73 research outputs found

    Finite-precision design and implementation of all-pass polyphase networks for echo cancellation in sub-bands

    Get PDF
    All-pass polyphase networks (APN) are particularly attractive for acoustical echo cancellation (AEC) arranged in sub-bands. They provide lower inter-band aliasing, delay and computational complexity than their FIR counterparts. Moreover, APNs achieve higher echo return loss enhancement (ERLE) performance and faster convergence than full-band processing. In the paper, the finite precision implementation of APNs is addressed. A procedure is presented for re-optimising the all-pass coefficients of the prototype low-pass filter for finite precision operation. Robust finite precision implementation of a prototype low-pass filter is discussed. The results of a set of AEC experiments are reported with full and 16-bit precision implementatio

    Subband adaptive filtering for acoustic echo control using allpass polyphase IIR filterbanks

    No full text
    Published versio

    Measuring the Phase Variation of a DOCSIS 3.1 Full Duplex Channel

    Get PDF
    Including a Full Duplex option into DOCSIS introduces several problems. One of the more troublesome issues is the presence of a strong self interference signal that leaks from the transmit side to the receive side of a cable node. This self interference is caused by echoes in the channel that translate the forward travelling transmit signals into a reverse travelling signal, as well as, by leakage from the hybrid coupler used to couple the upstream and downstream signals. To suppress this self interference an echo canceller is implemented to remove the unwanted interference from the received signal. Unfortunately with the high rates of data transmission used in modern day CATV networks the echo canceller needs tremendous precision. A major concern in the implementation of Full Duplex into DOCSIS is if the channels used are even very slightly time varying. The echos in such channels change with time and can be difficult for the echo canceller to track. Changes in the response of the channel cause the echo profile of the network to shift and the echo canceler to re-adapt to the new channel response. The issue with this changing response is that it is possible for the channel to change faster than the echo canceller can adapt, resulting in the interference becoming unacceptably high. Since the channel is a physical network of coaxial cables often exposed to the environment, its propagation properties can be affected by wind swaying pole mounted cables, or by rapid heating from the sun, or sudden shifts in the load of the network. With information on how the physical properties of the cable changes, the engineers designing the echo canceller can know how fast the canceller must adapt to changes and also have a better measure of how reliable its echo cancellation will be. In this thesis the stability of the echo profile of the channel is measured. It is shown that the property of the channel with the greatest potential to rapidly change and cause noise after echo cancellation is the phase response of the channel. Due to this, the approach of this thesis is to measure the fluctuations in the phase of the channel response of a CATV network constructed in the lab. To measure the fluctuations in the phase response of the channel, a PLL (Phase Locked Loop) based circuit is designed and built on an FPGA (Field Programmable Gate Array) and connected to a model of a simple CATV network. The PLL circuit used to measure the phase fluctuations of the channel is designed to be able to measure changes occurring faster than 0.1 Hz and with a power higher than 107V210^{-7} \: V^2. The circuit is able to capture data from the channel over a period of 90 seconds. Using this phase variation measurement circuit a series of experiments were performed on a model CATV DOCSIS network. It was found that many physical disturbances to the network had the effect of rapidly shifting the phase response of the network. Heating the cables in the network was found to shift the phase response upwards of 20000μ20000\:\muradians. Flexing the cables in the network was found to have a peak phase variation of 8000μ8000\: \muradians with similar effects found from walking over cables. Overall, it was clear that physical effects on the network had the propensity to rapidly shift the network response. Any echo canceller that is designed in the future will have to consider these effects when reporting the cancellation that it is able to achieve

    Design, analysis and evaluation of sigma-delta based beamformers for medical ultrasound imaging applications

