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ABSTRACT 
 
Adaptive infinite impulse response (IIR) filter is a challenging research area. Identifiers and 

Equalizers are among the most essential digital signal processing devices for digital 

communication systems. In this thesis, we consider adaptive IIR channel both for system 

identification and channel equalization purposes. 

                We focus on four different approaches: Least Mean Square (LMS), Recursive Least 

Square (RLS), Genetic Algorithm (GA) and Subband Adaptive Filter (SAF). The 

performance of conventional LMS and RLS based IIR system identification and channel 

equalization are compared. The RLS based IIR filter gives superior performance compared to 

its LMS counter part. It gives better matching between the desired output and estimated 

output as the order of the filter increases. 

                This thesis also examines enhanced structured stochastic global optimization 

algorithms for adaptive IIR filtering, with focus on an algorithm named Genetic Algorithm 

(GA). GA is based on the process of natural selection and does not require error gradient 

statistics. As a consequence, a GA is able to find a global error minimum. The GA is 

compared against the gradient descent training through extensive computations, where the 

GA demonstrates performance improvements. This training algorithm is given as an 

alternative training technique that overcomes the problems encountered by the gradient 

descent algorithm. 

               Subband adaptive filtering has attracted much attention in recent years. In this 

study, a subband structure is considered which is based upon the polyphase decomposition of 

filter to be adapted. This technique yield improved convergence rate when the number of 

bands in the filter is increased. The performance of subband adaptive filter is also compared 

with the conventional LMS.  

               Simulations results demonstrate that the adaptive IIR and subband filtering methods 

are directly applicable for large class of adaptive signal processing and communication 

systems. 

 

Index Terms – Adaptive IIR filtering, system identification, channel equalization, subband 

filtering. 
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Introduction 

                                                                                                     CHAPTER 1  
 
1. INTRODUCTION 
 
1.1  Background 

              Over the last several years, adaptive infinite- impulse-response (IIR) filtering has 

been an active area of research, and it has been considered for a variety of applications in 

signal processing and communications. Examples of some important applications include 

system identification, channel equalization, linear prediction, echo cancellation, and adaptive 

array processing. The primary advantage of an adaptive IIR filter is that it can provide 

significantly better performance than an adaptive FIR filters having the same number of 

coefficients. This is because the desired response can be approximated more efficiently by the 

output of a filter that has both poles and zeros compared to one that has only zeros. 

              In telephone communication a common problem encountered is the presence of 

echo, which is produced when the signal passes through telephone channels. Removal of this 

echo requires precise knowledge of the channel, which may be time varying. This calls for 

adaptive estimation of the channel, which is characterized by time varying impulse response. 

In recent years, there has been a marked interest in the application of adaptive filtering to 

system identification and channel equalization where the impulse response involved is long. 

We briefly describe this application to motivate our study. 

              A Genetic Algorithm (GA) is a stochastic training scheme that need not have a 

derivation that requires knowledge of the local error gradient [1.1], which gradient-descent 

training relies on. A GA consists of an evolutional process that raises the fitness of a 

population using the Darwinian survival of the fittest criterion. A GA relies upon the use of a 

solution population. Each solution within the population has to generate a cost value in each 

training iteration. GAs has proven to be useful in training and search applications that suffer 

from stability problems, locating solutions that have previously been unobtainable for IIR 

filters [1.2]. 

          In hands-free telephone sets and teleconferencing systems, both ends of the telephone 

line consist of audio terminals in Fig. 1.1. The received speech signal y(n) is fed to a 

loudspeaker (LS), which radiates acoustic waves. These waves are fed back to the remote user 

through the microphone (MP) and constitute the so-called echo. To cancel this echo, we 

take a sample of y(n), modify it by passing it through an adaptive filter S(z), and subtract 

the resulting signal from z(n). S(z) is the estimate of the impulse response of the path that 
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the signal y(n) takes to form the echo z(n). For complete cancellation of this echo, the 

impulse response of the adaptive filter S(z) may have to be very long [1.3].   
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Fig.  1.1 Acoustic echo chancellor  

 

             In the above example, the adaptation of the filter is based on the error signal e(n). 

The algorithm used for adaptation is generally a gradient type [1.4]. The least mean square 

(LMS) algorithm of Widrow et al [1.3] has been used widely in such applications. However, it 

suffers from slow convergence when the input signal to the adaptive filter is correlated, which 

is generally the case in the above problem. Generally communication channels are not linear, 

most of the times these are corrupted with noise. The performance of LMS algorithm is very 

poor if any Gaussian noise is added.  

              In this thesis we present adaptive IIR filtering using some adaptive algorithm e.g. 

 Recursive Least square Algorithm (RLS) and Genetic Algorithm (GA) which have faster 

convergence rate and subband adaptive filtering (SAF) technique for the estimation of such 

channels. The SAF structure uses polyphase decomposition. To prevent distortion due to 

aliasing and imaging perfect reconstruction filters are used which are real.  

 

1.2   Motivation 

             Adaptive filtering has a tremendous application in the field of signal processing and 

communications such as system identification, channel equalization, linear prediction, and 

noise cancellation etc. The most general adaptive IIR algorithms require that the filter is 

operating in system identification configuration such that the unknown system can be 

represented by a stable rational transfer function.  

             In system identification, the adaptive filter attempts to iteratively determine an 

optimal model for the unknown system, or “plant”, based on some function of the error 
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between the output of the adaptive filter and the output of the plant.  The optimal model or 

solution is attained when this function of the error is minimized.  The adequacy of the 

resulting model depends on the structure of the adaptive filter, the algorithm used to update 

the adaptive filter parameters, and the characteristics of the input signal. 

           When the parameters of a physical system are not available or time dependent it is 

difficult to obtain the mathematical model of the system. In such situations, the system 

parameters should be obtained using a system identification procedure. The purpose of 

system identification is to construct a mathematical model of a physical system from 

input/output. Studies on linear system identification have been carried out for more than three 

decades [1.6, 1.7]. However, identification of IIR systems is a promising research area 

          Adaptive equalization is used to undo the effects of a communication channel or 

produce an inverse model of an unknown plant. For adaptive IIR equalization, instability 

occurs as poles move outside of the unit circle. Such problems are overcome by using 

different equalization techniques. Hence IIR channel estimation is a key problem in 

communication system.  Several approaches and SAF have been discussed recently for 

estimation of IIR systems.  

 
1.3    Thesis Layout 

   In chapter2, the adaptive filter problem and the adaptive IIR filter structure are 

introduced. In this various applications of adaptive filters and their structures are discussed 

briefly. 

           In chapter 3, the theory and model of adaptive IIR system identification are discussed. 

We focus on different adaptive algorithms such as deterministic and stochastic algorithms. In 

deterministic approach, we discussed the Least Mean Square (LMS) and Recursive Least          

Square (RLS) algorithms. And in stochastic approach, the evolutionary computing technique 

Genetic Algorithm (GA) is derived. Simulation results are carried out for comparison of 

conventional LMS based IIR system with RLS based system identification under different 

order of the filter and noise conditions. A brief introduction to evolutionary computing 

technique and its simulation study is given. 

           In chapter 4, the model of adaptive IIR channel equalization and its instability problem 

occurs are discussed. In order to overcome the instability problem occur in this, an adaptive 

IIR equalizer for nonminimum-phase channel is introduced. The performance comparison 

study of LMS based IIR equalizer and RLS based IIR equalizer are given and also the 

comparison result of IIR equalizer and FIR equalizer is discussed. 
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          In Chapter 5, a new structure is presented for the subband adaptive filter (SAF) and a 

new criterion for the adaptation algorithm that results in significant improvement in the 

convergence rate when LMS algorithm used for adaptation is outlined. The structure exploits 

the polyphase decomposition of the adaptive filter. To prevent any distortion such as aliasing 

and imaging we use perfect reconstruction filter banks. Simulations are carried for 2-band 

and full band case. 

  In Chapter 6, we discuss the conclusion and the future works that can be done.  

 

 

***** 
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      CHAPTER 2 
 
 
 2. ADAPTIVE IIR FILTER AND ITS APPLICATIONS 
 
2.1 Introduction 

Infinite Impulse Response (IIR) is an important property of digital signal processing 

systems.  They have an impulse response function which is non-zero over an infinite length 

of time. This is in contrast to finite impulse response filters (FIR) which have fixed-duration 

impulse responses [2.1]. The essential and principal property of an adaptive system is its 

time-varying, self-adjusting performance. An adaptive filter is defined by four aspects 

[2.2]:                    

1. the signals being processed by the filter 

2. the structure that defines how the output signal of the filter is computed from 

its input signal 

3. the parameters within this structure that can be iteratively changed to alter the 

filter's input-output relationship 

4. the adaptive algorithm that describes how the parameters are adjusted from 

one time instant to the next. 

    Adaptive infinite-impulse-response (IIR) filters are contemplated as replacements for 

adaptive finite impulse-response (FIR) filters when the desired filter can be more 

economically modeled with poles and zeros than with the all-zero form of an FIR tapped-

delay line. It has considered for variety applications in adaptive signal processing and 

communications e.g. system identification, channel equalization, adaptive array processing, 

linear prediction, line enhancer etc. 
 
2.2    Adaptive filter problem 
 
  Figure 2.1 shows a block diagram in which a sample from a digital input signal     

x(n) is fed into a device, called an adaptive filter [2.4], that computes a 

corresponding output signal sample y(n) at time n. For the moment, the structure of 

the adaptive filter is not important, except for the fact that it contains adjustable 

parameters whose values affect how y(n) is computed. The output signal is compared 

to a second signal d(n), called the desired response signal, by subtracting the two 

samples at time n. This difference signal, given by 
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e(n) = d(n) - y(n)             (2.1) 

is known as the error signal. The error signal is fed into a procedure that alters or 

adapts the parameters of the filter from time n to time (n + 1) in a well-defined 

manner. This process of adaptation is represented by the oblique arrow that pierces 

the adaptive filter block in the figure. 

 

 

 
 
 
 
                        

 

As the time index n is incremented, it is hoped that the output of the adaptive 

filter becomes a better and better match to the desired response signal through this 

adaptation process, such that the magnitude of e(n) decreases over time. This is 

specified by the form of the adaptive algorithm used to adjust the parameters of the 

adaptive filter. In the adaptive filtering task, adaptation refers to the method by which 

the parameters of the system are changed from time index n to time index (n + 1). The 

number and types of parameters within this system depend on the computational 

structure chosen for the system. We now discuss different filter structures that have 

been proven useful for adaptive filtering task 

2.3 Adaptive IIR filter structure 

  Traditionally, adaptive signal processing has, for the most part, been carried out using 

Finite Impulse Response (FIR) filters. The unimodal property of their mean square error 

surfaces allows adaptive algorithms based on gradient search techniques to be applied. 

Additionally, stability of the FIR filter can be guaranteed during adaptation. Infinite Impulse 

Response (IIR) filters are generally less computationally expensive due to their recursive 

nature and thus give better performance for a given order of filter [2.5]. In addition stability is 

also a concern with adaptive IIR filters, which is a challenging research area. 

  Two approaches have been taken in IIR filter adaptation, the equation-error and 

output-error formulations [2.6]. The equation-error formulation essentially renders the 

problem of adaptation one of updating two FIR filters. Consequently, well known adaptive 

FIR filter algorithms can be used in the search for the unique stationary point. This 

Adaptive 
Filter Σ

+ 
- 

d(n) 

e(n) 

y(n) x(n) 

Fig 2.1: The general adaptive filtering problem. 
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formulation, however, has the disadvantage that in the presence of noise or incomplete 

modeling, biased estimates of the filter coefficients may be produced. The output-error 

formulation updates the feedback coefficients of the IIR filter directly in the pole-zero form. 

The multi-modal nature of the mean square error surface may result in adaptive algorithms 

utilizing gradient search becoming stuck in a local minimum. Stability is also a concern with 

adaptive IIR filters. Should one of the poles be updated outside the unit circle and remain 

there for a significant period of time, the filter may become unstable, causing the output to 

grow without bound. Unfortunately, stability monitoring is computationally expensive and 

generally not robust for the conventional direct form implementation [2.7]. 

  In general, any system with a finite number of parameters that affect how y(n) is 

computed from x(n) could be used for the adaptive filter in Fig. 2.1. Define the 

parameter or coefficient vector W(n) as 

W(n) = [w0(n)w1(n) . . .  wL-1(n)]T  
         

                                                                                               (2.2) 

where {wi (n)}, 0 < i < L - 1 are the L parameters of the system at time n. With this definition, 

we could define a general input-output relationship for the adaptive filter as 

y(n)=f (W(n) ,y (n- l ) , y (n-2) ,  . . . ,  y (n-N) ,x (n) , x (n- l ) , . . . , x (n-M+l))      (2 .3)  

where f  ( ) represents any well-defined linear or nonlinear function and M and N are positive 

integers. 

 

 

 

 

 

 
Fig 2.2: Structure of an IIR filter 

. 

The structure of a direct-form IIR filter is shown in Fig. 2.2. In this case, the output of 

the system can be mathematically represented as 

)()()()()(
01

jnxnbinynany
N

j
j

N

i
i −+−= ∑∑

==

                                                     (2.4) 
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Thus, for purposes of computing the output signal y{n), the IIR structure involves a 

fixed number of multiplies, adds, and memory locations not unlike the direct-form  FIR 

structure. A critical issue in the choice of an adaptive filter's structure is its computational 

complexity. Since the operation of the adaptive filter typically occurs in real time, all of the 

calculations for the system must occur during one sample time. The structures described above 

are all useful because y(n) can be computed in a finite amount of time using simple 

arithmetical operations and finite amounts of memory. 

When considering the adaptive filter problem as illustrated in Fig. 2.1 for the first time, a 

reader is likely to ask, "If we already have the desired response signal, what is the point of 

trying to match it using an adaptive filter?" In fact, the concept of "matching" y(n) to d(n) with 

some system obscures the subtlety of the adaptive filtering task. Consider the following issues 

that pertain to many adaptive filtering problems: 

• In practice, the quantity of interest is not always d(n).  Our desire may be to represent in 

y(n) a certain component of d(n) that is contained in x{n), or it may be to isolate a 

component of d(n) within the error e(n) that is not contained in x(n). Alternatively, we 

may be solely interested in the values of the parameters in W(n) and have no concern 

about x{n), y{n), or d(n) themselves. Practical examples of each of these scenarios are 

provided later in this chapter. 

• There are situations in which d(n) is not available at all times. In such situations, adaptation 

typically occurs only when d(n) is available. When d(n) is unavailable, we typically use 

our most-recent parameter estimates to compute y (n) in an attempt to estimate the desired 

response signal d(n). 

• There are real-world situations in which d(n) is never available. In such cases, one can 

use additional information about the characteristics of a "hypothetical" d(n), such as its 

predicted statistical behavior or amplitude characteristics, to form suitable estimates of 

d(n) from the signals available to the adaptive filter. Such methods are collectively called 

blind adaptation algorithms. The fact that such schemes even work is a tribute both to 

the ingenuity of the developers of the algorithms and to the technological maturity of the 

adaptive filtering field. 

It should also be recognized that the relationship between x(n) and d(n) can vary with 

time. In such situations, the adaptive filter attempts to alter its parameter values to follow the 

changes in this relationship as "encoded" by the two sequences x(n) and d(n). This behavior is 

commonly referred to as tracking. 
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2.4 Applications of adaptive IIR filters 

  Perhaps the most important driving forces behind the developments in adaptive filters 

throughout their history have been the wide range of applications in which such systems can be 

used. We now discuss the forms of these applications in terms of more-general problem classes 

that describe the assumed relationship between d(n) and x(n). Our discussion illustrates the 

key issues in selecting an adaptive filter for a particular task [2.8].  

