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1. Introduction 

The Phase Retrieval Problem of Fourier analysis involves determining a function 
f on Rn from the modulus |f�| of its Fourier transform f�.  This problem arises 
naturally and frequently in various areas of science, such as X-ray crystallogra- 
phy, electron microscopy, optics, astronomy, and remote sensing, in which only 
the magnitude of the Fourier transform can be measured and the phase is lost. 
(Sometimes, as when reconstructing an object from its far-field diffraction pattern, 

2 

it is the squared modulus |f�| that is directly measured.)   In 1984, Rosenblatt 
[42] wrote that the Phase Retrieval Problem “arises in all experimental uses of 
diffracted electromagnetic radiation for determining the intrinsic detailed structure 
of a diffracting object.” Today, the word “all” is perhaps too strong in view of 
recent advances in coherent diffraction imaging. In any case, the literature is vast; 
see the surveys [32], [34], [36], and [42], as well as the articles [9] and [18] and the 
references given there. 

Phase retrieval is fundamentally underdetermined without additional constraints, 
which usually take the form of an a priori assumption that f has a particular support 
or distribution of values. An important example is when f = 1K , the characteristic 
function of a convex body K in Rn. In this setting, phase retrieval is very closely 
related to a geometric problem involving the covariogram of a convex body K in 
Rn. This is the function gK defined by 

gK (x) = Vn (K ∩ (K + x)) , 
for x ∈ Rn, where Vn denotes n-dimensional Lebesgue measure and K + x is the 
translate of K by the vector x. It is also sometimes called the set covariance and 
is equal to the autocorrelation of 1K , that is, 

gK = 1K ∗ 1−K , 
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where ∗ denotes convolution and −K is the reflection of K in the origin. Taking 
Fourier transforms, we obtain the relation 

(1)   = 1    1 
= 1 2. 

gK = 1 K 1 −K K  K    K 
  

This connects the Phase Retrieval Problem, restricted to characteristic functions 
of convex bodies, to the problem of determining a convex body from its covari- 
ogram. Both the definition of covariogram and this connection extend to arbitrary 
measurable sets, but the reason for restricting to convex bodies will become clear. 

The covariogram was introduced by Matheron in his book [38] on random sets. 
He showed that for a fixed u ∈ Sn−1, the directional derivatives ∂gK (tu)/∂t, for all 
t  > 0, of the covariogram of a convex body K in Rn yield the distribution of the 
lengths of all chords of K parallel to u. This explains the utility of the covariogram 
in fields such as stereology, geometric tomography, pattern recognition, image anal- 
ysis, and mathematical morphology, where information about an unknown object 
is to be retrieved from chord length measurements; see, for example, [15], [20], and 
[45]. The covariogram has also played an increasingly important role in analytic 
convex geometry. For example, it was used by Rogers and Shephard in proving 
their famous difference body inequality (see [46, Theorem 7.3.1]), by Gardner and 
Zhang [26] in the theory of radial mean bodies, and by Tsolomitis [47] in his study of 
convolution bodies, which via the work of Schmuckenschläger [44] and Werner [50] 
allows a covariogram-based definition of the fundamental notion of affine surface 
area. 

Here we effectively solve the following three problems. In each, K is a convex 
body in Rn. 

Problem 1 (Reconstruction from covariograms). Construct an approxima- 
tion to K from a finite number of noisy (i.e., taken with error) measurements of 
gK . 

Problem 2 (Phase retrieval for characteristic functions of convex bodies: 
squared modulus). Construct an approximation to K (or, equivalently, to 1K ) 
from a finite number of noisy measurements of |1 K |2. 

Problem 3 (Phase retrieval for  characteristic  functions  of  convex  bod- 
ies:  modulus).  Construct an approximation to K from a finite number of noisy 
measurements of |1 K |. 

In order to discuss our results, we must first address the corresponding unique- 
ness problems. In view of (1), these are equivalent, so we shall focus on the covari- 
ogram. It is easy to see that gK is invariant under translations of K and reflection 
of K in the origin. Matheron [40] asked the following question, known as the 
Covariogram Problem, to which he conjectured an affirmative answer when n = 2. 

Is a convex body in Rn determined, among all convex bodies and up to translation 
and reflection in the origin, by its covariogram? 

The focus on covariograms of convex bodies is natural. One reason is that Mal- 
lows and Clark [37] constructed noncongruent convex polygons whose overall chord 
length distributions (allowing the directions of the chords to vary as well) are equal, 
thereby answering a related question of Blaschke. Thus the information provided by 
the covariogram cannot be weakened too much. Moreover, there exist noncongru- 
ent nonconvex polygons, even (see [22, p. 394]) horizontally and vertically convex 
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polyominoes, with the same covariogram, indicating that the convexity assumption 
also cannot be significantly weakened. 

Interest in the Covariogram Problem extends far beyond geometry. For example, 
Adler and Pyke [1] ask whether the distribution of the difference X − Y of inde- 
pendent random variables X and Y , uniformly distributed over a convex body K, 
determines K up to translations and reflection in the origin. Up to a constant, the 
convolution 1K ∗ 1−K = gK is just the probability density of X −Y , so the question 
is equivalent to the Covariogram Problem. In [2], the Covariogram Problem also 
appears in deciding the equivalence of measures induced by Brownian processes for 
different base sets. 

A detailed historical account of the covariogram problem may be found in [4]. 
The current status is as follows, in which “determined” always means determined 
by the covariogram among all convex bodies, up to translation and reflection in 
the origin. Averkov and Bianchi [4] showed that planar convex bodies are deter- 
mined, thereby confirming Matheron’s conjecture.  Bianchi [8] proved, by a long 
and intricate argument, that three-dimensional convex polyhedra are determined. 
It is easy to see that centrally symmetric convex bodies are determined. (In the 
symmetric case, convexity is not essential; see [22, Proposition 4.4] for this result, 
due to Cabo and Jensen.) Goodey, Schneider, and Weil [27] proved that most (in 
the sense of Baire category) convex bodies in Rn are determined. Nevertheless, the 
Covariogram Problem in general has a negative answer, as Bianchi [7] demonstrated 
by constructing convex polytopes in Rn, n ≥ 4, that are not determined. It is still 
unknown whether convex bodies in R3 are determined. 

None of the above uniqueness proofs provide a method for actually reconstructing 
a convex body from its covariogram. We are aware of only two papers dealing with 
the reconstruction problem: Schmitt [43] gives an explicit reconstruction procedure 
for a convex polygon when no pair of its edges are parallel, an assumption removed 
in an algorithm due to Benassi and D’Ercole [6]. In both these papers, all the exact 
values of the covariogram are supposed to be available. 