    Get PDF
    The inherent analogue nature of medical ultrasound signals in conjunction with the abundant merits provided by digital image acquisition, together with the increasing use of relatively simple front-end circuitries, have created considerable demand for single-bit beamformers in digital ultrasound imaging systems. Furthermore, the increasing need to design lightweight ultrasound systems with low power consumption and low noise, provide ample justification for development and innovation in the use of single-bit beamformers in ultrasound imaging systems. The overall aim of this research program is to investigate, establish, develop and confirm through a combination of theoretical analysis and detailed simulations, that utilize raw phantom data sets, suitable techniques for the design of simple-to-implement hardware efficient digital ultrasound beamformers to address the requirements for 3D scanners with large channel counts, as well as portable and lightweight ultrasound scanners for point-of-care applications and intravascular imaging systems. In addition, the stability boundaries of higher-order High-Pass (HP) and Band-Pass (BP) Σ−Δ modulators for single- and dual- sinusoidal inputs are determined using quasi-linear modeling together with the describing-function method, to more accurately model the modulator quantizer. The theoretical results are shown to be in good agreement with the simulation results for a variety of input amplitudes, bandwidths, and modulator orders. The proposed mathematical models of the quantizer will immensely help speed up the design of higher order HP and BP Σ−Δ modulators to be applicable for digital ultrasound beamformers. Finally, a user friendly design and performance evaluation tool for LP, BP and HP modulators is developed. This toolbox, which uses various design methodologies and covers an assortment of modulators topologies, is intended to accelerate the design process and evaluation of modulators. This design tool is further developed to enable the design, analysis and evaluation of beamformer structures including the noise analyses of the final B-scan images. Thus, this tool will allow researchers and practitioners to design and verify different reconstruction filters and analyze the results directly on the B-scan ultrasound images thereby saving considerable time and effort

    Development and applications of adaptive IIR and subband filters

    Get PDF
    Adaptive infinite impulse response (IIR) filter is a challenging research area. Identifiers and Equalizers are among the most essential digital signal processing devices for digital communication systems. In this study, we consider IIR channel both for system identification and channel equalization purposes. We focus on four different approaches: Least Mean Square (LMS), Recursive Least Square (RLS), Genetic Algorithm (GA) and Subband Adaptive Filter (SAF). ). The performance of conventional LMS and RLS based IIR system identification and channel equalization are found with the help of computer simulations. And also the convergence speed and the ability to locate the global optimum solution using a population based algorithm named Genetic Algorithm is given

    Channelization for Multi-Standard Software-Defined Radio Base Stations

    Get PDF
    As the number of radio standards increase and spectrum resources come under more pressure, it becomes ever less efficient to reserve bands of spectrum for exclusive use by a single radio standard. Therefore, this work focuses on channelization structures compatible with spectrum sharing among multiple wireless standards and dynamic spectrum allocation in particular. A channelizer extracts independent communication channels from a wideband signal, and is one of the most computationally expensive components in a communications receiver. This work specifically focuses on non-uniform channelizers suitable for multi-standard Software-Defined Radio (SDR) base stations in general and public mobile radio base stations in particular. A comprehensive evaluation of non-uniform channelizers (existing and developed during the course of this work) shows that parallel and recombined variants of the Generalised Discrete Fourier Transform Modulated Filter Bank (GDFT-FB) represent the best trade-off between computational load and flexibility for dynamic spectrum allocation. Nevertheless, for base station applications (with many channels) very high filter orders may be required, making the channelizers difficult to physically implement. To mitigate this problem, multi-stage filtering techniques are applied to the GDFT-FB. It is shown that these multi-stage designs can significantly reduce the filter orders and number of operations required by the GDFT-FB. An alternative approach, applying frequency response masking techniques to the GDFT-FB prototype filter design, leads to even bigger reductions in the number of coefficients, but computational load is only reduced for oversampled configurations and then not as much as for the multi-stage designs. Both techniques render the implementation of GDFT-FB based non-uniform channelizers more practical. Finally, channelization solutions for some real-world spectrum sharing use cases are developed before some final physical implementation issues are considered

