5 Conclusions

We have shown that a particular inhomogeneous polynomial representation of HARDI
data on the unit sphere has certain theoretical and practical merits. We have derived
the formulas for decomposition of a homogeneous polynomial of arbitrary order on the
sphere in terms of such an inhomogeneous polynomial. The resulting decomposition re-
quires a simple matrix multiplication of the vector of the coefficients obtained from the
measurement data. We also show how this decomposition may be used for regulariza-
tion and closed-form Q-ball representation. The resulting diffusion ODF is equivalent to
the one obtained from the well-established analytical Q-ball algorithm. The advantage
is that this approach does not require a detour via spherical harmonic decomposition,
but instead can be obtained directly using a suitable higher order tensor formalism. This
is of interest in many applications where the tensor formalism is the preferred choice.

The diffusion ODF can be used for fiber tracking techniques. In the most straightfor-
ward approach the tracking is performed by following the principle directions. For this
reason maxima detection of the ODF is one of the major focuses, and a tensor represen-
tation has proven to be helpful [14,15]. We also would like to point out that in maxima
detection techniques, regularization plays a crucial role. For this reason we have com-
bined the Q-ball technique with regularization. In the case where the regularization
parameter is sufficiently high, the blurred function has only one maximum. Decreas-
ing regularization parameter leads to a splitting into two and subsequently more local
maxima. Therefore, the hierarchical structure can be exploited in a coarse-to-fine max-
ima detection framework. Finally, the proposed method might also have applications in
the context of Diffusional Kurtosis Imaging and in statistical models of second-order
diffusion tensors, for decomposition of fourth-order kurtosis and covariance tensors.
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