In contrast, our first set of algorithms take as input only a finite number of values 
of the covariogram of an unknown convex body K0. Moreover, these measurements 
are corrupted by errors, modeled by zero mean random variables with uniformly 
bounded pth moments, where p is at most six and usually four. It is assumed that 
K0 is determined by its covariogram, has its centroid at the origin, and is contained 
in a known bounded region of Rn, which for convenience we take to be the unit 
cube Cn = [−1/2, 1/2]n. We provide two different methods for reconstructing, for 
each suitable k ∈ N, a convex polytope Pk that approximates K0  or its reflection 
−K0.  Each method involves two algorithms, an initial algorithm that produces 
suitable outer unit normals to the facets of Pk and a common main algorithm that 
goes on to actually construct Pk . 

In the first method, the covariogram of K0 is measured, multiple times, at the ori- 
gin and at vectors (1/k)ui, i = 1 , . . .  , k, where the ui’s are mutually nonparallel unit 
vectors that span Rn. From these measurements, the initial Algorithm NoisyCov- 
Blaschke constructs an o-symmetric convex polytope Qk that approximates ∇K0, 
the so-called Blaschke body of K0. (See Section 3 for definitions and notation.) The 
crucial property of ∇K0 is that when K0 is a convex polytope, each of its facets is 
parallel to some facet of ∇K0. It follows that the outer unit normals to the facets of 
Pk can be taken to be among those of Qk . Algorithm NoisyCovBlaschke utilizes the 
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known fact that −∂gK0 (tu)/∂t, evaluated at t = 0, equals the brightness function 
value bK0 (u), that is, the (n − 1)-dimensional volume of the orthogonal projection 
of K0  in the direction u. This connection allows most of the work to be done by 
a very efficient algorithm, Algorithm NoisyBrightLSQ, designed earlier by Gardner 
and Milanfar (see [24]) for reconstructing an o-symmetric convex body from finitely 
many noisy measurements of its brightness function. 

The second method achieves the same goal with a quite different approach. 
This time the covariogram of K0 is measured once at each point in a cubic ar- 
ray in 2Cn  = [−1, 1]n  of side length 1/k.  From these measurements, the initial 
Algorithm NoisyCovDiff(ϕ) constructs an o-symmetric convex polytope Qk that 
approximates DK0  = K0 + (−K0), the difference body of K0.  The set DK0  has 
precisely the same property as ∇K0, that when K0 is a convex polytope, each of 
its facets is parallel to some facet of DK0.  Furthermore, DK0  is just the support 

0 . The known property that gK0 
is concave (a consequence of the Brunn- 

Minkowski inequality [21, Section 11]) can therefore be combined with techniques 
from multiple regression. Algorithm NoisyCovDiff(ϕ) employs a Gasser-Müller type 
kernel estimator for gK0 , with suitable kernel function ϕ, bandwidth, and threshold 
parameter. 

The output Qk of either initial algorithm forms part of the input to the main 
common Algorithm NoisyCovLSQ. The covariogram of K0 is now measured again, 
once at each point in a cubic array in 2Cn = [−1, 1]n of side length 1/k. Using these 
measurements, Algorithm NoisyCovLSQ finds a convex polytope Pk , each of whose 
facets is parallel to some facet of Qk , whose covariogram fits best the measurements 
in the least squares sense. 

Much effort is spent in proving that these algorithms are strongly consistent. 
Whenever K0 is determined among convex bodies, up to translation and reflection 
in the origin, by its covariogram, we show that, almost surely, 

min{δ(K0, Pk ), δ(−K0, Pk )} → 0 

as k → ∞, where δ denotes Hausdorff distance. (If K0 is not so determined, a 
rare situation in view of the uniqueness results discussed above, the algorithms 
still construct a sequence (Pk ) whose accumulation points exist and have the same 
covariogram as K0.) From a theoretical point of view, this completely solves Prob- 
lem 1. Naturally, the consistency proof leans heavily on results and techniques 
from analytic convex geometry, as well as a suitable version of the Strong Law of 
Large Numbers. Some effort has been made to make the proof fairly self-contained, 
but some arguments from the proof from [24] that Algorithm NoisyBrightLSQ is 
strongly consistent are used in proving that Algorithm NoisyCovBlaschke is strongly 
consistent. One such argument rests on the Bourgain-Campi-Lindenstrauss stabil- 
ity result for projection bodies. 

With algorithms for Problem 1 in hand, we move to Problem 2, assuming that K0 

is an unknown convex body satisfying the same conditions as before. The basic idea 
2 

is simple enough: Use (1) and the measurements of |1 K0 | at points in a suitable 
cubic array to approximate gK0  via its Fourier series, and feed the resulting values 
into the algorithms for Problem 1. However, two major technical obstacles arise. 
The new estimates of gK0 are corrupted by noise that now involves dependent ran- 
dom variables, and a new deterministic error appears as well. A substitute for the 
Strong Law of Large Numbers must be proved and the deterministic error controlled 
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using Fourier analysis and the fortunate fact that gK0  is Lipschitz. In the end the 
2 

basic idea works, assuming that for suitable 1/2 < γ < 1, measurements of |1 K0 | 
are taken at the points in (1/kγ )Zn contained in the cubic window [−k1−γ , k1−γ ]n, 
whose size increases with k at a rate depending on the parameter γ. The three re- 
sulting algorithms, Algorithm NoisyMod2LSQ, Algorithm NoisyMod2Blaschke, and 
Algorithm NoisyMod2Diff(ϕ), are stated in detail and, with suitable restrictions on 
γ, proved to be strongly consistent under the same hypotheses as for Problem 1. 

Our final three algorithms, Algorithm NoisyModLSQ, Algorithm NoisyMod- 
Blaschke, and Algorithm NoisyModDiff(ϕ) cater to Problem 3.  Again there is 
a basic simple idea, namely, to take two independent measurements at each of the 
points in the same cubic array as in the previous paragraph, multiply the two, 
and feed the resulting values into the algorithms for Problem 2. No serious extra 
technical difficulties arise, and we are able to prove that the three new algorithms 
are strongly consistent under the same hypotheses as for Problem 2. This provides 
a complete theoretical solution to the Phase Retrieval Problem for characteristic 
functions of convex bodies. 