2.4.1      System identification 

Consider Fig. 2.3, which shows the general problem of system identification. In this 

diagram, the system enclosed by dashed lines is a "black box," meaning that the quantities inside 

are not observable from the outside. Inside this box is (1) an unknown system which 

represents a general input-output relationship and (2) the signal ηi(n), called the observation 

noise signal because it corrupts the observations of the signal at the output of the unknown 

system. 

 

 

 

 

 

 
Fig 2.3: System identification. 

 

Let d(n) represent the output of the unknown system with x(n) as its input. Then, the 

desired response signal in this model is 

)()(ˆ)( nndnd η+=                 (2.5) 

Here, the task of the adaptive filter is to accurately represent the signal d(n) at its output. If 

y(n) = d (n), then the adaptive filter has accurately modeled or identified the portion of the 

unknown system that is driven by x{n). 

Since the model typically chosen for the adaptive filter is a linear filter, the practical goal of the 

adaptive filter is to determine the best linear model that describes the input-output 

relationship of the unknown system. Such a procedure makes the most sense when the 

unknown system is also a linear model of the same structure as the adaptive filter, as it is 
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possible that y(n) = d{n) for some set of adaptive filter parameters. For ease of discussion, let 

the unknown system and the adaptive filter both be IIR filters, such that 

),()()()( nnXnWnd T
OPT η+=                          (2.6) 

where Wopt(n) is an optimum set of filter coefficients for the unknown system at time n.  In 

this problem formulation, the ideal adaptation procedure would adjust W(n) such that W(n) = 

Wopt (n) as n . In practice, the adaptive filter can only adjust W(n) such that y(n) closely ∞→

approximates d(n) over time. 

The system identification task is at the heart of numerous adaptive filtering applications. We 

list several of these applications here. 

Channel identification 

In communication systems, useful information is transmitted from one point to another 

across a medium such as an electrical wire, an optical fiber, or a wireless radio link. 

Nonidealities of the transmission medium or channel distort the fidelity of the transmitted 

signals, making the deciphering of the received information difficult. In cases where the effects 

of the distortion can be modeled as a linear filter, the resulting "smearing" of the transmitted 

symbols is known as inter-symbol interference (ISI). In such cases, an adaptive filter can be used 

to model the effects of the channel ISI for purposes of deciphering the received information in an 

optimal manner. In this problem scenario, the transmitter sends to the receiver a sample 

sequence x(n) that is known to both the transmitter and receiver. The receiver then attempts to 

model the received signal d(n) using an adaptive filter whose input is the known transmitted 

sequence x(n). After a suitable period of adaptation, the parameters of the adaptive filter in 

W(n) are fixed and then used in a procedure to decode future signals transmitted across the 

channel. Channel identification is typically employed when the fidelity of the transmitted channel 

is severely compromised or when simpler techniques for sequence detection cannot be used.  

Plant identification 

In many control tasks, knowledge of the transfer function of a linear plant is required 

by the physical controller so that a suitable control signal can be calculated and applied. In such 

cases, we can characterize the transfer function of the plant by exciting it with a known signal 

x(n) and then attempting to match the output of the plant d(n) with a linear adaptive filter. 

After a suitable period of adaptation, the system has been adequately modeled, and the 

resulting adaptive filter coefficients in W(n) can be used in a control scheme to enable the 

overall closed-loop system to behave in the desired manner. 
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In certain scenarios, continuous updates of the plant transfer function estimate provided by 

W(n) are needed to allow the controller to function properly. A discussion of these adaptive 

control schemes and the subtle issues in their use is given in [2.9]. 

Echo cancellation for long-distance transmission 

In voice communication across telephone networks, the existence of junction boxes 

called hybrids near either end of the network link hampers the ability of the system to cleanly 

transmit voice signals. Each hybrid allows voices that are transmitted via separate lines or 

channels across a long-distance network to be carried locally on a single telephone line, thus 

lowering the wiring costs of the local network. However, when small impedance mismatches 

between the long distance lines and the hybrid junctions occur, these hybrids can reflect the 

transmitted signals back to their sources, and the long transmission times of the long-distance 

network—about 0.3 s for a trans-oceanic call via a satellite link—turn these reflections into a 

noticeable echo that makes the understanding of conversation difficult for both callers. The 

traditional solution to this problem prior to the advent of the adaptive filtering solution was to 

introduce significant loss into the long-distance network so that echoes would decay to an 

acceptable level before they became perceptible to the callers. Unfortunately, this solution 

also reduces the transmission quality of the telephone link and makes the task of connecting 

long distance calls more difficult. 

An adaptive filter can be used to cancel the echoes caused by the hybrids in this 

situation. Adaptive niters are employed at each of the two hybrids within the network. The 

input x(n) to each adaptive filter is the speech signal being received prior to the hybrid 

junction, and the desired response signal d(n) is the signal being sent out from the hybrid 

across the long-distance connection. The adaptive filter attempts to model the transmission 

characteristics of the hybrid junction as well as any echoes that appear across the long-

distance portion of the network. When the system is properly designed, the error signal e(n) 

consists almost totally of the local talker's speech signal, which is then transmitted over the 

network. Such systems were first proposed in the mid-1960s and are commonly used today.  

Acoustic echo cancellation 

A related problem to echo cancellation for telephone transmission systems is that of 

acoustic echo cancellation for conference-style speakerphones. When using a speakerphone, a 

caller would like to turn up the amplifier gains of both the microphone and the audio 

loudspeaker in order to transmit and hear the voice signals more clearly. However, the 

feedback path from the device's loudspeaker to its input microphone causes a distinctive 

howling sound if these gains are too high. In this case, the culprit is the room's response to the 
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voice signal being broadcast by the speaker; in effect, the room acts as an extremely poor hybrid 

junction, in analogy with the echo cancellation task discussed previously. A simple solution to 

this problem is to only allow one person to speak at a time, a form of operation called half-

duplex transmission. However, studies have indicated that half-duplex transmission causes 

problems with normal conversations, as people typically overlap their phrases with others 

when conversing. 

To maintain full-duplex transmission, an acoustic echo canceller is employed in the 

speakerphone to model the acoustic transmission path from the speaker to the microphone. 

The input signal x(n) to the acoustic echo canceller is the signal being sent to the speaker, and 

the desired response signal d(n) is measured at the microphone on the device. Adaptation of 

the system occurs continually throughout a telephone call to model any physical changes in 

the room acoustics. Such devices are readily available in the marketplace today. In addition, 

similar technology can and is used to remove the echo that occurs through the combined 

radio/room/telephone transmission path when one places a call to a radio or television talk 

show.  

Adaptive noise canceling 

When collecting measurements of certain signals or processes, physical constraints 

often limit our ability to cleanly measure the quantities of interest. Typically, a signal of interest 

is linearly mixed with other extraneous noises in the measurement process, and these 

extraneous noises introduce unacceptable errors in the measurements. However, if a linearly 

related reference version of any one of the extraneous noises can be cleanly sensed at some 

other physical location in the system, an adaptive filter can be used to determine the 

relationship between the noise reference x(n) and the component of this noise that is contained 

in the measured signal d{n). After adaptively subtracting out this component, what remains in 

e(n) is the signal of interest. If several extraneous noises corrupt the measurement of interest, 

several adaptive filters can be used in parallel as long as suitable noise reference signals are 

available within the system [2.3]. 

Adaptive noise canceling has been used for several applications. One of the first was a 

medical application that enabled the electroencephalogram (EEG) of the fetal heartbeat of an 

unborn child to be cleanly extracted from the much-stronger interfering EEG of the maternal 

heartbeat signal. 
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2.4.2 Channel equalization 

Inverse modeling 

We now consider the general problem of inverse modeling, as shown in Fig. 2.4. In this 

diagram, a source signals s(n) is fed into an unknown system that produces the input signal x(n) 

for the adaptive filter. The output of the adaptive filter is subtracted from a desired response 

signal that is a delayed version of the source signal, such that 

d(n) = s(n - ∆ )                    (2.7) 

where ∆ is a positive integer value. The goal of the adaptive filter is to adjust its 

characteristics such that the output signal is an accurate representation of the delayed source 

signal. 

 

 

 

 

 

 Fig 2.4 Inverse Modeling 

 

Channel equalization is an alternative to the technique of channel identification 

described previously for the decoding of transmitted signals across nonideal communication 

channels. In both cases, the transmitter sends a sequence s(n) that is known to both the 

transmitter and receiver. However, in equalization, the received signal is used as the input 

signal x(n) to an adaptive filter, which adjusts its characteristics so that its output closely 

matches a delayed version s(n-∆) of the known transmitted signal. After a suitable adaptation 

period, the coefficients of the system either are fixed and used to decode future transmitted 

messages or are adapted using a crude estimate of the desired response signal that is 

computed from y{n). This latter mode of operation is known as decision-directed adaptation. 

Channel equalization was one of the first applications of adaptive filters and is 

described in the pioneering work of Lucky [2.10]. Adaptive equalization is also useful for 

wireless communication systems. Qureshi [2.11] provides a tutorial on adaptive equalization. 
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Inverse plant modeling 

In many control tasks, the frequency and phase characteristics of the plant hamper the 

convergence behavior and stability of the control system. We can use a system of the form in 

Fig. 2.4 to compensate for the nonideal characteristics of the plant and as a method for adaptive 

control. In this case, the signal s(n) is sent at the output of the controller, and the signal x(n) is 

the signal measured at the output of the plant. The coefficients of the adaptive filter are then 

adjusted so that the cascade of the plant and adaptive filter can be nearly represented by the 

pure delay z-∆ [2.12].  

Adaptive line enhancement 

In some situations, the desired response signal d(n) consists of a sum of a broadband 

signal and a nearly periodic signal, and it is desired to separate these two signals without specific 

knowledge about the signals (such as the fundamental frequency of the periodic 

component).In these situations, an adaptive filter configured as in Fig. 2.5 can be used. For 

this application, the delay ∆ is chosen to be large enough such that the broadband component 

in x(n) is uncorrelated with the broadband component in x(n-∆).  

 

 

 

 

                                      
Fig 2.5 Linear Prediction 

In this case, the broadband signal cannot be removed by the adaptive filter through its 

operation, and it remains in the error signal e(n) after a suitable period of adaptation. The 

adaptive filter's output y(n) converges to the narrowband component, which is easily 

predicted given past samples. The name line enhancement arises because periodic signals are 

characterized by lines in their frequency spectra, and these spectral lines are enhanced at the 

output of the adaptive filter. 

2.5 Summary 

     This chapter has given an overview of the important structures and applications used in 

adaptive IIR filtering. Adaptive IIR filter has many applications such as system identification; 

channel equalization, linear prediction, adaptive line enhancement etc. are discussed briefly. 

***** 
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CHAPTER 3 
 

3. ADAPTIVE IIR SYSTEM IDENTIFICATION 
 
3.1 Introduction 
 

System identification is the experimental approach to process modeling. System 

identification includes the following steps  

Experiment design: Its purpose is to obtain good experimental data and it includes the choice 

of   the measured variables and of the character of the input signals.                          

Selection of model structure: A suitable model structure is chosen using prior knowledge and 

trial and error.  

Choice of the criterion to fit: A suitable cost function is chosen, which reflects how well the 

model fits the experimental data.  

Parameter estimation: An optimization problem is solved to obtain the numerical values of 

the model parameters.  

Model validation: The model is tested in order to reveal any inadequacies.  

The key problem in system identification is to find a suitable model structure, within 

which a good model is to be found. Fitting a model within a given structure (parameter 

estimation) is in most cases a lesser problem. A basic rule in estimation is not to estimate 

what you already know. In other words, one should utilize prior knowledge and physical insight 

about the system when selecting the model structure. It is customary to distinguish between 

three levels of prior knowledge, which have been color-coded as follows. 

1. White Box models: This is the case when a model is perfectly known; it has been 

possible to construct it entirely from prior knowledge and physical insight. 

 2. Grey Box models: This is the case when some physical insight is available, but several 

parameters remain to be determined from observed data. It is useful to consider two 

sub cases- Physical Modeling: A model structure can be built on physical grounds, 

which has a certain number of parameters to be estimated from data.  

- Semi-physical modeling:  Physical insight is used to suggest certain nonlinear 

combinations of measured data signal. These new signals are then subjected to 

model structures of black box character. 
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           3. Black Box models: No physical insight is available or used, but the chosen model 

structure belongs to families that are known to have good flexibility and have been "successful 

in the past". 

  Basic techniques for estimating the parameters in the structures are criterion 

minimization, as well as two step procedures, where first the relevant basis functions are 

determined, using data, and then a linear least squares step to determine the coordinates of the 

function approximation. A particular problem is to deal with the large number of potentially 

necessary parameters. This is handled by making the number of "used" parameters 

considerably less than the number of "offered" parameters, by regularization, shrinking, 

pruning or regressor selection. 

In this chapter, we present the general basic system identification problem, 

solution via adaptive approach, stochastic approach and introduce the mathematical 

notation for representing the form and operation of the adaptive filter. We then 

discuss several different linear models that have been proven to be useful in practical 

applications for IIR channels. We provide an overview of the many and varied 

applications in which adaptive filters have been successfully used. We give a simple 

derivation of the least-mean-square (LMS) algorithm, which is perhaps the most 

popular method for adjusting the coefficients of an adaptive filter, and we discuss 

some of this algorithm's properties and shortcomings in Section 3.3. We discuss 

recursive LMS algorithm & its limitation, then the simply hyperstable recursive filter 

(SHARF). Finally, we discuss new algorithms and techniques, which can be applied 

in place of conventional methods such as Genetic Algorithm. Simulation results are 

given for the described algorithm to show its performance. 

 

3.2 Adaptive model for IIR system identification 
 

Consider Fig. 3.1, which shows the general problem of system identification. In this 

diagram, the system enclosed by dashed lines is a "black box" , [2.1] meaning that the quantities 

inside are not observable from the outside. Inside this box, there is an unknown system, which 

represents a general input-output relationship. In many practical cases, the plant to be modeled 

is noisy, that is, has internal random disturbing forces. In our problem it is represented by the 

signal η (n), called the observation noise. Internal plant noise appears at the plant output and is 

commonly represented there as an adaptive noise. This noise is generally uncorrelated with the 

plant input. If this is the case and if the adaptive model weights are adjusted to minimize 

 16



Adaptive IIR System Identification 

mean-square error, it can be shown that the least square solutions will be unaffected by the 

presence of plant noise. This is difficult to say that the convergence of the adaptive process 

will be unaffected by plant noise, only that signal because it corrupts the observations of the 

signal at the output of the unknown system. The expected weight vector of the adaptive model 

after convergence will be unaffected. 

 
 

Fig. 3.1 Model for system identification 

 
 
 
 
 
 
 
 
 

Let d (n) represent the output of the unknown system with x (n) as its input. Then, the 

desired response signal in this model is .                                                   ˆ( ) ( ) ( )d n d n nη= +

Here, the task of the adaptive filter is to accurately represent the signal d (n) at its 

output. If y (n) = d (n), then the adaptive filter has accurately modeled or identified the portion 

of the unknown system that is driven by x (n).  

