344 research outputs found

    Mathematical control of complex systems

    Get PDF
    Copyright © 2013 ZidongWang et al.This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Finite-time passivity for neutral-type neural networks with time-varying delays – via auxiliary function-based integral inequalities

    Get PDF
    In this paper, we investigated the problem of the finite-time boundedness and finitetime passivity for neural networks with time-varying delays. A triple, quadrable and five integral terms with the delay information are introduced in the new Lyapunov–Krasovskii functional (LKF). Based on the auxiliary integral inequality, Writinger integral inequality and Jensen’s inequality, several sufficient conditions are derived. Finally, numerical examples are provided to verify the effectiveness of the proposed criterion. There results are compared with the existing results.&nbsp

    New advances in H∞ control and filtering for nonlinear systems

    Get PDF
    The main objective of this special issue is to summarise recent advances in H∞ control and filtering for nonlinear systems, including time-delay, hybrid and stochastic systems. The published papers provide new ideas and approaches, clearly indicating the advances made in problem statements, methodologies or applications with respect to the existing results. The special issue also includes papers focusing on advanced and non-traditional methods and presenting considerable novelties in theoretical background or experimental setup. Some papers present applications to newly emerging fields, such as network-based control and estimation

    Exponential synchronization for second-order switched quaternion-valued neural networks with neutral-type and mixed time-varying delays

    Get PDF
    This article focuses on the global exponential synchronization (GES) for second-order state-dependent switched quaternion-valued neural networks (SOSDSQVNNs) with neutral-type and mixed delays. By proposing some new Lyapunov–Krasovskii functionals (LKFs) and adopting some inequalities, several new criteria in the shape of algebraic inequalities are proposed to ensure the GES for the concerned system by using hybrid switched controllers (HSCs). Different from the common reducing order and separation ways, this article presents some new LKFs to straightway discuss the GES of the concerned system based on non-reduction order and nonseparation strategies. Ultimately, an example is provided to validate the effectiveness of the theoretical outcomes

    Nonlinear Systems

    Get PDF
    Open Mathematics is a challenging notion for theoretical modeling, technical analysis, and numerical simulation in physics and mathematics, as well as in many other fields, as highly correlated nonlinear phenomena, evolving over a large range of time scales and length scales, control the underlying systems and processes in their spatiotemporal evolution. Indeed, available data, be they physical, biological, or financial, and technologically complex systems and stochastic systems, such as mechanical or electronic devices, can be managed from the same conceptual approach, both analytically and through computer simulation, using effective nonlinear dynamics methods. The aim of this Special Issue is to highlight papers that show the dynamics, control, optimization and applications of nonlinear systems. This has recently become an increasingly popular subject, with impressive growth concerning applications in engineering, economics, biology, and medicine, and can be considered a veritable contribution to the literature. Original papers relating to the objective presented above are especially welcome subjects. Potential topics include, but are not limited to: Stability analysis of discrete and continuous dynamical systems; Nonlinear dynamics in biological complex systems; Stability and stabilization of stochastic systems; Mathematical models in statistics and probability; Synchronization of oscillators and chaotic systems; Optimization methods of complex systems; Reliability modeling and system optimization; Computation and control over networked systems

    Finite-Time Boundedness for a Class of Delayed Markovian Jumping Neural Networks with Partly Unknown Transition Probabilities

    Get PDF
    This paper is concerned with the problem of finite-time boundedness for a class of delayed Markovian jumping neural networks with partly unknown transition probabilities. By introducing the appropriate stochastic Lyapunov-Krasovskii functional and the concept of stochastically finite-time stochastic boundedness for Markovian jumping neural networks, a new method is proposed to guarantee that the state trajectory remains in a bounded region of the state space over a prespecified finite-time interval. Finally, numerical examples are given to illustrate the effectiveness and reduced conservativeness of the proposed results

    Delay-Dependent Dynamics of Switched Cohen-Grossberg Neural Networks with Mixed Delays

    Get PDF
    This paper aims at studying the problem of the dynamics of switched Cohen-Grossberg neural networks with mixed delays by using Lyapunov functional method, average dwell time (ADT) method, and linear matrix inequalities (LMIs) technique. Some conditions on the uniformly ultimate boundedness, the existence of an attractors, the globally exponential stability of the switched Cohen-Grossberg neural networks are developed. Our results extend and complement some earlier publications
    • …
    corecore