To summarize: 
• For Problem 1, first use either Algorithm NoisyCovBlaschke or Algorithm Noisy- 
CovDiff(ϕ) and then use Algorithm NoisyCovLSQ. 
• For Problem 2, first use either Algorithm NoisyMod2Blaschke or Algorithm Noisy- 
Mod2Diff(ϕ) and then use Algorithm NoisyMod2LSQ. 
• For Problem 3, first use either Algorithm NoisyModBlaschke or Algorithm Noisy- 
ModDiff(ϕ) and then use Algorithm NoisyModLSQ. 

These results can also be viewed as a contribution to the literature on the asso- 
ciated uniqueness problems. They show that if a convex body is determined, up to 
translation and reflection in the origin, by its covariogram, then it is also so deter- 
mined by its values at certain countable sets of points, even, almost surely, when 
these values are contaminated with noise. Similarly, the characteristic function of 
such a convex body is also determined, almost surely, by certain countable sets of 
noisy values of the modulus of its Fourier transform. 

Our noise model is sufficiently general to apply to all the main cases of practical 
interest: zero mean Gaussian noise, Poisson noise (unbiased measurements following 
a Poisson distribution, sometimes called shot noise), or Poisson noise plus zero mean 
Gaussian noise. However, the main text of this paper deals solely with theory. With 
the exception of Corollary 6.5 and Remark 6.6, where the method of proof leads 
naturally to rates of convergence for Algorithm NoisyCovDiff(ϕ) and hence for the 
two related algorithms for phase retrieval, the focus is entirely on strong consistency. 
Further remarks about convergence rates, sampling designs, and implementation 
issues have been relegated to the Appendix. Much remains to be done. We believe, 
however, that our algorithms will find applications. For example, Baake and Grimm 
[5] explain how the problem of finding the atomic structure of a quasicrystal from 
its X-ray diffraction image involves recovering a subset of Rn called a window from 
its covariogram and note that this window is in many cases a convex body. 

We are grateful to Jim Fienup, David Mason, and Sara van de Geer for help- 
ful correspondence and to the referees for some insightful suggestions that led to 
significant improvements. 
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2. Guide to the paper 

§3. Definitions, notation, and preliminary results. 
We recommend that the reader skip this section and refer back to it when 
necessary. 

§4. The main algorithm for reconstruction from covariograms. 
This presents the main (second stage) Algorithm NoisyCovLSQ for Prob- 
lem 1 and its strong consistency, established in Theorem 4.10. 

§5.  Approximating the Blaschke body via the covariogram. 
The first of the two first-stage algorithms for Problem 1, Algorithm Noisy- 
CovBlaschke, is stated with proof of strong consistency in Theorem 5.4. 
The latter requires the assumption that the vectors ui, i = 1 , . . .  , k, are 
part of an infinite sequence (ui) that is in a sense evenly spread out in 
Sn−1, but this is a weak restriction. 

§6.  Approximating the difference body via the covariogram. 
In this section, the second of the two first-stage algorithms for Problem 1, 
Algorithm NoisyCovDiff(ϕ), is set out and proved to be strongly consistent 
in Theorem 6.4. 

§7. Phase retrieval: Framework and technical lemmas. 
Necessary material from Fourier analysis is gathered, and the scene is set 
for results on phase retrieval. This does not depend on the previous three 
sections. 

§8.  Phase retrieval from the squared modulus. 
The algorithms for Problem 2, Algorithm NoisyMod2LSQ, Algorithm 
NoisyMod2Blaschke, and Algorithm NoisyMod2Diff(ϕ) are presented and 
strong consistency theorems for them are proved. 

§9.  Phase retrieval from the modulus. 
The corresponding algorithms for Problem 3, Algorithm NoisyModLSQ, 
Algorithm NoisyModBlaschke, and Algorithm NoisyModDiff(ϕ), are pre- 
sented and shown to be strongly consistent. 

§10. Appendix. 
Rates of convergence and implementation issues are discussed. 

3. Definitions, notation, and preliminary results 

3.1. Basic definitions and notation. As usual, Sn−1 denotes the unit sphere, 
Bn the unit ball, o the origin, and | · | the norm in Euclidean n-space Rn. It is 
assumed throughout that n ≥ 2. We shall also write Cn = [−1/2, 1/2]n throughout. 
The standard orthonormal basis for Rn will be denoted by {e1,. . . , en}. A direction 
is a unit vector, that is, an element of Sn−1. If u is a direction, then u⊥ is the 
(n − 1)-dimensional subspace orthogonal to u and lu is the line through the origin 
parallel to u. If x, y ∈ Rn, then x · y is the inner product of x and y, and [x, y] is 
the line segment with endpoints x and y. 

We denote by ∂A, int A, relint A, diam A, and 1A the boundary, interior, relative 
interior, diameter, and characteristic function of a set A, respectively. The notation 
for the usual (orthogonal) projection of A on a subspace S is A|S.   A set is o- 
symmetric if it is centrally symmetric, with center at the origin. 

If X is a metric space and ε > 0, a finite set {x1, . . . , xm} is called an ε-net in X 
if for every point x in X, there is an i ∈ {1 ,... , m} such that x is within a distance 
o of xi. 
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We write Vk for k-dimensional Lebesgue measure in Rn, where k = 1 , . . .  , n, and 
where we identify Vk with k-dimensional Hausdorff measure. If K is a k-dimensional 
convex subset of Rn, then V (K) is its volume Vk (K). Define κn = V (Bn). The 
notation dz will always mean dVk (z) for the appropriate k = 1, . . . , n. 

If E and F are sets in Rn, then 

E + F = {x + y : x ∈ E, y ∈ F} 
denotes their Minkowski sum and 

(2) E 8 F = {x ∈ Rn : F + x ⊂ E} 
their Minkowski difference. 

We adopt a standard definition of the Fourier transform f� of a function f on 
Rn, namely r 

f�(x) =  
Rn 

f (y)e−ix·y dy. 

If f and g are real-valued functions on N, then, as usual, f = O(g) means that 
there is a constant c such that |f (k)| ≤ c|g(k)| for sufficiently large k. The notation   
f ∼ g will mean that f = O(g) and g = O(f ). 

3.2. Convex geometry.  Let Kn  be the class of compact convex sets in Rn, and 
let Kn(A) be the subclass of members of Kn contained in the subset A of Rn.  A 
convex body in Rn is a compact convex set with nonempty interior. The notation 
Kn(r, R) will be used for the class of convex bodies containing rBn and contained 
in RBn, where 0 < r < R.  The treatise of Schneider [46] is an excellent general 
reference for convex geometry. 