For our problem we have assumed that the input signal x (n) and noise signal η (n), are 

mutually uncorrelated white random sequences with zero mean.  And hence  

2 1
12 12,nE x E η⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦

2 1
n =                                                                                          (3.1) 

The white noise is Gaussian in nature having probability density function as follows:   
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  As the adaptation process reaches Wiener solution, the power of error signal will be 

exactly equal to the extra noise added. It is not exactly required that the impulse response of 

both unknown plant and adaptive model shown in Fig. 3.1 should match, but the desired 

output and estimated output should match.  

  Fig. 3.2 shows the adaptive filter in a system identification configuration where ∗θ  are 

the unknown system parameters, and d(n) is simply the measured output of the system, which 

usually includes an additive noise process v(n). The objective of the algorithm is to minimize 
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a performance criterion that is based on the prediction error e(n) (sometimes called the 

estimation error), defined by  e(n) = d(n) -y(n). 
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  Fundamentally, there have been two approaches to adaptive IIR filtering that 

correspond to different formulations of the prediction error; these are known as equation error 

and output error methods. In the equation-error formulation [3.1, 3.2] the feedback 

coefficients of an IIR filter are updated in an all-zero, nonrecursive form, which are then 

copied to a second filter implemented in an all-pole form. This formulation is essentially a 

type of adaptive FIR (finite-impulse-response) filtering, and the corresponding algorithms 

have properties that are well understood and predictable. Unfortunately, the equation-error 

approach can lead to biased estimates of the coefficients ∗θ . The output-error formulation 

[3.3] updates the feedback coefficients directly in a pole-zero, recursive form and it does not 

generate biased estimates. However, the adaptive algorithms can converge to a local 

minimum of ξ  leading to an incorrect estimate of ∗θ  and their convergence properties are not 

easily predicted. As a result, there is a trade-off between converging to a biased estimate of 

the coefficients and converging to a local minimum ofξ . 

 

Equation-error and output-error formulation 

Equation-error formulation 

Consider the equation-error adaptive IIR filter shown in Fig. 3.3, which is 

characterized by the nonrecursive difference equation: 
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where {am(n), bm(n)} are the adjustable coefficients and the subscript ‘e’ is used to distinguish 

this output from that of the output-error formulation. Observe that (3.3) is a two-input, single-

output filter that depends on delayed samples of the input x(n - m), m = 0, . . . , M - 1, and of 

the desired response d(n - m), m = 1, . . . , N - 1. It does not depend on delayed samples of the 

output and, therefore, the filter does not have feedback; the output is clearly a linear function 

of the coefficients. This property greatly simplifies the derivation of gradient-based 

algorithms. Since d(n) and x(n) are not functions of the coefficients, the derivative of ye(n) 

with respect to the coefficients is nonrecursive and is easy to compute. 

This expression can be rewritten in a more convenient form using delay-operator 

notation as follows: 

)(),()(),()( nxqnBndqnAnye +=                                                                                         (3.4) 
 
where the polynomials in q represent time-varying filters and are defined by 
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Fig 3.3 Equation-error formulation. 
 

 
 
 

Note that the lower limit of the sum for A(n,q) begins with m = 1; consequently, 

A(n,q)d(n) depends only on delayed samples of d. The argument n emphasizes the time 

dependence of the coefficients and q-1 is the delay operator such that . 

These functions of q operate on time signals only from the left as in (3.4). By replacing q 

with the complex variable z, the expressions in (3.5) become z-transforms (transfer 

)()( mnxnxq m −=−
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functions), assuming that the coefficients are fixed (independent of time), i.e., , 

and , so that  

mm ana →)(

mm bnb →)(

)(),( zAqnA →  and .This form can be used to find the zeros )(),( zBqnB →

of the adaptive filter at any instant of time. For example, after each update of the coefficients 

and before the coefficients {am(n)} are copied to the inverse filter (Fig. 3.3), it will be 

necessary to monitor the zeros of 1 - A(z) to determine if its inverse is a stable system. If it is 

not stable, then some method of projecting the roots inside the unit circle will be necessary 

before the inverse filter is formed. 

The equation error is given by e(n) = d(n) - ye(n). It is called this because it is 

generated by subtracting two difference equations: [1 – A (n, q)] d (n) and B (n, q) x (n). 

Note that ee(n) is also a linear function of the coefficients; as a result, the mean-square-

equation error (MSEE) is a quadratic function with a single global minimum (provided the 

data correlation matrix is nonsingular) and no local minima [3.4]. In many ways, the 

performance of an equation-error adaptive IIR filter is like that of an adaptive FIR filter 

(where A(n, q) = 0). They have similar adaptive algorithms with similar convergence 

properties; the convergence rate and stability of the coefficient updates are usually 

determined by the eigenvalues of the Hessian matrix [3.5]. The main difference is that the 

equation-error adaptive IIR filter can operate as a pole-zero model by copying and inverting 

the polynomial 1 - A(n, q). The adaptive FIR filter is strictly an all zero model since A (n,q) = 

0. 

Equation (3.3) can also be compactly written as the inner product 

)()()( nnny e
T

e φθ=                                                                                                         (3.6) 

where the coefficient vector θ and the signal vector each have length M + N - 1 and are 

defined as 
T

MN nbnbnanan )](),.....,(),(),.....,([)( 1011 −−=θ                                                               (3.7a) 

T
e MnxnxNndndn )]1(),....,(),1(),....,1([)( +−+−−=φ                                              (3.7b)  

Observe that (3.6) has the form of a linear regression, which is commonly used in 

statistics [3.6], where θ  corresponds to the estimated parameters and eφ  is the regression 

vector (containing the data). The regressor is clearly independent of the coefficients since the 

data d(n) and x(n) are not functions of A(n, q) or B(n, q). Many of the techniques and 

algorithms used in parametric statistical inference can be used here to find the optimal set of 

parameters. Some examples of these estimation methods are maximum likelihood [3.7], 

maximum a posteriori [3.7], least squares [3.8], and mean-square error [3.5]. The RLS 
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(recursive-least-squares) algorithm [3.8] is one approach that recursively minimizes a least-

squares criterion; the LMS (least-mean-square) algorithm [3.5] is a recursive gradient-descent 

method that searches for the minimum of the MSEE. 

 

Output-error formulation 

 

 

),(1
),(
qnA

qnB
−

 

∑  

)(nx  

)(nd  

)(nyo  

)(neo  

Output Error 
+

-

Fig.  3.4 Output -error formulation 

 

 

 

 

 

 

 

 

The output-error adaptive IIR filter shown in Fig. 3.4 is implemented in direct form 

and is characterized by the following recursive difference equation (the subscript o denotes 

the output-error approach): 
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which depends on past output samples yo(n - m), m = 1,. . . , (N – 1). This output feedback 

significantly influences the form of the adaptive algorithm, adding greater complexity 

compared to that of the equation-error approach. Analogous to (3.4) and (3.6), this expression 

can be rewritten as the filter 
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and as the inner product 

)()()( nnny o
T

o φθ=                                                                                                          (3.10) 

where the coefficient vector θ  is given in (3.7a) and the signal vector in this case is 
T

ooo MnxnxNnynyn )]1(),....,(),1(),....,1([)( +−+−−=φ                                             (3.11)                        

The output yo(n) is clearly a nonlinear function of θ  because the delayed output signals 

 yo(n - k) of oφ  depend on previous coefficient values [i.e., they depend on A(n - k, q) and  
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B(n - k, q )] . Equation (3.10) is not a linear regression, but it has the same form as (3.6) and 

is often referred to as a pseudolinear regression [3.9]. Similar statistical techniques and 

algorithms can be applied here to solve for the optimal coefficients, but it can be shown that 

the solution may be suboptimal unless a certain transfer function is strictly positive real 

(SPR) [3.10]. To overcome this SPR condition, additional processing (filtering) of the 

regression vector or of the output error is generally necessary, as will be shown later. The 

output error is given by eo(n) = d(n) - yo(n), and it is called this simply because it is generated 

by subtracting the output in (3.9) from d(n). Clearly, eo(n) is also a nonlinear function ofθ ; 

the mean-square-output error (MSOE) is, therefore, not a quadratic function and it can have 

multiple local minima [3.11]. Adaptive algorithms that are based on gradient-search methods 

could converge to one of these local solutions, resulting in suboptimal performance and 

inaccurate estimates of ∗θ . 

Clearly, there is a trade-off between the two error formulations. On the one hand, the 

equation error is a linear function of the coefficients so that the MSEE surface has only a 

global minimum and no local minima. The adaptive algorithms generally have fast 

convergence, but they converge to a biased solution since there is always some additive 

noise. On the other hand, the output error is a nonlinear function of the coefficients and the 

MSOE surface can have multiple local minima. The corresponding adaptive algorithms 

usually converge more slowly and they may converge to a local minimum. One might argue, 

however, that the output-error formulation is the “correct” approach because the adaptive 

filter is operating only on x(n) such that the output y(n) estimates the desired response d(n). In 

contrast, the equation-error approach uses past values of the desired response as well as x(n) 

to estimate d(n). 

 

3.3 Different Adaptive Algorithms 

3.3.1 Deterministic Algorithm  

A deterministic algorithm is an algorithm which, in informal terms, behaves 

predictably. Given a particular input, it will always produce the same correct output, and the 

underlying machine will always pass through the same sequence of states. Deterministic 

algorithms are by far the most studied and familiar kind of algorithm, as well as one of the 

most practical, since they can be run on real machines efficiently. 

One simple model for deterministic algorithms is the mathematical; just as a 

function always produces the same output given a certain input, so do deterministic 
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algorithms. The difference is that algorithms describe precisely how the output is 

obtained from the input, whereas abstract functions may be defined implicitly. 

An adaptive algorithm is a procedure for adjusting the parameters of an 

adaptive filter to minimize a cost function chosen for the task at hand. In this section, 

we describe the general form of many adaptive IIR filtering algorithms and present a 

simple derivation of the LMS adaptive algorithm. In our discussion, we only consider 

an adaptive IIR filter structure, such that the output signal y(n) is given by (2.5). Such 

systems are currently more popular than adaptive FIR filters because (1) it contains 

both poles and zeros in the transfer function, while an FIR filter has only zeros, and (2) 

to achieve a specified level of performance, an IIR filter requires considerably fewer 

coefficients than the corresponding FIR filter. 

 

3.3.1.1 General Form of Adaptive IIR Algorithms 

The general structure of an adaptive IIR filter is shown below 
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The general form of an adaptive IIR filtering algorithm is 

))(),(()()()1( nXneGnnWnW μ+=+                       (3.12) 

where G (-) is a particular vector-valued  function, μ(n) is a step size parameter, e(n) 

and X(n) are the error signal and input signal vector, respectively, and the only 

information needed to adjust the coefficients at time n are the error signal, input 

signal vector, and step size. 
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Fig 3.5 Single input digital IIR filter 
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The step size is so called because it determines the magnitude of the change or 

"step" that is taken by the algorithm in iteratively determining a useful coefficient 

vector. Much research effort has been spent characterizing the role that μ(n) plays in 

the performance of adaptive filters in terms of the statistical or frequency 

characteristics of the input and desired response signals. Often, success or failure of 

an adaptive filtering application depends on how the value of μ(n) is chosen or 

calculated to obtain the best performance from the adaptive filter.  

 

The Mean-Squared Error Cost Function 

The form of G(-) in (3.12) depends on the cost function chosen for the given 

adaptive filtering task. We now consider one particular cost function that yields a 

popular adaptive algorithm. Define the mean-squared error (MSE) cost function as 

∫
∞

∞−

= )())(()(
2
1)( 2 ndenepnenJ nMSE                       (3.13) 

            )}({
2
1 2 neE=                                                                                                       (3.14) 

where pn(e) represents the probability density function of the error at time n and E {-} 

is shorthand for the expectation integral on the right-hand side of (3.14). The MSE cost 

function is useful for adaptive IIR filters because 

• JMSE( N ) has a well-defined minimum with respect to the parameters in W(n); 

• the coefficient values obtained at this minimum are the ones that minimize the 

power in the error signal e{n), indicating that y(n) has approached d{n); and  

• JMSE is a smooth function of each of the parameters in W(n), such that it is 

differentiable with respect to each of the parameters in W(n). 

The third point is important in that it enables us to determine both the optimum 

coefficient values given knowledge of the statistics of d(n) and x(w) as well as a simple 

iterative procedure for adjusting the parameters of an IIR filter. 

 

The Wiener Solution 

  For the FIR filter structure, the coefficient values in W(n) that minimize JMSE 

(n) are well-defined if the statistics of the input and desired response signals are 
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known. The formulation of this problem for continuous-time signals and the resulting 

solution was first derived by Wiener [3.4]. Hence, this optimum coefficient vector 

WMSE (n) is often called the Wiener solution to the adaptive filtering problem. The 

extension of Wiener's analysis to the discrete-time case is attributed to Levinson 

[3.12]. To determine WMSE(N) we note that the function JMSE(N) in (3.14) is 

quadratic in the parameters {wi(n)}, and the function is also differentiable. Thus, we 

can use a result from optimization theory that states that the derivatives of a smooth 

cost function with respect to each of the parameters is zero at a minimizing point on 

the cost function error surface. Thus, WMSE (n) can be found from the solution to the 

system of equations  

0
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i

MSE , 10 −≤≤ Li                         (3.15) 

Taking derivatives of JMSE(N) in (3.14) and noting that e(n) and y(n) are given by the 

error and output signal, respectively, we obtain 
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where we have used the definitions of e(n) and of y(n) for the FIR filter structure and 

respectively, to expand the last result in (3.19). By defining the matrix Rxx(n) and 

vector Pdx(n) as 

)}()({ nXnXER T
XX =  and  )}().({)( nXndEnPdx =                        (3.20) 

respectively, we can combine (3.15) and (3.19) to obtain the system of equations in 

vector form as 

0)()()( =− nPnWnR dxMSEXX                            (3.21) 

where 0 is the zero vector.  Thus, so long as the matrix Rxx(n) is invertible, the 

optimum Wiener solution vector for this problem is 
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)()()( 1 nPnRnW dxXXMSE
−=                            (3.22) 

 

The Method of Steepest Descent 

  The method of steepest descent is a celebrated optimization procedure for 

minimizing the value of a cost function J(n) with respect to a set of adjustable 

parameters W(n). This procedure adjusts each parameter of the system according to 
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ii ∂

∂
−=+ μ                         (3.23) 

In other words, the ith parameter of the system is altered according to the derivative 

of the cost function with respect to the ith parameter. Collecting these equations in 

vector form, we have 
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where ∂J(n)/∂W(n) is a vector of derivatives dJ(n)/dwi(n). 

For an FIR adaptive filter that minimizes the MSE cost function, we can use the 

result in (3.19) to explicitly give the form of the steepest descent procedure in this 

problem. Substituting these results into (3.23) yields the update equation for W(n) as 

))()()()(()()1( nWnRnPnnWnW XXdx −+=+ μ                         (3.25) 

However, this steepest descent procedure depends on the statistical 

quantities E{d(n)x(n- i)} and E{x(n-i)x(n-j)} contained in Pdx(n) and Rxx(n), 

respectively. In practice, we only have measurements of both d(n) and x(n) to be 

used within the adaptation procedure. While suitable estimates of the statistical 

quantities needed for (3.25) could be determined from the signals x(n) and d{n), we 

instead develop an approximate version of the method of steepest descent that depends 

on the signal values themselves. This procedure is known as the LMS algorithm. 

