17,264 research outputs found

    Phase retrieval for characteristic functions of convex bodies and reconstruction from covariograms

    Get PDF
    We propose strongly consistent algorithms for reconstructing the characteristic function 1_K of an unknown convex body K in R^n from possibly noisy measurements of the modulus of its Fourier transform \hat{1_K}. This represents a complete theoretical solution to the Phase Retrieval Problem for characteristic functions of convex bodies. The approach is via the closely related problem of reconstructing K from noisy measurements of its covariogram, the function giving the volume of the intersection of K with its translates. In the many known situations in which the covariogram determines a convex body, up to reflection in the origin and when the position of the body is fixed, our algorithms use O(k^n) noisy covariogram measurements to construct a convex polytope P_k that approximates K or its reflection -K in the origin. (By recent uniqueness results, this applies to all planar convex bodies, all three-dimensional convex polytopes, and all symmetric and most (in the sense of Baire category) arbitrary convex bodies in all dimensions.) Two methods are provided, and both are shown to be strongly consistent, in the sense that, almost surely, the minimum of the Hausdorff distance between P_k and K or -K tends to zero as k tends to infinity.Comment: Version accepted on the Journal of the American Mathematical Society. With respect to version 1 the noise model has been greatly extended and an appendix has been added, with a discussion of rates of convergence and implementation issues. 56 pages, 4 figure

    Tiling groupoids and Bratteli diagrams

    Full text link
    Let T be an aperiodic and repetitive tiling of R^d with finite local complexity. Let O be its tiling space with canonical transversal X. The tiling equivalence relation R_X is the set of pairs of tilings in X which are translates of each others, with a certain (etale) topology. In this paper R_X is reconstructed as a generalized "tail equivalence" on a Bratteli diagram, with its standard AF-relation as a subequivalence relation. Using a generalization of the Anderson-Putnam complex, O is identified with the inverse limit of a sequence of finite CW-complexes. A Bratteli diagram B is built from this sequence, and its set of infinite paths dB is homeomorphic to X. The diagram B is endowed with a horizontal structure: additional edges that encode the adjacencies of patches in T. This allows to define an etale equivalence relation R_B on dB which is homeomorphic to R_X, and contains the AF-relation of "tail equivalence".Comment: 34 pages, 4 figure

    Convergence of algorithms for reconstructing convex bodies and directional measures

    Get PDF
    We investigate algorithms for reconstructing a convex body KK in Rn\mathbb {R}^n from noisy measurements of its support function or its brightness function in kk directions u1,...,uku_1,...,u_k. The key idea of these algorithms is to construct a convex polytope PkP_k whose support function (or brightness function) best approximates the given measurements in the directions u1,...,uku_1,...,u_k (in the least squares sense). The measurement errors are assumed to be stochastically independent and Gaussian. It is shown that this procedure is (strongly) consistent, meaning that, almost surely, PkP_k tends to KK in the Hausdorff metric as k→∞k\to\infty. Here some mild assumptions on the sequence (ui)(u_i) of directions are needed. Using results from the theory of empirical processes, estimates of rates of convergence are derived, which are first obtained in the L2L_2 metric and then transferred to the Hausdorff metric. Along the way, a new estimate is obtained for the metric entropy of the class of origin-symmetric zonoids contained in the unit ball. Similar results are obtained for the convergence of an algorithm that reconstructs an approximating measure to the directional measure of a stationary fiber process from noisy measurements of its rose of intersections in kk directions u1,...,uku_1,...,u_k. Here the Dudley and Prohorov metrics are used. The methods are linked to those employed for the support and brightness function algorithms via the fact that the rose of intersections is the support function of a projection body.Comment: Published at http://dx.doi.org/10.1214/009053606000000335 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Sampling of stochastic operators

    Full text link
    We develop sampling methodology aimed at determining stochastic operators that satisfy a support size restriction on the autocorrelation of the operators stochastic spreading function. The data that we use to reconstruct the operator (or, in some cases only the autocorrelation of the spreading function) is based on the response of the unknown operator to a known, deterministic test signal
    • …
    corecore