    Audio Coding Based on Integer Transforms

    Get PDF
    Die Audiocodierung hat sich in den letzten Jahren zu einem sehr populären Forschungs- und Anwendungsgebiet entwickelt. Insbesondere gehörangepasste Verfahren zur Audiocodierung, wie etwa MPEG-1 Layer-3 (MP3) oder MPEG-2 Advanced Audio Coding (AAC), werden häufig zur effizienten Speicherung und Übertragung von Audiosignalen verwendet. Für professionelle Anwendungen, wie etwa die Archivierung und Übertragung im Studiobereich, ist hingegen eher eine verlustlose Audiocodierung angebracht. Die bisherigen Ansätze für gehörangepasste und verlustlose Audiocodierung sind technisch völlig verschieden. Moderne gehörangepasste Audiocoder basieren meist auf Filterbänken, wie etwa der überlappenden orthogonalen Transformation "Modifizierte Diskrete Cosinus-Transformation" (MDCT). Verlustlose Audiocoder hingegen verwenden meist prädiktive Codierung zur Redundanzreduktion. Nur wenige Ansätze zur transformationsbasierten verlustlosen Audiocodierung wurden bisher versucht. Diese Arbeit präsentiert einen neuen Ansatz hierzu, der das Lifting-Schema auf die in der gehörangepassten Audiocodierung verwendeten überlappenden Transformationen anwendet. Dies ermöglicht eine invertierbare Integer-Approximation der ursprünglichen Transformation, z.B. die IntMDCT als Integer-Approximation der MDCT. Die selbe Technik kann auch für Filterbänke mit niedriger Systemverzögerung angewandt werden. Weiterhin ermöglichen ein neuer, mehrdimensionaler Lifting-Ansatz und eine Technik zur Spektralformung von Quantisierungsfehlern eine Verbesserung der Approximation der ursprünglichen Transformation. Basierend auf diesen neuen Integer-Transformationen werden in dieser Arbeit neue Verfahren zur Audiocodierung vorgestellt. Die Verfahren umfassen verlustlose Audiocodierung, eine skalierbare verlustlose Erweiterung eines gehörangepassten Audiocoders und einen integrierten Ansatz zur fein skalierbaren gehörangepassten und verlustlosen Audiocodierung. Schließlich wird mit Hilfe der Integer-Transformationen ein neuer Ansatz zur unhörbaren Einbettung von Daten mit hohen Datenraten in unkomprimierte Audiosignale vorgestellt.In recent years audio coding has become a very popular field for research and applications. Especially perceptual audio coding schemes, such as MPEG-1 Layer-3 (MP3) and MPEG-2 Advanced Audio Coding (AAC), are widely used for efficient storage and transmission of music signals. Nevertheless, for professional applications, such as archiving and transmission in studio environments, lossless audio coding schemes are considered more appropriate. Traditionally, the technical approaches used in perceptual and lossless audio coding have been separate worlds. In perceptual audio coding, the use of filter banks, such as the lapped orthogonal transform "Modified Discrete Cosine Transform" (MDCT), has been the approach of choice being used by many state of the art coding schemes. On the other hand, lossless audio coding schemes mostly employ predictive coding of waveforms to remove redundancy. Only few attempts have been made so far to use transform coding for the purpose of lossless audio coding. This work presents a new approach of applying the lifting scheme to lapped transforms used in perceptual audio coding. This allows for an invertible integer-to-integer approximation of the original transform, e.g. the IntMDCT as an integer approximation of the MDCT. The same technique can also be applied to low-delay filter banks. A generalized, multi-dimensional lifting approach and a noise-shaping technique are introduced, allowing to further optimize the accuracy of the approximation to the original transform. Based on these new integer transforms, this work presents new audio coding schemes and applications. The audio coding applications cover lossless audio coding, scalable lossless enhancement of a perceptual audio coder and fine-grain scalable perceptual and lossless audio coding. Finally an approach to data hiding with high data rates in uncompressed audio signals based on integer transforms is described