 

 3.1.1.2 The LMS Algorithm 

The cost function J(n) chosen for the steepest descent algorithm of (3.23) 

determines the coefficient solution obtained by the adaptive filter. If the MSE cost 

function in (3.14) is chosen, the resulting algorithm depends on the statistics of x(n) 
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and d(n) because of the expectation operation that defines this cost function. Since we 

typically only have measurements of d(n) and of x(n) available to us, we substitute 

an alternative cost function that depends only on these measurements. One such cost 

function is the least squares cost function given by 

∑
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n

k

T
LS kXnWkdknJ

0

2))()()()(()( α                    (3.26) 

where α(n) is a suitable weighting sequence for the terms within the summation. This 

cost function, however, is complicated by the fact that it requires numerous 

computations to calculate its value as well as its derivatives with respect to each 

W(n), although efficient recursive methods for its minimization can be developed. 

Alternatively, we can propose the simplified cost function JLMS(N ) given by 

)(
2
1)( 2 nenJLMS =                       (3.27) 

This cost function can be thought of as an instantaneous estimate of the MSE 

cost function, as JMSE(n)  =  E{JLMS(n)}.   Although it might not appear to be useful, 

the resulting algorithm obtained when JLMS(N) is used for J(n) in (3.23) is extremely 

useful for practical applications. Taking derivatives of JLMS(N) with respect to the 

elements of W(n) and substituting the result into (3.23), we obtain the LMS 

adaptive algorithm given by 

)()()()()1( nXnennWnW μ+=+                     (3.28) 

 Note that this algorithm is of the general form in (3.12). It also requires only 

multiplications and additions to implement. In fact, the number and type of 

operations needed for the LMS algorithm is nearly the same as that of the FIR filter 

structure with fixed coefficient values, which is one of the reasons for the algorithm's 

popularity. 

The behavior of the LMS algorithm has been widely studied, and numerous 

results concerning its adaptation characteristics under different situations have been 

developed. For now, we indicate its useful behavior by noting that the solution 

obtained by the LMS algorithm near its convergent point is related to the Wiener 

solution. In fact, analyses of the LMS algorithm under certain statistical assumptions 

about the input and desired response signals show that 

 lim                                                (3.29) { } MSEx
WnWE =

∞→
)(
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when the Wiener solution WMSE(n) is a fixed vector. Moreover, the average behavior 

of the LMS algorithm is quite similar to that of the steepest descent algorithm in (3.25) 

that depends explicitly on the statistics of the input and desired response signals. In 

effect, the iterative nature of the LMS coefficient updates is a form of time-averaging 

that smoothes the errors in the instantaneous gradient calculations to obtain a more 

reasonable estimate of the true gradient. 

The problem is that gradient descent is a local optimization technique, which is limited 

because it is unable to converge to the global optimum on a multimodal error surface if the 

algorithm is not initialized in the basin of attraction of the global optimum. 

  Several modifications exist for gradient-based algorithms in attempt to enable them 

to overcome local optima. One approach is to simply add noise or a momentum term to the 

gradient computation of the gradient descent algorithm to enable it to be more likely to 

escape from a local minimum. This approach is only likely to be successful when the 

error surface is relatively smooth with minor local minima, or some information can be 

inferred about the topology of the surface such that the additional gradient parameters can 

be assigned accordingly. Other approaches attempt to transform the error surface to 

eliminate or diminish the presence of local minima [3.13], which would ideally result in a 

unimodal error surface. The problem with these approaches is that the resulting minimum 

transformed error used to update the adaptive filter can be biased from the true minimum 

output error and the algorithm may not be able to converge to the desired minimum error 

condition. These algorithms also tend to be complex, slow to converge, and may not be 

guaranteed to emerge from a local minimum. Some work has been done with regard to 

removing the bias of equation error LMS [3.13] and Steiglitz-McBride [3.14] adaptive IIR 

filters, which add further complexity with varying degrees of success. 

 

Recursive LMS Algorithm 

  Fig (3.5) represents the general single-input linear combiner or digital filter. Without 

the feedback portion, the filter is called”nonrecursive”. With the feedback the portion is 

called “recursive” .The expression for output, yk, in this case is  

∑∑
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                                                                                        (3.30) 
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To develop algorithms for the recursive adaptive filter, let us place the recursive filter 

in fig 3.6 in the standard adaptive model, as illustrated below: 
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Fig3.6 Recursive adaptive filter 
 

Here the vector Xk   can represent either the multiple-or single-input situation, and of 

course yk  is a scalar in equation (3.30).This form applies to the single-input case, which we 

assume her for convenience. A time-varying weight vector and a new signal vector, Wk and 

Uk, are now defined as given below. 

An IIR filter [3.15] involves both feed forward and feed back path .The presence of 

feedback means that portions of the filter output and possible other internal variables in the 

filter are feedback the input. Consequently, unless the filter is properly designed, feedback can 

make it unstable, with the result that the filter oscillates; this kind of operation is clearly 

unacceptable when the requirement is that stability is “must”. The structure of a direct-form IIR 

filter is shown in Fig. 3.5. In this case, the output of the system can be mathematically 

represented as 

1 0
( ) ( ) ( ) ( )

N N

i j
i j

y n a y n i b n x n j
= =

= − +∑ ∑ −                                                                   (3.31) 
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From Fig. 3.6, we can write 
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T
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= − k

 

Now, considering the gradient based LMS algorithm in Eq. (3.16) 
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Using Eq. (3.32), we define 
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With the derivatives defined in this manner, we have 

[ ]0 1
ˆ 2 ... ...k k k L k ke L kα α β β∇ = −                                                      (3.35) 

]............[)( 0 Ldiagk μμμ =                                                                                             (3.36) 

Now, we can summarize the LMS algorithm for recursive filter as follows: 
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Table 3.1: LMS algorithm for recursive filter 
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Thus Table (3.1) describes recursive LMS. The calculation of gradient factors 

contains forward co-efficients as well as backward co-efficients. The gain constant is 

problem specific, and usually chosen by trail and error method. 

 
These types of recursive adaptive filter have following disadvantages: 
 

1. Instability may come into picture if the poles move outside the unit circle during the 

adaptation.  

2. Performance surface are generally nonquadratic and may even have local minima. 

          These are serious disadvantages, and consequently the recursive adaptive filters has had 

very limited applications. Hence an entire class of algorithms known as the HARF 

(hyperstable adaptive recursive filter) algorithms has been proposed by Larimore at al [3.16].  

          The simplest member of this class is SHARF (Simplified HARF) [3.16].In this 

algorithm we have used a smoothed version of   , obtained by filtering . This is described 

in Eq. (3.37). 
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           The e’s value used in Eq. (3.37) keeps a major role for convergence. This algorithm 

avoids use of gradient rule; hence it avoids local minima as well as multimodal error surface.  

This SHARF algorithm [3.16] is easy to be implemented because of its stability. 

           Another approach, attempts to locate the global optimum by running several LMS 

algorithms in parallel, initialized with different initial coefficients. The notion is that a 

larger, concurrent sampling of the error surface will increase the likelihood that one process 

will be initialized in the global optimum valley. This technique does have potential, but it 

is inefficient and may still suffer the fate of a standard gradient technique in that it will be 

unable to locate the global optimum if none of the initial estimates is located in the basin 

of attraction of the global optimum. By using a similar congregational scheme, but one 

in which information is collectively exchanged between estimates and intelligent 

randomization is introduced, structured stochastic algorithms are able to hill-climb out of 

local minima. This enables the algorithms to achieve better, more consistent results using 
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a fewer number of total estimates. These types of algorithms provide the framework for 

the algorithms discussed in the following sections. 

 

3.1.1.3  Recursive Least Square (RLS) Algorithms 

  The algorithms that result from the above approach have the disadvantages that they 

can be slow to approach the optimal weight vector and, once close to it, usually”rattle 

around” the optimal; vector rather than actually converge to it, due to the effects of 

approximations made in the estimate of the performance function gradient. To overcome 

these difficulties, another approach is discussed in this section. Here we develop algorithms 

that use the input data {x,d} in such a way as to ensure optimality at each step. If we can be 

done, then clearly the result of the algorithm for the last data point is the overall optimal 

weight vector. 

Suppose that we refine the sum squared performance function Jss by the expression 
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This form of J simply reflects how much data have been used so far. Clearly, JL uses 

all the available data from k=0 to k=L-1. Suppose we define  as the impulse response o
kW

vector that minimizes Jk .By this definition,  equals , and the optimal impulse vector o
LW 1−

o
ssW

over all the data. 

  The motivation for developing ”recursive-in-time” algorithms can be seen as follows. 

Suppose x(l) and d(l) have been received for time up through k-1 and that  has  been o
kW

computed. Now suppose that x(k)and d(k)are received, allowing us to form 

2
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  We desire to find some procedure by which  can be updated to produce , the o
kW o

kW 1+

new optimal vector. If we can develop such a procedure, then we can build up the optimal 

weight vector step by step until the final pair of data points x(L-1) are received. With these 

points,  can be computed, which, by definition, is the global optimum vector . o
LW 1−

o
ssW

The update formula: 

The simplest approach to updating  is the following procedure: o
kW
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 (a)Update Rss             )()(,1, kXkXRR t
ksskss +=+

(b) Update Pss                        )()(,1, kXkdPP ksskss +=+  

 (c) Invert                               1, +kssR  

(d)Compute         o
kW 1+ 1,

1
1,1 +

−
++ = ksskss

o
k PRW  

Table 3.2: Update equation for RLS algorithm 

The autocorrelation matrix and crosscorrelation vectors are updated and then used to 

compute . While direct, this technique is computationally wasteful. Approximately o
kW 1+

N3+2N2+N multiplications is required at each update, where N is the impulse response 

length, and have that N3 are required for the matrix inversion if done with the classical 

Gaussian elimination technique. 

In an effort to reduce the computational requirement for this algorithm, we focus first 

on this inversion. We notice that Gaussian elimination makes no use whatsoever have the 

special form of  or of the special form of the update from  to . We now set kssR , kssR , 1, +kssR

out to take advantage of it. We do so by employing the well-known matrix inversion lemma, 

also sometimes called the ABCD lemma, 

1111111 )()( −−−−−−− +−=+ DACBDABAABCDA                                                       (3.40) 

We use this lemma by making the following associations: 
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With these associations, Rk+1 can be represented as 

BCDAkXkXRR t
kk +=+=+ )()(1                                                                             (3.42) 

and   is given by 1
1

−
+kR

)()(1
)()(

1

11
11

1 kXRkX
RkXkXR

RR
k

t
k

t
k

kk −

−−
−−

+ +
−=                                                                                   (3.43) 

 33



Adaptive IIR System Identification 

Thus, given  and a new input x(k), hence X(k) ,we  can compute  directly. We never 1−
kR 1

1
−
+kR

compute , nor do we invert it directly. 1+kR

The optimal weight vector  is given by o
kW 1+

1
1
11 +

−
++ = Kk

o
k PRW                                                                                                              (3.44) 

which can be obtained by combining (3.43) with update Pss
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To simplify this result, we make the following associations and definitions. The kth optimal 

weight vector: 

                                                                                                                  (3.46) o
kkk WPR =−1

The filtered information vector: 
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The priori output: 
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The normalized input power: 
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With these expressions, the optimal weight vector  becomes o
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Equations (3.43) and (3.46)-(3.50) comprise the recursive least squares (RLS) algorithm. 

Steps for RLS Algorithm: 

  The step-by-step procedures for updating  are given in this section. This set of o
kW

steps is efficient in the sense that no unneeded variable is computed and that no needed 

variable is computed twice. We do, however, need assurance that  exists. The procedure 1−
kR

then goes as follows: 

(i)   Accept new samples x(k), d(k). 

(ii)  Form X(k) by shifting x(k) into the information vector. 

(iii)   Compute the a priori output yo(k) : 

                                                                                                        (3.51) )()( kxWky ot
ko =

(iv)   Compute a priori error  eo (k): 

               )()()( kykdke oo −=                                                                                   (3.52) 

(v)   Compute the filtered information vector Zk  : 

                                                                                                            (3.53) )(1 kXRZ kk
−=

(vi) Compute the normalized error power q: 

                                                                                                              (3.54) k
t ZkXq )(=

(vii)   Compute the gain constant v: 
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(viii) Compute the normalized filtered information vector : kZ~

                                                                                                             (3.56) kk ZvZ .~
=

(ix) Update the optimal weight vector  to : o
kW o

kW 1+

                     ko
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k
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(x) Update the inversion correlation matrix  to  in preparation for the next iteration: 1−
kR 1

1
−
+kR

                                                                                                (3.58) t
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This procedure assumes that  exists at the initial time in the recursion. As a result, 1−
kR

two initialization procedures are commonly used. The first is to build up  and PkkR    until 

R has full rank, i.e. at least N input vectors X(k) are acquired. At this point  is 1−
kR

computed directly and then Wk. Given these, the recursion can proceed as described above 

indefinitely or until k=L-1. The advantage of the first technique is that optimality is 

preserved at each step. The major price paid is that is about N3 computations are required 

once to perform that initial inversion. 

 A second, much simpler approach is also commonly used. In this case  is 1
1

−
−NR

initialized as 

                                                                                                          (3.59) Nn IR η=−
−
1
1

ˆ

where η  is a large positive constant and IN  is the N-by-N  identity matrix. Since  1
1

−
−NR

almost certainly will not equal η IN, this inaccuracy will influence the final estimate of  kR

and hence Wk. A s a practical matter, however, η  can usually be made large enough to 

avoid significant impact on  while still making  invertible. Because of the o
LW 1− 1−NR

simplicity and the low computational cost, the second approach is the one of the most 

commonly used. It becomes even more theoretically justifiable when used with the 

exponentially weighted RLS algorithm to be discussed shortly. 

The computational cost for the RLS algorithm: 

  As a prelude to developing even more efficient adaptive algorithms, we first should 

determine how much computation is required to execute the RLS algorithm. 

      We define that the 10 steps in the procedure can be grouped by their computational 

complexity: 

(a) Order 1: Steps (iv) and (vii) require only a few simple operations, such as a 

subtraction or an addition and division. These are termed as order1 and denoted O(1) 

because the amount of computation required is not related to the filter order. 

(b) Order N: Steps (iii), (vi), (viii), and (ix) each require a vector dot product, a scalar-

vector product, or a vector scale and sum operation. Each of these requires N 

additions for each iteration of the algorithm .The actual number of multiplications 

required for these steps is 4N, but we refer to them as order N, or O(N) ,because the 
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computation requirement is proportional to N, the length of the filter impulse 

response. 

(c) Order N2: Step (v), a matrix vector product, and step (x), the vector outer product, 

both require N2 multiplications and approximately N2 additions. These are termed 

O(N2) procedures. 

The total number of computations needed to execute the RLS algorithm for each input 

sample pair { x(k), d(k) } is  2N2+4N  multiplications, an approximately equal number of 

additions ,and on division. Because this amount of computation is required for each 

sample pair, the total requirement of multiplications to process the sample window is 

     CRLS = (L-N+1). 2N 2 + (L-N+1). 4N    

There are several reasons for exploring and using RLS techniques: 

(a) RLS can be numerically better behaved than the direct inversion of Rss; 

(b) RLS provides an optimal weight vector estimate at every sample time, while the direct 

method produce a weight vector estimate only at the end of the data sequence; and 

(c) This recursive formulation leads the way to even lower-cost techniques. 

 

3.3.2 Structured Stochastic Approaches 

 Stochastic search algorithms aim at increasing the probability of encountering the 

global minimum, without performing an exhaustive search of the entire parameter space. 