Figures illustrating many of the following definitions can be found in [20]. 
If  K n, then 

K∗ = {x ∈ Rn : x · y ≤ 1 for all y ∈ K} 
is the polar set of K. The function 

hK (x) = max{x · y : y ∈ K}, 

for x ∈ Rn, is the support function of K and 

bK (u) = V (K|u⊥), 
for  u  ∈ Sn−1,  its  brightness  function.   Any  K n is uniquely determined by 
its support function.  We can regard hK as a function on Sn−1, since hK (x)  =   
|x|hK (x/|x|) for x /= o. The Hausdorff distance δ(K, L) between two sets K, L ∈ K  
can then be conveniently defined by 

δ(K, L) =  hK − hL ∞, 
n−1 

where  · ∞ denotes the supremum norm on S . Equivalently, one can define 
δ(K, L) = min{ε ≥ 0 : K ⊂ L + εBn, L ⊂ K + εBn}. 

The surface area measure S(K, ·) of a convex body K is defined for Borel subsets 
E of Sn−1 by 

S(K, E) = Vn−1 

(
g− (K, E)

) 
, 

where g−1(K, E) is the set of points in ∂K at which there is an outer unit normal 
vector in E.  Let S(K) = S(K, Sn−1).  Then S(K) is the surface area of K.  The 
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Blaschke body ∇K of a convex body K is the unique o-symmetric convex body 
satisfying 

1 1 
(3) S(∇K, ·) = 2 S(K, ·) + 2 S(−K, ·). 

n n 
The projection body of K ∈ K  is the o-symmetric set ΠK ∈ K  defined by 

(4) hΠK = bK . 
Cauchy’s projection formula states that for any u ∈ Sn−1, 

1 r 
(5) hΠK (u) = bK (u) = 2 
and Cauchy’s surface area formula is 

 
Sn−1 

|u · v| dS(K, v), 

(6) S(K) =  
1 

 

κn−1 

r 
 

Sn−1 
bK (u)du; 

see [20, (A.45) and (A.49), p. 408]. By (3) and (5), we have 

(7) b∇K = bK , 
and it can be shown (see [20, p. 116]) that ∇K is the unique o-symmetric convex 
body with this property. 

The difference body of K is the o-symmetric convex body DK = K + (−K). 

3.3. The covariogram. The function 

gK (x) = V (K ∩ (K + x)), 
for x ∈ Rn, is called the covariogram of K. Note that gK (o) = V (K) and that we 
have gK (x) = 0 if and only if x ∈/ int DK, so the support of gK is DK. Also, g1/n 

is concave on its support; see, for example, [26, Lemma 3.2]. 
Let K be a convex body in Rn and let u ∈ Sn−1. The (parallel) X-ray of K in 

the direction u is the function XuK defined by 
r 

 

for x ∈ u⊥. Now define 

XuK(x) =   
lu +x 

1K (y)dy, 

(8) EK (t, u) = {y ∈ u⊥ : XuK(y) > t} 
and 

(9) aK (t, u) = V 
(
EK (t, u)

)
, 

for t ≥ 0 and u ∈ Sn−1. Note that if u ∈ Sn−1, then EK (0, u) = relint (K|u⊥) and 
aK (0, u) = bK (u). 

Let x = tu, where t ≥ 0 and u ∈ Sn−1, and define gK (t, u) = gK (tu). The simple 
relationship 

 

(10) 
r ∞ 

gK (t, u) =  
t 

 
aK (s, u) ds 

was noticed by Matheron [38, p. 86] in the form 

∂gK (t, u) = a 
∂t K

 

 
(t, u), 
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which holds for all t ≥ 0 with tu /∈ ∂(DK). This also yields 
∂gK (t, u) 

 
 

∂t t=0 
= −bK (u). 

(Note that the partial derivative here is one-sided; gK is not differentiable at the 
origin.) 
Lemma 3.1. Let r > 0 and let K be a convex body with rBn ⊂ K. If 0 < t ≤ 2r, 
then 

 t   n−1 gK (o) − gK (tu) 
(11) 

for all u ∈ Sn−1. 
1 − 2r bK (u) ≤ 

t ≤ bK (u) , 

Proof. Let u ∈ Sn−1. By (10), we have 
r t 

gK (o) − gK (tu) =  
0 

 
 

aK (s, u) ds. 

From this and the fact that aK (·, u) is decreasing, we obtain 
gK (o) − gK (tu) 

(12) aK (t, u) ≤ 
The set t ≤ aK (0, u) = bK (u). 

M = conv 
(
(K|u⊥) ∪ [−ru, ru]

)
 

is generally not a subset of K, but elementary geometry using [−ru, ru] ⊂ K and 
(8) gives 

t    ( ) 
1 − 2r K|u⊥ = EM (t, u) ⊂ EK (t, u). 

Taking the (n − 1)-dimensional volumes of these sets and using (9) yields 

t   n−1 

1 − 2r bK (u) ≤ aK (t, u). 

The lemma follows from the previous inequality and (12). D 
An inequality similar to (11) was derived in [33, Theorem 1] for n = 2. 
Matheron [40, p. 2] showed that the covariogram of a convex body is a Lipschitz 

function. For the convenience of the reader, we provide a proof of this fact based 
on [19], which yields the optimal Lipschitz constant. 

Proposition 3.2. If K is a convex body in Rn and x, y ∈ Rn, then 
 
 

Proof. We have 

|gK (x) − gK (y)| ≤ max 
u∈Sn−1 

bK (u)|x − y|. 

 

This implies 
(K ∩ (K + x)) \ (K ∩ (K + y)) ⊂ (K + x) \ (K + y). 

V (K ∩ (K + x)) − V (K ∩ (K + y)) ≤ V (K \ (K + y − x)) 
= V (K) − V (K ∩ (K + y − x)). 