    Audio Coding Based on Integer Transforms

    Get PDF
    Die Audiocodierung hat sich in den letzten Jahren zu einem sehr populären Forschungs- und Anwendungsgebiet entwickelt. Insbesondere gehörangepasste Verfahren zur Audiocodierung, wie etwa MPEG-1 Layer-3 (MP3) oder MPEG-2 Advanced Audio Coding (AAC), werden häufig zur effizienten Speicherung und Übertragung von Audiosignalen verwendet. Für professionelle Anwendungen, wie etwa die Archivierung und Übertragung im Studiobereich, ist hingegen eher eine verlustlose Audiocodierung angebracht. Die bisherigen Ansätze für gehörangepasste und verlustlose Audiocodierung sind technisch völlig verschieden. Moderne gehörangepasste Audiocoder basieren meist auf Filterbänken, wie etwa der überlappenden orthogonalen Transformation "Modifizierte Diskrete Cosinus-Transformation" (MDCT). Verlustlose Audiocoder hingegen verwenden meist prädiktive Codierung zur Redundanzreduktion. Nur wenige Ansätze zur transformationsbasierten verlustlosen Audiocodierung wurden bisher versucht. Diese Arbeit präsentiert einen neuen Ansatz hierzu, der das Lifting-Schema auf die in der gehörangepassten Audiocodierung verwendeten überlappenden Transformationen anwendet. Dies ermöglicht eine invertierbare Integer-Approximation der ursprünglichen Transformation, z.B. die IntMDCT als Integer-Approximation der MDCT. Die selbe Technik kann auch für Filterbänke mit niedriger Systemverzögerung angewandt werden. Weiterhin ermöglichen ein neuer, mehrdimensionaler Lifting-Ansatz und eine Technik zur Spektralformung von Quantisierungsfehlern eine Verbesserung der Approximation der ursprünglichen Transformation. Basierend auf diesen neuen Integer-Transformationen werden in dieser Arbeit neue Verfahren zur Audiocodierung vorgestellt. Die Verfahren umfassen verlustlose Audiocodierung, eine skalierbare verlustlose Erweiterung eines gehörangepassten Audiocoders und einen integrierten Ansatz zur fein skalierbaren gehörangepassten und verlustlosen Audiocodierung. Schließlich wird mit Hilfe der Integer-Transformationen ein neuer Ansatz zur unhörbaren Einbettung von Daten mit hohen Datenraten in unkomprimierte Audiosignale vorgestellt.In recent years audio coding has become a very popular field for research and applications. Especially perceptual audio coding schemes, such as MPEG-1 Layer-3 (MP3) and MPEG-2 Advanced Audio Coding (AAC), are widely used for efficient storage and transmission of music signals. Nevertheless, for professional applications, such as archiving and transmission in studio environments, lossless audio coding schemes are considered more appropriate. Traditionally, the technical approaches used in perceptual and lossless audio coding have been separate worlds. In perceptual audio coding, the use of filter banks, such as the lapped orthogonal transform "Modified Discrete Cosine Transform" (MDCT), has been the approach of choice being used by many state of the art coding schemes. On the other hand, lossless audio coding schemes mostly employ predictive coding of waveforms to remove redundancy. Only few attempts have been made so far to use transform coding for the purpose of lossless audio coding. This work presents a new approach of applying the lifting scheme to lapped transforms used in perceptual audio coding. This allows for an invertible integer-to-integer approximation of the original transform, e.g. the IntMDCT as an integer approximation of the MDCT. The same technique can also be applied to low-delay filter banks. A generalized, multi-dimensional lifting approach and a noise-shaping technique are introduced, allowing to further optimize the accuracy of the approximation to the original transform. Based on these new integer transforms, this work presents new audio coding schemes and applications. The audio coding applications cover lossless audio coding, scalable lossless enhancement of a perceptual audio coder and fine-grain scalable perceptual and lossless audio coding. Finally an approach to data hiding with high data rates in uncompressed audio signals based on integer transforms is described
    corecore