Whereas the previously described approaches (and gradient approaches in general) rely on 

the adaptive filter structure to update the filter parameters, a structure independent global 

optimization approach is a stochastic search of the error space. In structure independent 

optimization, a gradient is not calculated and the structure of the adaptive filter does not 

directly influence the parameter updates - aside from the error computation. Due to this 

property, these types of algorithms are capable of globally optimizing any class of adaptive 

filter structures or objective functions by assigning the parameter estimates to represent filter 

tap weights or any other possible parameter of the unknown system model - even the 

exponents of polynomial terms. 
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3.3.2.1. Genetic Algorithm 

Genetic algorithms are a part of evolutionary computing, which is a rapidly growing 

area. Genetic algorithms are inspired by Darwin's theory of evolution [3.17]. Simply said, 

problems are solved by an evolutionary process resulting in a best (fittest) solution (survivor) 

- in other words, the solution is evolved. 

Genetic Algorithms (GA) are based upon the process of natural selection and does not 

require error gradient statistics. As a consequence, a GA is able to find a global error 

minimum [3.18]. The acceptance of GA optimization across many fields has been slow due to 

the lack of a mathematical derivation. Published results have, however, demonstrated the 

advantage of the GA optimization and have aided in changing this perception in many 

disciplines ([3.19],[3.20],[3.21],[3.22],[3.23],[3.24]). 

GA's have been applied to many applications that have previously used ineffective 

and unstable optimization techniques. The IIR filter is one such example. The IIR error 

surface is known to be multimodal, gradient-learning algorithms become either unstable or 

stuck within local minima [3.25]. 'Evolutionary' approaches have been applied to the 

adaptive IIR filter to overcome these learning problems ([3.26]). 

 The Algorithm begins with a set of solutions (represented by chromosomes) called 

population. Solutions from one population are taken and used to form a new population. This 

is motivated by a hope, that the new population will be better than the old one. Solutions 

which are then selected to form new solutions (offspring) are selected according to their 

fitness - the more suitable they are the more chances they have to reproduce. This is repeated 

until some condition (for example number of populations or improvement of the best 

solution) is satisfied.  

Outline of the Basic Genetic Algorithm 

   The outline of the Basic GA is very general. There are many parameters and settings that 

can be implemented differently in various problems.  

   The first question to ask is how to create chromosomes and what type of encoding to 

choose. We then address Crossover and Mutation; the two basic operators of GA encoding, 

crossover and mutation are introduced next.  
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6. [Loop] Go to step 2  

5. [Test] If the end condition is satisfied, stop, and return the best solution in current 

population  

4. [Replace] Use new generated population for a further run of the algorithm  

4.    [Accepting] Place new offspring in the new population  

2.  [Crossover] With a crossover probability cross over the parents to form new 

offspring (children). If no crossover was performed, offspring is the exact copy of 

parents.  

3.  [Mutation] With a mutation probability mutate new offspring at each locus 

(position in chromosome).  

3. [New population] Create a new population by repeating following steps until the new 

population is complete  

1.  [Selection] Select two parent chromosomes from a population according to their 

fitness (the better fitness, the bigger chance to be selected)  

2. [Fitness] Evaluate the fitness f(x) of each chromosome x in the population  

1. [Start] Generate random population of n chromosomes (suitable solutions for the 

problem)  

Table 3.3: Outline of the Basic Genetic Algorithm 

 

The next question is how to select parents for crossover. This can be done in many 

ways, but the main idea is to select the better parents (best survivors) in the hope that the 

better parents will produce better offspring.  
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Fig 3.7 A GA iteration cycle. 

 

 

 

From the population a pool of individuals is randomly selected, some of these 

survive into the next iterations population. A mating pool is randomly created and each 

individual is paired off. These pairs undergo evolutionary operators to produce two new 

individuals that are added to the new population. 

Population Variables 

A chromosome consists of the problem variables, where these can be arranged in a 

vector or a matrix. In the gene crossover process, corresponding genes are crossed so that 

there is no inter-variable crossing and therefore each chromosome uses the same fixed 

structure. An initial population that contains a diverse gene pool offers a better picture of the 

cost surface where each chromosome within the population is initialized independently by the 

same random process. 

           In the case of binary-genes each bit is generated randomly and the resulting bit-

words are decoded into their real value equivalent The binary number is used in the 

genetic search process and the real value is used in the problem evaluation. This type of 

initialization results in a normally distributed population of variables across a specific 

range. This type of results in a normally distributed population of variables across a 

specific range. 

           A GA population, P, consists of a set of N chromosomes {Cj... CN} and N fitness values 

{f1……fN}, where the fitness is some function of the error matrix. 

                                                                      (3.60)                       1 1 2 2 3 3{( , ) ( , ) ( , ) ( , )}N NP C f C f C f C f=
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 The GA is an iterative update algorithm and each chromosome requires its fitness to 

be evaluated individually. Therefore, N separate solutions need to be assessed upon the same 

training set in each training iteration. This is a large evaluation overhead where population 

sizes can range between twenty and a hundred, but the GA is seen to have learning rates that 

evens this overhead out over the training convergence. 

Chromosome Selection 

The selection process is used to weed out the weaker chromosomes from the 

population so that the more productive genes may be used in the production of the next 

generation. The chromosome finesses are used to rank the population with each individual 

assigned it own fitness value, f. 

2

1

1( ) ( )
M

i
j

jiE n e
M =

= ∑ n                                                                                 (3.61) 

The solution cost value Ei of the chromosome in the population is calculated from a 

training-block of M training signals in Eq. (3.61) and from this cost an associated fitness is 

assigned: 

1( )
(1 ( ))i

i

f n
E n

=
+

                                                                                         (3.62) 

The fitness can be considered to be the inverse of the cost but the fitness function in 

Eq (3.62) is preferred for stability reasons, i.e. ( ) 0iE n = .When the fitness of each 

chromosome in the population has been evaluated, two pools are generated, a survival pool 

and a mating pool. The chromosomes from the mating pool will be used to create a new 

set of chromosomes through the evolutional processes of natural selection and the survival 

pool allows a number of chromosomes to pass onto the next generation. The 

chromosomes are selected randomly for the two pools but biased towards the fittest. Each 

chromosome may be chosen more than once and the fittest chromosomes are more likely 

to be chosen so that they will have a greater influence in the new generation of 

solutions.  

The selection procedure can be described using a biased roulette wheel with the 

buckets of the wheel sized according to the individual fitness relative to the population's total 

fitness [3.18]. Consider an example population often chromosomes that have the fitness 

assessment of f = {0.16, 0.16, 0.48, 0.08, 0.16, 0.24, 0.32, 0.08, 0.24, 0.16} and the sum of 

the finesses are used to normalize these values, fmm=2.08. 

Figure 3.10 shows a roulette wheel that has been split into ten segments and each 

segment is in proportion to the population chromosomes relative fitness. The third individual 
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has the highest fitness and nearly accounts for a quarter of the total fitness. The third segment 

therefore fills nearly a quarter of the roulette wheels area. The random selector points to a 

chosen chromosome, which is then copied into the mating pool because the third individual 

controls a greater proportion of the wheel, it has a greater probability of being selected. 

 

Chromosome segments          Population roulette wheel                  
 
    Fig3.10        Biased roulette-wheel that is used in the  
                        selection of the   mating pool.                    

 

 

 

 

 

 

 

The commonly used reproduction operator is the proportionate reproductive operator 

where a string is selected from the mating pool with a probability proportional to the fitness. 

Thus ith string in the population is selected with a probability proportional to fi  where fi  is the 

fitness value of that string.Since the  population size is usually kept fixed in a simple GA,the 

sum of probabilities of each string being selected for the mating pool must be one. The 

probability of ith-selected string is  

 

       

1

i
i n

j
j

fp
f

=

=

∑
                                                                                                                 (3.63)      

Where ‘n’ is the population size. 

Using the fitness value fi of all strings, the probability of selecting a string pi can be 

calculated. There after, cumulative probability Pi of each string can be calculated by adding 

the individual probabilities from the top of the list. Thus the bottom most string in the 

population should have a cumulative probability of 1.The roulette wheel concept can be 

simulated by realizing that the ith string in the population represents the cumulative 

probability from  Pi-1 to Pi. Thus the first string represents the cumulative values from 0 to P1.

Hence cumulative probability of any string lies between 0-1. In order to choose n strings, n 

random numbers between zero and one is created at random. Thus the string that represents 

the chosen random number in the cumulative probability range(calculate from fitness value) 

for the string, is copied from to the mating pool. This way the string with a higher fitness 

value will represent a larger range in the cumulative probability values and therefore, has a 

higher probability of being copied into the mating pool. On the other hand  string with a 
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smaller fitness value will represent a smaller range in the cumulative probability values and 

therefore, has a lesser probability of being copied into the mating pool. 
After the GA crossover and mutation operators update the selected mating pool 

chromosomes, these supercede the old population and consequently the genes from the 

unselected chromosomes are lost. 

Gene Crossover 

The crossover operator exchanges gene information between two selected 

chromosomes, (Cq, Cr), where this operation aims to improve the diversity of the solution 

vectors. The pair of chromosomes, taken from the mating pool, becomes the parents of two 

offspring chromosomes for the new generation. 

  In the case of a binary crossover operation the least significant bits are exchanged 

between corresponding genes within the two parents. For each gene-crossover a random 

position along the bit sequence is chosen and then all of the bits rights of the crossover point 

are exchanged. In Fig.3.11 (a), which shows a single point crossover, the fifth crossover 

position is randomly chosen, where the first position corresponds to the left side. The bits 

from the right of the fourth bit will be   exchanged.  Fig.3.11 (b) shows a two-point crossover 

in which two points are randomly chosen and the bits in between them are exchanged.       

 

 

Before crossover 

After crossover 

 

1  0  1  0  0  1  0  1 

0  0  1  0  1  1  1  0 

 

1  0  1  0  1  1  1  0     

0  0  1  0  0  1  0  1 

Before crossover 

After crossover 

 

1  0  1  0  0  1  0  1 

0  0  1  0  1  1  1  0 

 

1  0  1  0  1  1  0  1     

0  0  1  0  0  1  1  0 

Fig 3.11(a) Single point crossover 

Fig 3.11(b) Double point crossover 
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Fig3.11 shows a basic genetic crossover with the same crossover point chosen for 

both offspring genes. At the start of the learning process the extent of crossing over the whole 

population can be decided allowing the evolutionary process to randomly select the 

individual genes. The probability of a gene crossing, P(crossing), provides a percentage 

estimate of the genes that will be affected within each parent. P(crossing)≤1 allows all the 

gene values to be crossed and P(crossing)=0 leaves the parents unchanged, where a random 

gene selection value, ω Є {1,0}, is governed by this probability of crossing. 

The crossover does not have to be limited to this simple operation. The crossover 

operator can be applied to each chromosome independently, taking different random crossing 

points in each gene. This operation would be more like grafting parts of the original genes 

onto each other to create the new gene pair. All of a chromosome's genes are not altered 

within a single crossover. A probability of gene-crossover is used to randomly select a 

percentage of the genes and those genes that are not crossed remain the same as one of the 

parents. 

Chromosome Mutation 

The last operator within the breeding process is mutation. Each chromosome is 

considered for mutation with a probability that some of its genes will be mutated after the 

crossover operation. 

 
                                    Selected bit for mutation    
                                      
          1    0    1    1    0    0    1    0 
 
          1    0    1    1    1    0    1    0 
 

Before mutation 

After  mutation 

Fig.3.12 Mutation operation in GA 

 

 

 

 

 

 

A random number is generated for each gene, if this value is within the specified 

mutation selection probability, P (mutation), the gene will be mutated. The probability of 

mutation occurring tends to be low with around one percent of the population genes being 

affected in a single generation. In the case of a binary mutation operator, the state of the 

randomly selected gene-bits is changed, from zero to one or vice-versa.  

A simple genetic algorithm treats the mutation as a secondary operator with the role 

of restoring lost genetic materials. Suppose, for example, all the string in a population have 

conveyed to to a zero at a given position and the optimal solution has a one at that position, 
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then crossover cannot regenerate a one at that position while a mutation could. It helps the 

search algorithm to escape from local minima’s traps since the modification is not related to 

any previous genetic structure of the population. The mutation is also used to maintain 

diversity in the population .For example, consider the following population having four eight-

bit strings. 

                                      

                                       0110 1011 

                                       0011 1101 

                                       0001 0110 

                                       0111 1100 

All the four strings have a zero in the left most bit position. If the true optimum 

solution requires a one in that position, then neither reproduction nor crossover operator will 

be able to create a one in that position. Only mutation operation can change that zero to one.   

 

Parameters of GA 

I. Crossover and Mutation Probability 

                  There are two basic parameters of GA - crossover probability and mutation 

probability.  

Crossover probability:  This probability controls the frequency at which the crossover occurs 

for every chromosome in the search process. This is a number between (0,l) which is 

determined according to the sensitivity of the variables of the search process. The    crossover 

probability is chosen small for systems with sensitive variables. If there is crossover, 

offspring are made from parts of both parent's chromosome. Crossover is made in hope that 

new chromosomes will contain good parts of old chromosomes and therefore the new 

chromosomes will be better. However, it is good to leave some part of old population 

survives to next generation.  

Mutation probability: This parameter decides how often parts of chromosome will be 

mutated. If there is no mutation, offspring are generated immediately after crossover (or 

directly copied) without any change. If mutation is performed, one or more parts of a 

chromosome are changed. If mutation probability is 100%, whole chromosome is changed, if 

it is 0%, nothing is changed. Mutation generally prevents the GA from falling into local 

extremes. Mutation should not occur very often, because then GA will in fact change to 

random search.  
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II. Other Parameters 

   There are also some other parameters in GA. One important parameter is population size. 

     Population size: How many chromosomes are in population in one generation. If there 

are too few chromosomes, GA has few possibilities to perform crossover and only a small 

part of search space is explored. On the other hand, if there are too many chromosomes, GA 

slows down. Research shows that after some limit (which depends mainly on encoding and 

the problem) it is not useful to use very large populations because it does not solve the 

problem faster than moderate sized populations. 

 

3.4. Results and Discussion 

        In this section, we study the response matching of the desired and estimated signal. And 

also study the convergence performance using computer simulations for different order 

filters. The input signal x(n) is a white random process with a uniform distribution and unit 

variance with additive noise ,was also a white random process uncorrelated with x(n) unit. 

An estimate of the MSE at each instant of time was obtained by averaging 2)(ne over 50 

independent computer runs. 

 

3.4.1 LMS Based Adaptive IIR System Identification 

The input signal x(n) is passes through the plant having transfer function H(z) which 

then added with white Guassian noise of –30dB.The plant is nothing but an IIR filter having 

transfer function of different orders which are consider below. In this discussion, we consider 

in account up to 5th order filter. The step size for the entire order filter was taken is same 

i.e.0.25 and the number of samples taken is 3000. 

Case 1: The plant is second order (M=2; L=2). It has two forward path coefficients and two 

feed back path coefficients. The transfer function of the plant is given by: 

21
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4.03.01
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+−
−

=
zz
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From the fig.3.13, it was shown that the response matching between the desired and 

estimated signal is not good enough and the normalized mean square error reduces to –26dB. 