Equivalently,  gK (x) − gK (y)  ≤ gK (o) − gK (y − x)  = gK (o) − gK (x − y),  and 
interchanging x and y yields 

|gK (x) − gK (y)| ≤ gK (o) − gK (x − y). 
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Using this and the right-hand inequality in (11), we get   
 x − y  

 
 

|gK (x) − gK (y)| ≤ bK |x − y| |x − y|, 

and the proposition follows immediately. D 
Corollary 3.3. If K0 ⊂ Cn is a convex body, then for all x, y ∈ Rn, 

|gK0 (x) − gK0 (y)| ≤  
Proof.  Since K0 ⊂ Cn, Proposition 3.2 yields 

|gK (x) − gK (y)| ≤ max 

√
n|x − y|. 

 
bCn (u)|x − y|. 

u∈Sn−1 0 

By Cauchy’s projection formula (5), for u = (u1, u2 , . . .  , un) ∈ Sn−1 we have 
n 

bCn (u) = V
(
Cn|u⊥) 

=     |ui|, 
0 0 

i=1 

from which it is easy to see that bCn (u) ≤ √n. D 

3.4. Miscellaneous definitions.  Let μ and ν be finite nonnegative Borel mea- 
sures in Sn−1. Define 
(13) 

dP (μ, ν) = inf{ε > 0 : μ(E) ≤ ν(Eε) + ε, ν(E) ≤ μ(Eε) + ε, E Borel in Sn−1}, 
where 

Eε = {u ∈ Sn−1 : ∃v ∈ E : |u − v| < ε}. 
Then dP  is a metric called the Prohorov metric.  As Sn−1  is a Polish space, it is 
enough to take the infimum in (13) over the class of closed  sets.  In addition, if 
μ(Sn−1) = ν(Sn−1), then 
(14) dP (μ, ν) = inf{ε > 0 : μ(E) ≤ ν(Eε) + ε, E Borel in Sn−1}; 

see [17]. 
We need a condition on a sequence (ui) in Sn−1 stronger than denseness in Sn−1. 

To this end, for u ∈ Sn−1 and 0 < t ≤ 2, let 

Ct(u) = {v ∈ Sn−1 : |u − v| ≤ t} 
be the closed spherical cap with center u and radius t. We call (ui) evenly spread 
if for all 0 < t < 2, there is a constant c = c(t) > 0 and an N = N (t) such that 

|{u1,. .., uk } ∩ Ct(u)| ≥ ck, 

for all u ∈ Sn−1 and k ≥ N . Often, we will apply this notion to the symmetrization 

(u∗) = (u1, −u1, u2, −u2, u3, −u3, . . .) 
of a sequence (ui). 

Let p ≥ 1.  A family {Xα : α ∈ A} of random variables has uniformly bounded 
pth absolute moments if there is a constant C such that 
(15) E (|Xα|p) ≤ C, 
for all α ∈ A.  Of course, if p is an even integer, we can and will omit the word 
“absolute”. If 1 ≤ q ≤ p and (15) holds, then it also holds with p replaced by q and 
C replaced by Cq/p. 
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Triangular arrays of random variables of the form {Xik : i = 1, . . . , mk ; k ∈ N} 

(or, more generally, {Xαk : α ∈ Ak ; k ∈ N}) are called row-wise independent if 
for each k, the family {Xik : i = 1 , . . .  , mk } (or {Xαk : α ∈ Ak }, respectively) is 
independent. 

 
4. The main algorithm for reconstruction from covariograms 

 
We shall assume throughout that the unknown convex body K0 is contained 

in the cube Cn  = [−1/2, 1/2]n, with its centroid at the origin.  This assumption 
can be justified on both purely theoretical and purely practical grounds. If the 
measurements are exact, then from the covariogram, a convex polytope can be 
constructed that contains a translate of K0. On the other hand, in practise, an 
unknown object whose covariogram is to be measured is contained in some known 
bounded region. In either case, one may as well suppose that K0 is contained in 
0 , and since in the situations we consider, the covariogram determines K0 up to 
translation and reflection in the origin, we can also fix the centroid at the origin. 

We now state the main, second-stage algorithm. Note that it requires, as part of 
the input, an o-symmetric convex polytope that approximates either the Blaschke 
body ∇K0  or the difference body DK0  of K0.  These are provided by the first- 
stage algorithms, Algorithm NoisyCovBlaschke and Algorithm NoisyCovDiff(ϕ), 
described in Sections 5 and 6, respectively. 

The reader should be aware that here, and throughout the paper, double sub- 
scripts in expressions such as xik , Mik , Nik , etc., represent triangular arrays. Thus, 
for a fixed k, the index i varies over a finite set of integers that depends on k, and 
similarly when the first index is labeled by another letter in expressions such as zjk , 
Xpk , and so on, or is itself represented by a double index, as in Nijk . Phrases such 
as “the Nik ’s are row-wise independent” mean that the corresponding triangular 
array is row-wise independent, i.e., independent for fixed k. 

Algorithm  NoisyCovLSQ 
Input: Natural numbers n ≥ 2 and k; noisy covariogram measurements 

(16) Mik = gK0 (xik ) + Nik , 

of an unknown convex body K0 ⊂ Cn whose centroid is at the origin, at the points 
xik , i = 1 , . . .  , Ik = (2k + 1)n, in the cubic array 2Cn ∩ (1/k)Zn,  where  the  Nik ’s 
are row-wise independent zero mean random variables with uniformly bounded 
third absolute moments; an o-symmetric convex polytope Qk in Rn, stochastically 
independent of the measurements Mik , that approximates either ∇K0  or DK0, in 
the sense that, almost surely, 

(17) lim δ(∇K0, Qk ) = 0, or lim δ(DK0, Qk ) = 0. 
k→∞ k→∞ 

Task:  Construct a convex polytope Pk  that approximates K0, up to reflection 
in the origin. 

Action: 
1. Compute the outer unit normals {±uj : j = 1 , . . .  , s} to the facets of Qk . 
2. For any vector a = (a+, a−, a+, a− , . . .  , a+, a−), where a+, a− ≥ 0, j = 

1 1 2 2 s s j j 
1 , . . .  , s, such that 

),s
 (a+ − a−)uj = o, let P (a) = P (a+, a−, a+, a− , . . .  , a+, a−) 
j=1   j j 1 1 2 2 s s 

be the convex polytope with centroid at the origin, facet outer unit normals in 
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{±uj : j = 1, . . . , s} and such that the facet with normal uj (or −uj ) has (n − 1)- 
dimensional measure a+ (or a−, respectively), j = 1 , . . .  , s. j j 

Solve the following least squares problem: 
Ik 

(18) min      
(
Mik − gP (a) 

 
Cn (x )

)2 

 

i=1 
∩  0 ik 

over the variables a+, a−, a+, a− , . . .  , a+, a−, subject to the constraints 
1 1 2 2 s s 

s  
(a+ − a−)uj = o 

 
 

and 

j j 
j=1 

a+ − 

j , aj  ≥ 0, j = 1 , . . .  , s. 
These constraints guarantee that the output will correspond to a convex polytope. 