After adaptation, the coefficients of the adaptive processor are approximately equal to that of 

the plant. The NMSE is converged approximately 2200 number of  iterations. 
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Case 2: Here the plant is assumed to be 3rd order IIR filter as given below: 

321
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For the response matching between desired and estimated signal, 3000 numbers of 

iterations are taken here. But in order to see more clearly, only 10 samples are taken into 

consideration. In this, the normalized mean square error reduces to –29dB.The NMSE floor 

converge approximately 2000 number of iterations. 
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Fig.3.13. Performance study of 2nd order LMS based adaptive IIR filter 
              (a) Response match between desired and estimated 
              (b) NMSE plot in dB 
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Fig.3.14. Performance study of 3rd order LMS based adaptive IIR filter 
e match between desired and estimated               (a) Respons

              (b) NMSE plot in dB 
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Case 3: The transfer function of the plant is assumed to be 4th order as shown below: 
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From the above figure, it was shown that the response matching between the desired and 

estimated signal is good and the normalized mean square error reduces to –30dB.With 

extensive computer simulation, it was shown that the transfer function of the adaptive 

processor is approximately equal to that of the plant. The NMSE converges approximately 

after 1800 number of iterations. 

 

Case 4:    The transfer function of the adaptive IIR filter is assumed here is 5th order as 

shown below: 
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Fig.3.15 Performance study of 4th order LMS based adaptive IIR filter 
             (a) Response match between desired and estimated 
             (b) NMSE plot in dB 
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From the above simulation study, it was shown that the response matching between 

the desired and estimated signal is superior and the normalized mean square error floor 

reaches –40dB.After adaptation, the coefficients of the adaptive processor are close to that of 

the plant. Hence as the order of the filter increases, the response matching between the 

desired and the estimated signal gives superior performance and the performance 

convergence of MSE floor is better. 

 

3.4.2 RLS Based Adaptive IIR System Identification 

   For the computer simulation, -30dB noise is added to the output of the plant and 3000 

numbers of iterations are taken into account.δ ,which is a very large number  for adaptation 

in RLS algorithm is assumed to be 0.0025 for all the cases. 

  Case 1: The plant is second order (M=2; L=2). It has two forward path coefficients and two 

feed back path coefficients. The transfer function of the plant is given by: 
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Fig.3.16 Performance study of 5th order LMS based adaptive IIR filter 
             (a) Response match between desired and estimated 
             (b) NMSE plot in dB 
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From the above fig it was shown that the NMSE floor reaches –33dB for 

approximately 1100 number of iterations. For more convenience, 10 numbers of samples are 

shown for the testing part. 
 

Case 2:   Here the plant is assumed to be 3rd order IIR filter as given below: 
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Case 3: The transfer function of the plant is assumed to be 4th order as shown below: 
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Fig.3.17 Performance study of 2nd order RLS based adaptive IIR filter 
             (a) Response match between desired and estimated 
             (b) NMSE plot in dB 
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mance study of 3rdFig.3.18 Perfor  order RLS based adaptive IIR filter 
             (a) Response match between desired and estimated 
             (b) NMSE plot in dB 
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Case 4: The transfer function of the adaptive IIR filter is assumed here is 5th order as shown 

below: 
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Fig.3.19 Performance study of 4th order RLS based adaptive IIR filter 
             (a) Response match between desired and estimated 
             (b) NMSE plot in dB 
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Fig.3.Performance study of 5th order RLS based adaptive IIR filter 
(a) Response match between desired and estimated 
(b) NMSE plot in dB 
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From all the simulation study of LMS and RLS based adaptive IIR system 

identification; it observed that the RLS algorithm gives better performance than the LMS 

convergence. 

 

3.4.3 GA Based IIR system Identification 

Case 1: The plant is assumed here is 2nd order as shown below: 
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GA Parameters BCGA 

Population N 60 

Crossover probability 0.8 

Mutation probability 0.1 

Number of generations cycles 50 

 
 

Table 3.4: Simulation data for GA based 2nd order adaptive IIR filter 
 

 
 
 
 
 

Fig.3.19 Performance study of GA based 2nd order adaptive IIR filter 
              (a) Response match between desired and estimated 
              (b) MSE plot in dB 
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Case 2: Here the plant is assumed to be 3rd order IIR filter as given below: 
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GA Parameters BCGA 

Population N 80 

Crossover probability 0.85 

Mutation probability 0.15 

Number of generations cycles 50 

    
 
 

Table 3.5: Simulation data for GA based 3rd order adaptive IIR filter 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Case 3:The transfer function of the plant is assumed to be 4th order as shown below: 
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Fig.3.20. Performance study of GA based 3rd order adaptive IIR filter 
             (a) Response match between desired and estimated 
             (b) MSE plot in dB 
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GA Parameters BCGA 

Population N 110 

Crossover probability 0.9 

Mutation probability 0.1 

Number of generations cycles 50 

 
 

Table 3.6: Simulation data for GA based 4th order adaptive IIR filter 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Case 4: The trasfer function of the adaptive IIR filter is assumed here is 5th order as shown 

below: 

54321
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=
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GA Parameters BCGA 

Population N 120 

Crossover probability 0.8 

Mutation probability 0.15 

Number of generations cycles 50 

 
Table 3.7: Simulation data for GA based 5th order adaptive IIR filter 

 

Fig.3.21 Performance study of GA based 4th order adaptive IIR filter 
             (a) Response match between desired and estimated 
             (b) MSE plot in dB 
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The convergence is greatly improved by using the genetic search algorithm. From all 
the computer simulation study, it is observed that from case1 to case 4 of GA based adaptive 
IIR filter, GA converges to the global solution with -37dB, - 39dB,-40dB, and -45dB squared 
error respectively. 
 
 
Comparison of computational complexity for different algorithms 
 
 
 
Algorithms(structure) 

for IIR Filter 
Computational 

Complexity 
Description 

LMS (L+M)(L+2) L=backward length of IIR filter. 
M=forward length of IIR filter 

RLS 2N2+4N N=L+M; 
L=backward length of IIR filter; 
M=forward length of IIR filter 

GA O (N.POPSIZE) N=L+M; 
POPSIZE=no. of chromosomes in a population; 

M=no. of offsprings; 
POPSIZE>>m minimum calculations required 

in one generation=N.POPSIZE. 
 

Table 3.8: Comparison of computational complexity for different algorithms 

Fig.3.22 Performance study of GA based 5th order adaptive IIR filter 
             (a) Response match between desired and estimated 
             (b) MSE plot in dB 
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3.5     Summary 
 

In this chapter LMS, RLS and GA were introduced and extensively explained. It was 

stated that the RLS based adaptive IIR system identification gives superior performance than 

the LMS counterpart. Because of the multimodal error surface of IIR filtering, special 

attention has to be given to the learning algorithms in order to avoid the local minimum 

problem. The new algorithm introduce here is the GA can be applied to both unimodal and 

multimodal search surfaces for optimization where in the later case gradient descent 

algorithms face difficulties. The experimental results clearly show that the GA based adaptive 

IIR system identification outperforms the LMS and RLS based adaptive IIR system 

identification in terms of the convergence speed and the ability to locate the global optimum 

solution. 

 

 

***** 
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CHAPTER 4 
 

4. ADAPTIVE IIR CHANNEL EQUALIZATION 
 
4.1 Introduction 

     In an ideal communication channel, the received information is identical to that 

transmitted. However, this is not the case for real communication channels, where signal 

distortions take place. A channel can interfere with the transmitted data through three types of 

distorting effects: power degradation and fades, multi-path time dispersions and background 

thermal noise [4.1]. Equalization is the process of recovering the data sequence from the 

corrupted channel samples. A typical baseband transmission system is depicted in Fig 4.1, 

where an equalizer is incorporated within the receiver [4.2]. 

 
 
 
 
 
 
 
 
 
 

Transmitter 
filter 

Channel 
medium + 

Receiver 
filter 

 
EQUALIZER  

 

Input Output 

   Fig 4.1 A baseband communication System 

 

The equalization approaches investigated in this thesis are applied to a BPSK (binary 

phase shift keying) baseband communication system. Each of the transmitted data belongs to 

a binary and 180° out of phase alphabet {-1, +1} within this chapter channel baseband 

models are explained. A transversal equalizer structure is also examined, [4.3]. 

 

4.2 Adaptive model for channel equalization 

        Equalizers are among the most essential digital signal processing devices for digital 

communication systems. This technology has been developed since the mid-sixties and 

seventies, [Lucky 1965, Sondhi 1967, Qureshi 1985 and Widrow 1976], and the research in 

this areas is continuing to provide better solutions and performances. One of the reasons for 

this on going research is due to the ever increasing demands for higher capacity and efficient 

bandwidth utilization. 
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Communication channels such as telephone, wireless and optical channels are 

susceptible to intersymbol interference (ISI). Without channel equalization, the utilization of 

the channel bandwidth becomes inefficient. Channel equalization is a process of 

compensating for the effects caused by a band-limited channel, hence enabling higher data 

rates [Qureshi 1985]. These disruptive effects are due to the dispersive transmission medium 

(e.g. telephone cables) and the multipath effects in the radio channel. A typical 

communication system is depicted in Figure 3.1, where the equalizer is incorporated within 

the receiver while the channel introduces intersymbol interference. The transfer function of 

the equalizer is an estimate of the direct inverse of the channel transfer function. To transmit 

high-speed data over a band-limited channel, the frequency response of the channel is usually 

not known with sufficient precision to design an optimum match filter. The equalizer is, 

therefore, designed to be adaptive to the channel variation. The configuration of an adaptive 

equalizer is depicted in Figure 4.2. Based on the observed channel output, an adaptive 

algorithm recursively updates the equalizer to reconstruct the output signal. 

 

 

Figure 4.2. A simple channel equalizer configuration. 

 

 

 

 

 

 

 

 

 

There are two modes of equalization, supervised and unsupervised training. 

Supervised training employs a training sequence from a pre-stored sequence inside the 

receiver or embedded in the transmitted sequence. Unsupervised training, also called 

decision-directed equalization, employs a decision device to return the noisy estimated 

symbols to the actual symbols to be used to train the equalizer. 

The optimum equalization performance (BER) can be obtained by using a maximum 

likelihood sequence estimator (MLSE) on the transmitted data sequence [Forney 1972]. 

However, the optimum equalizer is computationally expensive to implement. Moreover, the 

complexity increases with longer channel length and with tracking a time-varying channel. 
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 The sub-optimal equalizer is simple and more robust such as the linear transversal 

equalizer (LTE) or the decision feedback equalizer (DFE). The main disadvantage of the sub-

optimal equalizer is that it takes a longer time to converge before a creditable data 

transmission can take place. Sub-optimal equalizers use an adaptive algorithm to update the 

transversal tap delay filter. Hence, in general, its simplicity outweighs the performance 

offered by the MLSE. 

Adaptive equalization deconvolves the effects of a communication channel or some 

other system and produces an inverse model of an unknown plant. In Fig.4.3, the adaptive 

processor attempts to recover a delayed version of the signal ‘s’, which is assumed to have 

been altered by the slowly varying channel with additive noise. Instability occurs when poles 

are moved outside the unit circle at the time of adaptation for IIR systems. 

 

Delay 

Channel Adaptive  
processor 

Adaptive 
algorithm 

+ - 
d  

+

+

s 

x  

Noise  

y  
∑ ∑

Fig.4.3.     Channel equalization model 

e

 

 

 

 

 

 

 

   Basically there are two types of equalizer structure, linear and non-linear. Decision 

feedback equalizers and transversal equalizers are considered linear because the internal 

structure is a linear combiner. However, in order the study the gradient descent-based 

adaptive algorithms' performance, the linear equalizer is more appropriate. 

Minimum and non-minimum phase channel: 

Fundamentally there are two types of communication channels, the minimum phase 

and the non-minimum phase channel. A minimum phase channel can be identified when all 

the zeros of the z-transform channel model lie within the unit circle [Macchi 1995]. In 

contrast, the non-minimum phase channel is defied when there are zeroes outside the unit 

circle. Equations (3.1) and (3.2) show simple examples of the minimum and non-minimum 

phase channels respectively. 

H(z)=1.0 + 0.5z-1,        (4.1) 
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H(z) = 0.5 + z-1,        (4.2) 

A direct inverse of the minimum phase channel in equation (3.1) is a stable convergent series; 

(1.0 + 0.5z-1)-1 = i

i

i z−
∞

=
∑ −

0
)

2
1(  . For the non-minimum phase channel, its direct inverse is a 

divergent series, which is unstable; (0.5 + z-1)-1 = i

i

i zz∑
∞

=

−
0

)
2
1( . For the channel 

equalization, only truncations of the most significant coefficients are required, because it is 

not practical to include all coefficients. For the non-minimum phase channel, a time delay is 

incorporated into the training signal to cope with the non-causality. Therefore, either in 

minimum phase or non-minimum phase channels, the equalizer can be used to equalize the 

channel distortion. 

4.3   An adaptive IIR equalizer for nonminimum-phase channels                

                 In communication systems, the multipath channel is a major obstacle in reliable 

communication. Numerous works have been done to solve the problem [4.4], [4.5]. The 

particular characteristics of the multipath channel are generally unknown. Thus, one of the 

objectives of the receiver is to accurately identify the channel characteristics in order to 

correct the channel effect. In most such channels adaptive equalization schemes are used. 

                Conventional equalizers fall into two categories. One is “inverse modeling” and the 

other is “system modeling”. The former is also referred to as equalizer configuration or direct 

equalization and the latter as system identification configuration or indirect equalization. The 

inverse modeling requires an FIR filter with a large number of taps to approximate the 

inverse of a channel but has an advantage of being always stable. The system modeling 

requires much less number of taps but may be unstable for nonminimum-phase channels that 

are common in the real world. So, if we can extract the minimum-phase part from an 

unknown channel, it is possible to optimally equalize the channel by using a hybrid 

configuration in which both direct and indirect equalizers are combined to form an IIR 

equalizer. 

                 In this section, we present, an adaptive IIR equalizer based on extraction of the 

minimum-phase part, from an unknown channel. A direct equalizer (DE) and an equalized 

channel identifier (ECI) are adapted simultaneously for obtaining a minimum-phase 

equalized channel. Once the minimum-phase equalized channel is obtained, the coefficients 

of the ECI are copied to an all-pole IIR indirect equalizer that directly inverts the output, of 

the direct, equalizer. The Routh-Hurwitz criterion [4.6] is introduced for verifying that, the 

impulse response of the equalized channel is minimum phase. 
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Fig.4.4 Proposed adaptive equalization system 

      

 

 

 

 

 

      

 

The block diagram of the overall system is shown in Fig. 4.4 is the proposed adaptive 

IIR equalization system. The data sequence x (k) consists of complex, zero-mean, and 

Gaussian random variable. The channel is characterized by a complex channel response c(k) 

with z-transform C(z) and corrupted by independent additive complex white Gaussian noise 

n(k) with variance   .B(z) is the system function of an M-tap FIR direct equalizer (DE) and 

A(z) is that of an N-tap FIR equalized channel identifier (ECI). Assuming that the channel 

impulse response exists only over the time interval [0, vT], where T is the sampling period, 

then the input-output relation for the discrete-time equivalent channel has the form: 

2
0σ

∑
=

+−=
v

m
knmkxmcky

0
)()()()(                                                                                         (4.3) 

Let’s assume an all-zero FIR channel model such that 
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with  1>iα  and 1<iβ . Taking partial fraction expansions of l/C(z) and then making it 

stable impulse response, we obtain 
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From (4.6) we can conclude that the causal part is caused by ,the minimum-phase 

components and the anticausal part by the maximum-phase components. Ignoring tail parts of 

both sides and using a direct equalizer with M taps to cancel out the channel effect, the 

truncated version of (4.5) becomes t he solution of t he direct equalizer, and the causal and 

anticausal part are centered by the delay of the reference signal. 