3. Let a set of optimal values be â+, â−, â+, â−, . . . , â+, â−, and call the corre- 
1 1 2 2 s s 

sponding polytope P (â). Then the output polytope Pk is the translate of P (â) ∩Cn 

that has its centroid at the origin. Note that in this case −Pk also corresponds to 
a set of optimal values obtained by switching a+ and a−, j = 1 , . . .  , s. j j 

n 
Lemma  4.1.  Let  0  <  r  <  R and  let  Q  ∈  K (r, R) be  an  o-symmetric  convex 
polytope. Then there are facets of Q with outer unit normals u1, . . . , un such that 

(19) | det(u1, . . . , un)| > (r/R)n(n−1)/2. 

Proof.  The polar body Q∗ of Q is contained in Kn(1/R, 1/r) and has its vertices 
in the directions of the outer unit normals to the facets of Q, so it suffices to prove 
that there are vertices v1, . . .  , vn  of Q∗ such that with ui = vi/|vi|, (19) holds. 

The proof will be by induction on n. Let n = 2. We may assume that Q∗ has 
a vertex, v1 say, on the positive x2-axis. Since Q∗ 2(1/R, 1/r), there must be 
another vertex v2 of Q∗ with distance at least 1/R from the x2-axis, and by the 
symmetry of Q∗, such that also v2 · e2 ≥ 0. If α is the angle between v1 and v2, we 
must then have θ ≤ α ≤ π/2, where θ is the angle between the vectors (0, 1/r) and 

1/R, 
/
(1/r2) − (1/R2) 

  
. Then, if ui = vi/|vi| for i = 1, 2, we have 

| det(u1, u2)| = sin α ≥ sin θ = r/R, 

which proves (19) for n = 2. n 
Suppose that (19) holds with n replaced by n − 1 and let Q∗ ∈ K (1/R, 1/r). 

We may assume that Q∗  has a vertex, v1  say, on the positive xn-axis, so that 
v1/|v1| = en. Since Q∗|e⊥ n−1

 (1/R, 1/r) (where we are identifying e⊥ with Rn  1), by the inductive hypothesis, there are vertices w2, . . .  , wn  of Q |en  such − ∗   ⊥ = w /|w |, i = 2 , . . .  , n, then 
that if zi i i 

(20) | det(z2, . . . , zn)| ≥ (r/R)(n−1)(n−2)/2. 

Let vi  be a vertex of Q∗  such that vi|e⊥  = wi, i = 2 , . . .  , n, and let ui  = vi/|vi|, 
i = 1 , . . .  , n.  By the symmetry of Q∗, we may also assume that vi · en  ≥ 0 for 
i = 2 , . . .  , n.  Let αi be the angle between vi and wi, for i = 2, . . . , n. Using the 
fact that Q∗|e⊥ n−1

 (1/R, 1/r), we see that each vi, i = 2 , . . .  , n, has distance at 
least 1/R from the xn-axis. Therefore cos αi ≥ sin θ = r/R for i = 2 , . . .  , n. Then, 
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using (20) and noting that u1 = en and ui = ui|e⊥ + (ui · en)en for i = 2 , . . .  , n, we 
obtain 

| det(u1, . . . , un)| = | det(u2|e⊥, . . . , un|e⊥)| 
n n 

n 

= | det(z2, . . . , zn)| 
n 

cos αi 
i=2 

≥ (r/R)(n−1)(n−2)/2(r/R)n−1 = (r/R)n(n−1)/2. D 

Lemma 4.2.  Let K n(r, R), let 0 < ε  < κn  1r 
body containing the origin in Rn such that 

n−1 /2, and let L be a convex 

(21) dP (S(K, ·), S(L, ·)) < ε. 

Then there is a constant a1  depending only on ε, r, and R such that L ⊂ a1Bn.  If 
L is o-symmetric, there is also a constant a0 > 0 depending only on ε, r, and R 
such that a0Bn ⊂ L. 

Proof. Using (4) and (5), we obtain 

(22) |hΠK (u) − hΠL(u)| = |bK (u) − bL(u)| ≤ dD (S(K, ·), S(L, ·)). 
Here dD is the Dudley metric, defined by 

( r 
dD (μ, ν) = sup  

Sn−1 

f d(μ − ν)  :  f BL ≤ 1   , 
  

where for any real-valued function f on Sn−1 we define 
 f (u) − f (v)| 

 f L = sup | 
u/=v 

|u − v| and f BL =  f ∞ +  f L. 

(Note that for any u ∈ Sn−1,  the function f (v)  = |u · v|/2,  v  ∈ Sn−1  satisfies 
 f BL = 1.) By [17, Corollary 2], we have the relation 

(23) dD (μ, ν) ≤ 2dP (μ, ν), 
for finite nonnegative Borel measures μ and ν in Sn−1.  Now (22), (23), and (21) 
yield 

|hΠK (u) − hΠL(u)| ≤ 2dP (S(K, ·), S(L, ·)) < 2ε, 
for each u ∈ Sn−1. 

Since  K  ∈ Kn(r, R),  we  have  ΠK  ∈ Kn (κn 
1rn−1, κn  1

 Rn−1
)
,  so  ΠL  ∈ 

K (κn−1r n−1 — 2ε, κn−1R n−1 + 2ε).  Now exactly the same argument as in the 
proof of Lemma 4.2 of [25], beginning with formula (16) in that paper, yields the 
existence of a1 and a0. (The assumption of o-symmetry made in [25] is only needed 
for the latter. Explicit values for a0 and a1 can be given in terms of ε, r, and R, 
but we do not need them here.) D 

Lemma 4.3. Let K be a convex body in Rn. Then there is an ε0 > 0 such that for 
all 0 < ε < ε0, if Q is an o-symmetric convex polytope in Rn such that either 
(24) dP (S(∇K, ·), S(Q, ·)) < ε  

or 

(25) dP (S(DK, ·), S(Q, ·)) < ε, 
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then there is a constant c1 > 0 depending only on K and a convex polytope J whose 
facets are each parallel to some facet of Q, such that 

(26) dP (S(K, ·), S(J, ·)) < c1ε. 
Proof. We choose ε0 > 0 so that Lemma 4.2 holds when ε is replaced by ε0 and K 
is replaced by either ∇K or DK, as appropriate. Let 0 < ε < ε0. 

Let ±u1, . . .  , ±us  be the outer unit normals to the facets of Q and for i = 
s + 1 , . . .  , 2s, let ui = −ui−s. Set I = {1 ,. . .  , 2s}. 

Suppose that (24) holds.  By (13), S(∇K, E) < S(Q, Eε) + ε for each Borel 
subset E of Sn−1. If Eε ∩ 

J
 

S(∇K, E) < ε and so by (3), 
{ui} = ∅, we have S(Q, Eε) = 0. This implies that 

(27) S(K, E) < 2ε. 

If instead (25) holds, then (13) implies that S(DK, E) < S(Q, Eε) + ε for each 
Borel subset E of Sn−1. Then, if Eε ∩ 

J
i 

[46, (5.1.17), p. 275], 
∈I {ui} = ∅, we have S(DK, E) < ε. By 

n−1    n − 1  
S(DK, E) = S(K + (−K), E) = S(K, E) + 

 
 

j=1 j S(K, n − 1 − j; −K, j, E), 

where S(K, n−1−j; −K, j, ·) denotes the mixed area measure of n−1−j copies of K 
and j copies of −K. Since all these terms are nonnegative, we obtain S(K, E) < ε  
and so (27) holds again. 

For i ∈ I, let 

Vi = {u ∈ Sn−1 : |u − ui| ≤ |u − uj | for each j ∈ I, j /= i} 
be the Voronoi cell in Sn−1 containing ui. Choose Borel sets Wi such that relint Vi ⊂ 
Wi ⊂ Vi for each i and Wi ∩Wj = ∅ for i /= j, so that {Wi : i ∈ I} forms a 
partition of Sn−1. 

Let ai = S(K, Wi) and let w = 
),

i∈I aiui. Since S(K, ·) is balanced, i.e., 
r 

 
we have 

 
Sn−1 

u dS(K, u) = o, 
 

r r 
w =     aiui = ui dS(K, u) −  

n−1 
u dS(K, u) 

i∈I 
i∈I 

= 
r 

Wi 

(ui − 

S 
 
u) dS(K, u). 

i∈I   Wi 

For each u ∈ Sn−1  and t > 0, let Ct(u) = {v  ∈ Sn−1  : |u − v| ≤ t}.   Let 

W = 
J

i∈I (Wi \Cε(ui)). Then ui /∈ Wε for i ∈ I, so (27) implies that S(K, W ) < 2ε. 
Using this, we obtain 

|w|  = 

      
    
i∈I 

  r 

 
Wi∩Cε (ui ) 

(ui − u) dS(K, u) + 
 

 
i∈I 

r 

    
  

Wi\Cε (ui ) 
 
 

≤ 
i∈I 

Wi∩Cε (ui ) 
|ui − u| dS(K, u) + 2 dS(K, u) 

W 

(28) <   εS(K, Sn−1) + 4ε = (S(K) + 4)ε. 

  r r 
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Since Q is o-symmetric, we can apply Lemma 4.2 (with K and L replaced by ∇K 
(or DK) and Q, respectively) and Lemma 4.1 to conclude that there exist outer 
unit normals ui1 , . . . , uin  to facets of Q such that | det(ui1 , . . . , uin )| > c2, where c2 

n 
depends only on K. In particular, ui1 , . . . , uin  form a basis for R 
real numbers bi1 , . . . , bin   such that 

, so there exist 

n 
−w =     bi ui . 

j  j 
j=1 

Replacing uij by −uij , if necessary, we may assume that bij > 0 for j = 1 , . . .  , n. 
By Cramer’s rule, we obtain bij ≤ |w|/| det(ui1 , . . . , uin )| < |w|/c2, for j = 1 , . . .  , n. 
Define bi = 0 for each i ∈ I such that i /∈ { i1, . ..  , in}. Then, by (28), 

(29) bi ≤ n|w|/c2 < c3ε, 
i∈I 

where c3 depends only on K. 
Let 

μ0 =     aiδu 

i∈I 

and μ1 =     biδu , 
i∈I 

and let μ = μ0 + μ1. Then the support of μ is not contained in a great sphere, and 
since 

u dμ(u) =     (ai + bi)ui = w − w = o, 
Sn−1 i∈I 

μ is balanced. By Minkowski’s existence theorem [20, Theorem A.3.2], there is a 
convex polytope J such that S(J, ·) = μ. By its definition, each facet of J is parallel 
to a facet of Q. 

It remains to prove (26). Using (29), we obtain 
dP (S(J, ·), S(K, ·))  =  dP (μ0 + μ1, S(K, ·)) ≤ dP (μ0 + μ1, μ0) + dP (μ0, S(K, ·)) 

=  dP (μ1, 0) + dP (μ0, S(K, ·)) < c3ε + dP (μ0, S(K, ·)), 
where 0 is the zero measure in Sn−1. In view of μ0(Sn−1) = S(K, Sn−1) and (14), 
it is therefore enough to find a constant c4, depending only on K, such that 
(30) μ0(E) < S(K, Ec4ε) + c4ε, 
for any Borel set E in Sn−1. Let X = 

J
{Wi : ui ∈ E} \ Eε. We have 

S(K, Eε)   ≥  S 
(
K, Eε ∩ (

I 
Wi : ui ∈ E})

 
 

(31) =        {S(K, Wi) : ui ∈ E} − S(K, X) = μ0(E) − S(K, X). 

If x ∈ X, then for some i with ui ∈ E we have x ∈ Wi, and so |x − ui| ≥ ε since 
x /∈ Eε. Moreover, if j /= i, then |uj − x| ≥ |ui − x| ≥ ε. Hence 

J
 {ui} ∩ Xε = ∅, 

and by (27), we have S(K, X) < 2ε. Now (31) implies that (30) holds with c4 = 
2. D 

For a fixed finite set z1, . . . , zq of points in Rn, define a pseudonorm | · |q by 

/ 
1  q \1/2 

(32) |f|q = 
    
q 

i=1 

f (zi)2 , 

i 
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where f is any real-valued function on Rn. For a convex body K contained in Cn, 
vector zq = (z1, . . . , zq ) of the points z1, . . . , zq in Rn, and vector Xq = (X1 , . . . ,  Xq ) 
of random variables X1 , . . .  , Xq , let 

q 

(33) Ψ(K, z , X ) = 
1   

q q q 
i=1 

 

gK (zi)Xi. 