Configuration of the proposed IIR equalizer 

We shall first consider a conventional FIR DE. The case that the ECI is fixed as A(z) = 1 on 

adapting the DE corresponds to the conventional DE configuration. In this scheme, an error 

for updating the DE is defined as 

)()()()( kykbkxkeb
∗−Δ−=                                                                                         (4.7) 

where  

T
M

Mkykykyky

bkbkbkb

)]1(),......,1(),([)(

],),.....,(),([)( 110

+−−=

= ∗
−

∗∗∗

                                                                        (4.8) 

and  corresponds to the delay of the DE and superscript “*” denotes the 

complex-conjugate transpose of a matrix or a vector and the complex conjugate of a scalar. 

)0( M≤Δ≤Δ

        Direct equalization with a delayed training sequence shows different performance 

depending on the delay of the filter [4.4], Δ . Letting Δ  be half the length of the DE (M / 2) 

would not be optimal but would be quite satisfactory [4.4]. This is due to allocating same 

number of taps to the anticausal and causal part. The inverse of an unknown channel is 

divided into anticausal part and causal part with the center of Δ  = M/2. So, implementing the 

direct equalization with the reference delay Δ = M / 2 can achieve the stable performance 

provided by the sufficient number of taps. However, such direct equalization method is not 

practical since an actual channel, especially long-delay channel, requires a DE of an infinite 

number of taps to precisely approximate the inverse of the channel. 

 To overcome the limit of a DE, the optimal configuration in which an indirect 

equalizer is combined with the DE is proposed. Obtaining a minimum-phase impulse 

response of the equalized channel is performed before IIR equalization, thus ensuring stable 

operation of the IIR equalizer [4.7]. 

 Since all the maximum-phase components of a channel appears at the anticausal part 

of the inverse of the channel, the anticausal part of the, equalized channel must be removed. 

For this, we employ a monic causal ECI as a reference generation filter for adaptation of the 
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DE. Reference sequence provided by the causal ECI causes the DE to be adapted toward 

suppressing the anticausal part of the equalized channel. Two errors are defined for 

adaptation of the DE and the ECI, respectively as follows: 

)()()()()( kykbkxkakeb
∗∗ −Δ−=                                                                                  (4.9) 

                                                                                    (4.10) )()()()()( Δ−−= ∗∗ kxkakykbkea

where 

)],(,),........(),([)(
,)]1(.,),........1(),([)(
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T

∗
−

∗∗∗ =

+−−=
 

The scheme is to minimize ])([ 2keE b  or ])([ 2keE a  with a monic constraints, 

. This constraint prevents the solutions of a and b from being trivial solutions a = b 

= 0. The optimum solutions are determined at the minimum value of the mean-square error 

(MSE), which varies, with the value of 

1)(0 =ka

Δ . The delay Δ  determines number of taps allocated 

to the anticausal and causal parts in the DE. In order for the equalized channel to be minimum 

phase, the DE approximates at least the inverse of all the maximum phase components of the 

channel. Since the increase of  means the increase of the number of taps of the DE 

allocated to the anticausal part.,  is to be its possible maximum value. However, in case of 

pure minimum-phase channels, the DE requires one tap for causal part. Consequently, 

considering such many conditions, we select the moderate value of 

Δ

Δ

Δ  as M-1. 

 The adaptive algorithm 

 Global convergence is guaranteed because there is only a single minimum in the 

quadratic MSE surface. We set the initial coefficients of the DE as b*(0) = [0,0…0] and those 

of the ECI as a*(O) = [l,0,0,…..,0], which means that the A-delayed training signal becomes 

the desired signal of the direct equalizer in adaptation of the initial tap coefficients. 

        The LMS algorithms for adapting the DE and the ECI are given by 

)()()()1( kykekbkb bbμ+=+                                                                                       (4.11) 

)()()1( Δ−+=+ kxekaka aaμ                                                                                      (4.12) 

where aμ and bμ  are the step-sizes which control the convergence speed and the residual 

error after convergence. In (9), the first element, of a(k), a0(k) is fixed to unity to satisfy the 

monic constraint. 

  The adapted coefficients of the ECI are copied to the fixed indirect IIR equalizer, 

which will be used for IIR equalization by inverting the equalized channel response. Zero 

energy anticausal part of the equalized channel certifies to its minimum-phase characteristic 
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i.e. since the inverse of a minimum-phase system is always stable. IIR equalization can be 

successfully implemented with guaranteed stability. 

 

4.4 Results and Discussion 

A random input sequence is passed through the system or channel which is then added 

with -30dB white Gaussian noise with zero mean and unit variance is used as the training 

signal, x(k). 

Example 1. Channel model 1: 
 
In Fig.4.5, the system transfer function C(z) was taken to be 
 

)3.11)(7.01()( 1513 −− +−= zzzC                                                                                  (4.13) 

which is a nonminimum phase channel. In addition, 30 dB AWGN exists. M = 113 and N = 

15 are used for the DE and the ECI, respectively. For comparison purpose, an FIR equalizer 

with M = 128 which has the same number of total taps as the proposed IIR equalizer is also 

implemented with the reference delay of M/2. All the adaptive algorithms use the same step-

sizes of 0.00005. The square output error, 2)(ˆ)( kxkx −  is averaged over 1000 samples and 

is shown in Fig. 4.5. From the plot we observe that the IIR and FIR equalizers have almost 

same convergence rate but the IIR equalizer has better performance than the FIR equalizer in 

terms of residual MSE after convergence. 

 

      

IIR

FIR

Fig.4.5 Comparison of convergence performance between LMS based adaptive IIR and FIR 
equalizer 

  

     

 

 

 

 

 

 

 

 

 

Example 2. Channel model 2: 
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The transfer function used is given by: 

)15.11)(05.11)(9.01)(81.01()( 1111 −−−− +++−= zzzzzC                                                  (4.14) 
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Fig.4.6 Comparison of convergence performance between LMS based and RLS based IIR 
equalizer 

 

 

 

 

 

 

 

 

 

 

 

which is also nonminimum phase channel and 30 dB AWGN exists. Since the maximum 

delay is much smaller than that of the channel 1, M = 30 and N = 5 are used for the DE and 

the ECI, respectively. A step size of 0.001 is used for LMS based adaptive IIR equalizer. 

From Fig 4.6, it is observed that the convergence performance of the adaptive IIR equalizer 

using LMS and RLS are different. RLS converges rapidly approximately by 200 iterations 

and LMS requires approximately 700 iterations to converge. 

 

4.5 Summary             

       An adaptive IIR equalizer to deal with nonminimum- phase channels with the guaranteed 

stability. By introducing this above equalization scheme in which the DE and the ECI are 

combined, we obtained minimum-phase equalized channels. Since an inverse system of any 

minimum-phase system is always stable, it is possible to implement the IIR equalization with 

the guaranteed stability. The proposed equalization method provides a near-optimum IIR 

equalizer that has much better performance than conventional FIR equalizers in terms of 

convergence speed and residual MSE. It was also given that the performance comparison 

between the LMS and RLS based adaptive IIR channel equalization. It observed that the RLS 

algorithm gives superior performance than the LMS convergence. 

 
***** 
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CHAPTER 5 
 

5. SUBBAND ADAPTIVE FILTERING 

5.1 Introduction 
Time domain and transform domain adaptive filtering may be regarded as special 

cases of subband adaptive filtering.  As a new concept, sub-band adaptive filtering was 

first introduced in the second half of the 1980s [5.13, 5.14].  . Since the introduction of 

the concept of sub-band adaptive filtering using general multirate structures and filter 

banks, several new structures are proposed. A new subband adaptive filter using a 

weighted mean square criterion was proposed in [5.12]. A similar criterion was 

introduced in [5.15] where a full band adaptive filter is adapted in the subband domain 

using polyphase decomposition. A new subband adaptive filtering structure with critical 

sampling was introduced in [5.16]. Subband adaptive filtering is successfully applied in a 

number of applications, for example adaptive noise cancellation [5.17], acoustic echo 

cancellation [5.20], and channel equalization [5.18, 5.19]. The main idea in subband 

adaptive filtering is to split a high order adaptive filtering problem into a number of low 

order adaptive filters. The general concept of subband adaptive filtering may involve a 

number of properties, such as improved convergence speed and low computational costs. 

Normally a combination of both is preferred. Another significant property is low delay, 

which for example is achieved at the expense of computational complexity.  

          Different configurations of subband adaptive filters exist. In some configurations, 

the desired signal is decomposed into subband signals. In [5.21], this is referred to as the 

open loop configuration, with individual adaptive filters operating in the sub-bands. In 

the open loop configuration, the adaptive filters are controlled using individual (local) 

subband error signals, see Fig. 5.1. The open loop approach is also used in [5.10], where 

a generalized adaptive filtering approach is presented with adaptive cross-filters operating 

between the subbands. When the open loop approach is used in a system identification 

scenario, it is shown that cross-filters are necessary to identify the unknown system 

correctly. The approach with individual filters in the subband, as depicted in Fig. 5.1, has 

limited performance in terms of full band Mean Square Error. This is essentially the same 
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in a frequency domain adaptive filter, with an individual frequency domain tap update, 

where circular correlation limits the performance when the gradient constraint is not 

imposed on the gradient 
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Fig. 5.1 Decomposition of analysis filter output 

 
 
 
 
 
 
 
 
 

 

 

  In another configuration for sub-band adaptive filtering, an error signal is 

calculated in full band, and decomposed into sub-band error signals, which are used to 

control the adaptive filters, see Fig. 5.2. In [5.3], this is referred to as the closed loop 

configuration. In this approach, individual adaptive filters operating in the sub-bands are 

sufficient for high performance in terms of full band MSE. However, the converge speed 

may be lower because filter banks impose a signal delay in the control loop. 
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In a sub-band adaptive filter, the number of sub-bands M , the decimation factor D 

and the analysis and synthesis filters Hm(z) and Gm(z) are filter bank parameters, which 

influence the performance of the adaptive filter in terms of full band MSE and 

convergence speed. An important issue in sub-band adaptive filtering is that multirate 

filter banks introduce aliasing and imaging distortion, caused by multirate building blocks 

 
5.2 Multirate Signal Processing 
                  In a multirate system [5.4], the signal samples are processed and manipulated 

at different clock rates at various points in the configuration. Typically the band limited 

analog signals is sampled at Nyquist rate to generate what we call the fullband signal 

{x(n)}, with a spectral content from zero to half of sampling frequency . These signal 

samples can be manipulated by either at higher or lower clock rates by a process called 

interpolation or decimation. The signals must be proper conditioned by filters prior to or 

after sampling rate alteration. This operation provides the framework for the sub-band 

signal decomposition 
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5.2.1 Decimation and Interpolation 
 
 
 

 

                                                     

h(n) M Fs/M 
Y(n) = XD(n) U(n) X(n) 

Fs

                                                   Fig. 5.3 Decimation operation 

 

          Decimation is the operation of reducing the sampling rate of a signal by a factor M. 

The process is achieved by passing the full band signal {U(n)} through a low pass  

antialising filter  h(n) , and then subsampling the filtered signal as shown in Fig. 5.3 . The 

subsampler is represented by the downsampling arrow and M enclosed in the circle .The 

subsampling process consists of retaining every Mth samples of X(n) . 

 

  

 

 

 

 

                            

                                     Fig. 5.4   Decimation for M = 2 

 

From Fig. 5.4 we can represent y(n) in terms of x(n) , as follows                 

( ) 0, , 2 ............( ) 0,{x n n M My n otherwise
= ± ±=                                                                (5.1)  

In Eq. (5.1) the time scale is compressed by a factor M. 

It easily follows that                           

   
11

0

1( ) ( )
M

kM

k
Y z X z W

M

−

=

= ∑                                                                   (5.2)      

 where W =    
2j
Me
π

−  
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       or    
21 ( )

0

1( ) (
w kM jjw M

k

Y e X e
M

π−−

=

= ∑ )                                                                    (5.3) 

 

Thus the time compression implicit in Eq. (5.1) is accompanied by stretching in the 

frequency domain so that the interval from 0 to π/M now covers the band from 0 to π .It 

should be evident that the process of discarding samples can lead to aliasing. To avoid 

aliasing the bandwidth of full band signal should be reduced to ±  π/M prior to 

downsampling by a factor M. This is the function of antialising filter h (n). 

Interpolation is the process of increasing the sampling rate of a signal by the 

integer factor M. As shown in Fig. 5.5 this process is achieved by an upsampler and a low 

pass filter g (n).  

 v(n) x(n) g(n) y(n) 

Fs Fs/M 
   M  

 

                                       Fig. 5.5 Interpolation operation 

 

The upsampler is shown symbolically in Fig. 5.5   by an upward arrow followed by a 

filter g(n) .   This can be mathematically represented as 

 

( / ) , 0 , , 2 , 3 ...............
0 ,( ) { u n M n M M M

O therw isex n = ± ± ±=                                  (5.4) 

 

 

 

            

 

 

 

 

                                    Fig. 5.6   Interpolation for M = 2 
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In Eq. (5.4) the time scale is compressed by a factor M. 

It easily follows that                                

( ) ( )MY z X z=                                                                                               (5.5) 

Or 

( ) (jw jw MY e X e= )                                                                                         (5.6) 

Upsampling has two effects. First stretching the time axis includes compression in 

frequency; second, forcing the interpolated signal to pass through zero between samples 

of x (n) generates high frequency signals or images. 

 

  5.2.2 Polyphase Decomposition   

          To prevent or reduce the aliasing inherent in the subsampling operator, an 

antialising filter typically low pass, is usually placed in the front of down sampler as in 

Fig. 5.7 (a). This combination can be represented by the polyphase decomposition in Fig. 

5.7 (b). 

 

 
h(n) M

X(n) V(n) Y(n)
 

 

                Fig. 5.7 (a) Filter followed by down sampler 

 

 

 

 

 

 

 

 

 

 

 

 

Y(n) 
0 ( )MG z

1 ( )MG z

1( )M
MG z−

X(n) V(n) 
M 

z-1

z-1

Fig. 5.7(b) Alternative polyphase network presentations 
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                     Similarly the polyphase decomposition of the upsampler and filter 

combination can be demonstrated as follows 

 

 

 

 

 

g(n) M V(n) Y(n) X(n) 

Fig. 5.8 (a) Upsampler followed by filter 

 

 

 

 

 

 

 

0 ( )G z

1( )G z

M

M

M

1( )MG z−

X(n) Y(n) 

z-1

z-1

 

Fig. 5.8 (b) Polyphase decomposition 

 

 V(n) 
M 0 ( )MG z

1 ( )MG z

1 ( )M
MG z−

z-1

z-1

X(n) Y(n) 
 

 

 

 

 

 

Fig. 5.8 (c) Alternative polyphase network presentations 

 

 

5.2.3 Two – Channel Filter Bank  

          The two-channel filter bank provides the beginning of subband coding systems. A 
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encoding bits to each sub-band based on the energy in that band. In this section the 

requirements and properties of a perfect reconstruction of two-channel subband systems 

are derived. Analysis filter and synthesis filter with upsampler and downsampler 

constitutes filterbank. This is represented in Fig. 5.9. 

 

  

1( )H z

0 ( )H z 2 

2 

2 

2 1( )G z

0 ( )G z

)(1 nθ

)(0 nθ )(0 nv

)(1 nv

)(0 nf

)(1 nf  

)(0 ny

)(1 ny

)(ny)(nx

Analysis Stage Synthesis 

∑

+ 

+ 

 

 

 

 

 

 

 

 

 

 

 

                              Fig. 5.9 Two- Channel subband filter bank      

 

In Fig. 5.9 the analysis filters are normally low pass and high pass. This structure 

was introduced in the 1980’s.  is low pass and 0 ( )H z 1( )H z  is high pass filters . The 

downsampled signal might be coded for storage or transmission.The effect of using low 

pass & high pass in analysis part may bring aliasing phenomena, amplitude distortion & 

phase distortion .The synthesis filters and  must be specially adopted to the 

analysis filters  and

0 ( )G z 1( )G z

0 ( )H z 1( )H z , in order to cancel the errors in this analysis bank. The 

goal of this section is to discover the conditions for perfect reconstruction as in [5.2, 5.8]. 

Perfect reconstruction is a crucial property. If the sampling operators and were not 

present a reconstruction without delay means                                          

0 0 1 1H G H G+ = I                                                                                         (5.10) 

A perfect reconstruction with l – step delay without up-sampler and down sampler  
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                                                                                          (5.11)    0 0 1 1
lH G H G z −+ =

Tracing the signals through the top branch in Fig. 5.9          

 0 0

0 0 0

( ) ( ) ( )
( ) ( ) ( )

z H z X z
Y z G z F z
θ =

=
                                                                                            (5.12)         

 As the outputs of the decimation and interpolation filters, while the down-sampler and 

the upsampler impose, respectively 

 

1 1
2 2

0 0 0

2
0 0

1( ) ( ) ( )
2

( ) ( )

V z z z

F z V z

θ θ⎡ ⎤= + −⎢⎣
=

⎥⎦                                                                      (5.13)      

Combining Eq. (5.12) and (5.13)             

 [0 0 0 0
1( ) ( ) ( ) ( ) ( ) ( )
2

Y z G z H z X z H z X z= + − ]−                                     (5.14)                              

Similarly,              

[ ]0 0 0 0
1 ( ) ( ) ( ) ( ) ( ) ( )
2

Y z G z H z X z H z X z= + − −                                         (5.15) 

The Z-Transform of reconstructed signal, is then                        

[ ]

[

0 0 1 1

0 0 1 1

1( ) ( ) ( ) ( ) ( ) ( )
2
1 ( ) ( ) ( ) ( ) ( )
2

( ) ( ) ( ) ( )

X z H z G z H z G z X z

H z G z H z G z X z

T z X z S z X z

= +

+ − + − −

= + −

]                                   (5.16) 

To eliminate aliasing, we require 

                                 ( ) 0S z =

This can be achieved by selecting filter co-efficients such that 

0 1

1 0

( ) ( )
( ) ( )

G z H z
G z H z

= − −

= −
                                                                                           (5.17)         

  Leaving us with 

[ 0 1 0 1
1( ) ( ) ( ) ( ) ( )
2

T z H z H z H z H z= − − − ]                                  (5.18)      

  If overall delay is l for this filter bank, then perfect reconstruction is achievable if 

    0 0 1 1( ) ( ) ( ) ( ) 2 lG z H z G z H z z −+ =                                                      (5.19)    
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And    

                                                           (5.20)       0 0 1 1( ) ( ) ( ) ( ) 0G z H z G z H z− + − =

 

 In vector-matrix form these two conditions involve the modulation matrix   Hm(z): 

[ ] 0 0
0 1

1 1

( ) ( )
( ) ( ) 2 0

( ) ( )
lH z H z

G z G z z
H z H z

−−⎡ ⎤
⎡ ⎤=⎢ ⎥ ⎣ ⎦−⎣ ⎦

                                     (5.21)      

 For l = 0 , i.e. zero delay this matrix can be approximated into                       

   [ ]                                       (5.22)    [0 0
0 1

1 1

( ) ( )
( ) ( ) 2 0

( ) ( )
H z H z

G z G z
H z H z

−⎡ ⎤
=⎢ ⎥−⎣ ⎦

]

   

  The matrix Hm(z) will play a very important role. We can extend this matrix for an M-

band filter bank with size . M  M×

5.3 Analysis of SAF for 2-Band Case 

          Subband adaptive filtering has been proposed as an alternative for conventional 

time domain adaptive filtering, [5.5]. The main reason is the reduction in computational 

complexity and the increase in convergence speed for the adaptive algorithm, which is 

achieved by dividing the algorithm into subbands. The computational savings comes 

from the fact that time domain convolution becomes decoupled in the subbands, at a 

lower sample rate. In these approaches, the underlying signals are decomposed into 

slightly overlapping frequency bands by passing through a filter bank and the output 

signals are decimated to give sub-band signals. Now, the adaptations are carried out in 

each sub-band, but the problem with this approach is the aliasing of the input signals, 

which arises because of the decimation. Several solutions to this problem, such as over 

sampling [5.9] of the analysis bank outputs, incorporating adaptive cross filters [5.10] 

between the adjacent sub-bands, and putting spectral gaps between the bands [5.11], have 

been recently proposed. In [5.10], it is pointed out that in the M-band adaptive filters 

with critical sampling, the cross filters can be avoided if the analysis filters are either 

ideal filters, or the path impulse response is nonzero for the coefficient indices that are 

multiples of M and zero otherwise. Thus, the cross filters are unavoidable in practical 

applications. It has been found [5.10] that the convergence performance with the cross 
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filters is not better than that of full band adaptive filter. However, this approach yields a 

slight gain in computation. 

In this Section a new structure for the subband adaptive filter [5.12] with critical 

sampling and a new criterion for the adaptation algorithm that results in significant 

improvement in the convergence rate when the LMS algorithm [5.1] is used for 

adaptation. This structure exploits the polyphase decomposition [5.4] of the adaptive 

filter. To prevent any distortion that may be introduced in splitting and recombining 

the signals, we use perfect reconstruction filter banks. All the filters used here are real.   

 

5.3.1      Structures of SAF                   

 

Y(n) 

e1(n) 

H1(z)

H0(z)

S(z) 
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   2 
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+H0(z) 
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   2 
+

+
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+
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                                          Fig. 5.10 SAF for 2-band case 

 

A structure of the system identification model using SAF [5.12] is given in Fig. 

5.10. Here, the output signals from the filters and are divided into subbands, 

decimated, subtracted, and combined through an appropriate filter bank to form the 

error signal e(n). The noise signal is not shown here; we do not consider it in the 

( )S z ˆ( )S z
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analysis of the SAF, but its effect on the performance of the SAF will be studied 

through simulations in later part of this chapter. H0(z) and H1(z) are the analysis filters, 

and F0(z) and F1(z) are the synthesis filters. These filters form a perfect reconstruction 

pair. We used cosine modulated filter-bank [5.9] in our simulation works. The impulse 

response of the analysis filter hk(n) are cosine-modulated versions of a prototype filter h(n) 

of length Nh , and the synthesis filters are obtained via cosine modulation of a length Nf 

prototype filter f(n). The overall delay D of the filterbank can be fixed arbitrarily in the 

range                 1, 1f hD M N N M⎡ ⎤∈ − + − +⎣ ⎦

For a given delay D = 2M + d   (where 0 2d M≤ ≤  ), the analysis and synthesis filters are 

given by 

1( ) 2 ( ) cos
2 2k

Dh n h n k n
M
π

kθ
⎡ ⎤⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠

−
⎣ ⎦

                                                     (5.23) 

1( ) 2 ( ) cos
2 2k k

Df n f n k n
M
π θ⎡ ⎛ ⎞ ⎛ ⎞= + −⎜ ⎟ ⎜ ⎟⎢ ⎝ ⎠ ⎝ ⎠⎣ ⎦

⎤
− ⎥                                                    (5.24) 

Where ( 1)
4

k
k

πθ = − , n = 0,1. …… (M-1). Note that the delay D does not depend upon the 

filter length but only on the delay of the system. These analysis and synthesis filter gives 

perfect reconstruction pairs. 

          As shown in Fig.5.10, x00(n), x01 (n), x10(n) and x11(n) are the sub-band 

components of the input y(n) and together, they account for all the samples of bo(n) and  

b1(n), which are the outputs of the filters H0(z) and H1(z) respectively .  and  is 

each of length L/2, where L is the length of  . 

( )S z ˆ( )S z

ˆ( )S z

 

5.3.2 Adaptive Algorithm 

       The and  are to be adopted using the error signals e( )S z ˆ( )S z 0(n) and e1(n).We have     

0 0 0 0 0 0 1 1
ˆ( ) ( ) ( ) ( ) ( ) ( )ˆE z Y z X z S z X z S z= − −                                              (5.25)  

1 1 10 0 11 1
ˆ( ) ( ) ( ) ( ) ( ) ( )E z Y z X z S z X z S z= − − ˆ                                                  (5.26) 

Assume that the filters H0(z) and H1(z) of equal bandwidth. If the spectrum of y(n) 

is flat, then the power of  bo(n) and  b1(n)  will be equal . But, if the input is a colored one, 

then these powers will be different. The cost function is defined as  
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2 2
0 0 1 1( ) ( ) ( )J n E e n e nα α⎡= +⎣ ⎤⎦                                                                      (5.27) 

where  0α and 1α are inverse of powers of bo(n) and  b1(n)  , respectively .This cost function 

brings down the eigen value  spread of the weighted sum of the correlation matrix of the 

input signals to the adaptive filter , thereby resulting improved rate of convergence .  The 

gradient-based algorithm for adaptation is given by     

   
00 0ˆ ˆ( 1 ) ( )

kˆ
J

k k ss n s n μ ∂
∂+ = −                                                                        (5.28) 

    
k

nk s
Jnsns
1

11 ˆ
)(ˆ)1(ˆ

∂
∂

−=+ + μ                                                                               (5.29) 

                                                    k  = 0, 1, 2…(L/2-1)   

Now replacing the true gradient by instantaneous gradient the update equation will be as 

follows 

 [ ]0 0 0 0 00 1 1 10ˆ ˆ( 1) ( ) 2 ( ) ( ) ( ) ( )k ks n s n e n x n k e n x n kμ α α+ = + − + −                     (5.30) 

[ ]1 1 0 0 01 1 1 11ˆ ˆ( 1) ( ) 2 ( ) ( ) ( ) ( )k ks n s n e n x n k e n x n kμ α α+ = + − + −    (5.31) 

These are the LMS adaptation equations for the co-efficients of and in the  0
ˆ ( )S z 1̂( )S z

two sub-bands are constrained to be the same. 

 

5.4 Results & Discussion 

                  In this section, we study the convergence performance of the SAF using 

computer simulations. The input signal is a first-order autoregressive (AR) process with 

white Gaussian noise as the driving input. That is, y(n) is modeled 

as )()1()( nunyny +−= ρ , where u(n) is a white Gaussian noise sequence. In our 

simulations, we fixed ρ  at 0.9. The system noise is a white Gaussian noise sequence that 

is independent of the u(n). 

We normalized the input y(n) such that the variance of the resulting sequence at the 

output of  S(z)   was unity. In this case, i.e., for L=80, we considered two levels of system 
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noise: no noise and 20 dB noises. In the simulations, we discarded the first 2000 samples 

of so that the actual AR sequence used was nearly stationary. The coefficients { kα } were 

computed as the inverse of the powers of { } estimated from the overall samples 

used in the adaptation.  

)(nbk

               In the fullband case, we used a normalized LMS algorithm, whereas in the sub-

band case, the algorithm as given by Eq. (5.28) and (5.29) was implemented, initializing 

the coefficients of zero in each case. The best possible value for (best in the sense that it 

yields fastest convergence with the converged value as close to the noise level as 

possible) was found by trial and error. Note that the value of μ so found depends on the 

value of M .The norm and mean square error (MSE) curves were averaged over 50 

independent computer runs. The delays introduced by the analysis bank alone and that 

introduced by the cascade of analysis and synthesis banks are taken into account while 

plotting the coefficient error vector norm and MSE curves, respectively. That is, the norm 

and MSE curves are plotted without the effect of the filter bank delay. We may point out 

Here that for the case of L=80, the lengths of the analysis filters (as well as the synthesis 

filters) were increased with so that the ratio of the transition band to the passband was 

maintained nearly the same for all values of M .In particular, we used filters (analysis and 

synthesis) with lengths 20 for M = 2 . 
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SAF 

LMS 

                       
Fig. 5.11 Convergence performance of the SAF for M=2 with system      

noise absent (filter length L=80), No of training samples = 4,000  
 
 
 
 

.  Fig. 5.11 presents the performance of fullband and subband with no noise level. 

The curve depicts significant increase in convergence rate when the no. of bands was 

increased. In this, for a given number of training samples the LMS converges to 

approximately -12dB where as the SAF converges approximately -19dB for less than the 

given number of samples used for LMS counterpart. 
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SAF

LMS

Fig. 5.12 Convergence performance of the SAF for M=2 with system 
noise level of –20 dB (filter length L=80), No of training samples = 4,000 

 

 

Similarly in Fig. 5.12, we compared the performance and convergence rate with 20dB 

noise level. The curves show that the co-efficient error vector norm converges to about 7dB 

above the system noise level in the subband case, whereas 23dB in case of fullband.   

 

5.5     Summary 
 A new structure for the subband adaptive filter is presented. The convergence rate of the 

SAF improves considerably with the increase in no. of bands. The cross filters are totally 

avoided in the structure and the adaptive filters in the subbands are independent of the analysis 

and synthesis filters. There is no such significant improvement in the computational 

complexity as compared to fullband, but a significant improvement comes into picture in 

terms of learning rate. The agreement of SAF based response is better than that obtained from 

fullband case. Exhaustive simulation study is further required to demonstrate the superiority of 

SAF over fullband both for system identification and channel equalization tasks.  

***** 
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CHAPTER 6 
 

6. CONCLUSION AND FUTURE SCOPE 
 

In this thesis, we have made an extensive study of estimation of adaptive IIR filter 

behavior in signal processing and communication channels. The objective of this research 

is to evaluate the performance of adaptive IIR system identification and channel 

equalization using numerous algorithms such as LMS, RLS, GA and SAF. The principle 

of adaptive IIR filtering process is focused which has numerous applications in various 

areas. 

It was stated that the RLS based adaptive IIR system identification gives superior 

performance than the LMS counterpart. The proposed equalization method provides a 

near-optimum IIR equalizer that has much better performance than conventional FIR 

equalizers in terms of convergence speed and residual MSE. It was also given that the 

performance comparison between the LMS and RLS based adaptive IIR channel 

equalization and observed that the RLS based IIR equalizer gives superior performance 

than the LMS convergence. Due to the multimodal error surface of IIR filtering, special 

attention has to be given to the learning algorithms in order to avoid the local minimum 

problem. The gradient-descent algorithms can be affected by a cost surface local 

minimum. The algorithm is therefore affected by the initialization and can produce 

inconsistent results. The GA is not a gradient-descent algorithm and is not limited by a 

local cost surface condition. This training algorithm can therefore produce a more 

consistent performance result. Thus GA does provide a useful strategy that has quick 

convergence characteristics.  The SAF structure identifies a given system in the subband 

domains; as a result faster convergence is obtained. The subband filters are updated 

individually within their own frequency range. Even though the adaptive structure more 

complex than the fullband case, it is a novel identification method. 

It is anticipated that future research will focus on other forms of evolutionary 

computing techniques like Particle Swamp Optimization, Ant Colony Optimization and 

Bacteria Foraging are used both for the adaptive IIR system identification and channel 

 82



Conclusion 

equalization applications. The computational overhead with GA is very high. Hence 

research needs done to reduce the computational complexity of this algorithm. 

 

 

***** 
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