Lemma 4.4.  Let k ∈ N and let K0  ⊂ Cn  be a convex body with its centroid at is an output from Algorithm NoisyCovLSQ as stated 
the  origin.   Suppose  that  Pk 

above.  Let P (a) be any convex polytope admissible for the minimization problem 
(18). Then 
(34) 

2 n 2 |gK0 − gPk |Ik  
≤ 2Ψ(Pk , xIk , NIk ) − 2Ψ(P (a) ∩ C0 , xIk , NIk ) + gK0 − gP (a)∩Cn , 

0  Ik 

where for each k ∈ N, | · |Ik  and Ψ(K, xIk , NIk ) are defined by (32) and (33), 
respectively, with q = Ik , xIk  = (x1k , . . . , xIk k ), and NIk  = (N1k , . . . , NIk k ). 
Proof. If P (â) ∩ Cn is a solution of (18), then since gP = gP (â) Cn , we obtain 

0 
 

Ik Ik 

k ∩  0 

  
(Mik − gP  (xik ))2 ≤     

(
Mik − gP (a) Cn (xik )

) 
. 

i=1 
k ∩  0 

i=1 

Substituting for Mik from (16) and rearranging, we obtain 
Ik Ik Ik   

(gK  (xik ) − gP  (xik ))2 ≤  2      gP  (xik )Nik − 2      gP (a) Cn (xik )Nik 
0 k 

i=1 
k 

i=1 

Ik 

∩  0 

i=1 

+     
(
gK (xik ) − gP (a) Cn (xik )

) 
. 

0 ∩  0 

i=1 

In view of (32) and (33), this is the required inequality. D 

Let K be any convex body in Rn and let ε > 0. The inner parallel body K 8 εBn 

is the Minkowski difference of K and εBn as defined in (2). Then 

K 8 εBn =   
(]

 
y∈εBn 

(K − y), 

so the inner parallel body is convex. (It may be empty.) For further properties, see 
[46, pp. 133–137]. The following proposition is an immediate consequence of the 
fact that if K is a convex body in Rn, then 
(35) V (K) − V (K 8 εBn) < S(K)ε. 

This follows directly from either an inequality of Sangwine-Yager or one of Bran- 
nen; see Theorem 1 or Corollary 2 of [13], respectively. The estimate (35) both 
generalizes and strengthens [23, Lemma 4.2], which concerns the case n = 2. The 
authors of the latter paper were unaware that an even stronger estimate for n = 2 
was found earlier by Matheron [39]. 

Proposition 4.5. If K ⊂ Cn is a convex body and ε > 0, then 

V (K) − V (K 8 εBn) < 2nε. 
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Let G be the class of all nonnegative functions g on Rn with support in 2Cn 

that are the covariogram of some convex body contained in Cn, together with the 
function on Rn  that is identically zero.  Note that for each g ∈  G and x ∈ Rn, 
g(x) ≤ gCn (x) ≤ V (Cn) = 1. 

0 0 

Lemma 4.6. Let 0 < ε  < 1 be given.  Then there is a finite set {(gL, gU )  : j = 

of pairs of functions in G 
j j 

such that 
(i) gU − gL  

1 ≤ ε for j = 1 , . . .  ,m and 
j j U (ii) for each g ∈ G, there is a j ∈ {1 ,. .. ,  m} such that gL ≤ g ≤ g  . 

j j 

Proof. Let 0 < ε < 1 and let c5 = c5(n) ≥ 1 be a constant, to be chosen later. Since 
Kn(Cn) with the Hausdorff metric is compact, there is an ε/c5-net {K1,...  , Km} 
in Kn(Cn). For each j = 1 , . . .  , m, let KU = (Kj + (ε/c5)Bn) ∩ Cn and KL = 

0 j 0 j n U L U L 
Kj 8 (ε/c5)B .  Define gj   = gKU and gj  = gKL , j = 1 , . . .  , m. Both gj  and gj 

belong to G, j = 1 , . . .  , m. n n 
We first prove (ii). Let g ∈ G. There is a K ∈ K (C0 ) such that g = gK . Choose 

j ∈ {1 , . . .  , m} such that δ(K, Kj ) ≤ ε/c5. Since K ⊂ Cn and K ⊂ Kj + (ε/c5)Bn, 
we have K ⊂ (Kj + (ε/c5)Bn) ∩ Cn = KU . Also, we have 

 
yielding KL 

(Kj 8 (ε/c5)Bn) + (ε/c5)Bn ⊂ Kj ⊂ K + (ε/c5)Bn, 

= Kj 8 (ε/c5)Bn  ⊂ K.  These facts imply that gL 

 
≤ g ≤ gU , as 

required. 
It remains to prove (i). It is easy to prove (see, for example, [46, p. 411]) that 

for any convex body L in Rn, 
r 

gL(x) dx = V (L)2. 
DL 

Applying this, Steiner’s formula with quermassintegrals (see [20, (A.30), p. 404], 
basic properties of mixed volumes (see [20, (A.16) and (A.18), p. 399]) together 
with Kj ⊂ Cn ⊂ (n/4)1/2Bn and c5 ≥ 1, and Proposition 4.5 with ε replaced by , we obtain 
ε/c5 

 gU − gL  
1 j j 

= 
r (

gU (x) gL(x)
) 

dx = V 
(
KU )2

 — V 
(
KL) ≤ 2 

(
V 

(
KU ) − V 

(
KL)) 

j j j j 
2Cn 

         
n 

j j 

    
n 

≤ 2 V Kj + B 
5 

— V (Kj ) +  V (Kj ) − V Kj 8 B 
5 

/ n      
n

   ( n  (n−i)/2 \   
ε 
  

≤ 2   κn
 

i i=1 

+ 2n < ε, 
c5 

provided that c5 is chosen sufficiently large. D 
By analogy with [48, Definition 2.2], we refer to a finite set {(gL, gU )  : j = 

j j 
1 , . . .  , m} of pairs of functions in G satisfying (i) and (ii) of Lemma 4.6 as an ε-net 
with bracketing for the class G. 

The following proposition is a version of the strong law of large numbers that 
applies to a triangular family, rather than a sequence, of random variables. A 
version with the assumptions of full independence and uniformly bounded fourth 
moments is proved in detail in [23, Lemma 4.4], with mk = k. The stronger 
statement below follows directly from [30, Corollary 1] (with p =  1 and n = mk 

4 
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there); in fact, it is enough to assume the uniform boundedness of pth absolute 
moments where p = 2 + ε for some ε > 0, but we prefer to avoid this extra 
parameter in the sequel. 
Proposition 4.7. Let Xik , k ∈ N, i = 1, . . . , mk , where mk ≥ k, be a triangu- 
lar array of row-wise independent zero mean random variables. If the array has 
uniformly bounded third absolute moments, then, almost surely, 

1   mk 

(36) 
    

Xik  → 0 
k 

as k → ∞. 
i=1 

Lemma 4.8. For every k ∈ N, let xik , i = 1 , . . .  , Ik , be the points in the cubic array 
2Cn ∩ (1/k)Zn.  Let Nik , k ∈ N, i = 1 , . . .  , Ik , be row-wise independent zero mean 
random variables with uniformly bounded third absolute moments.  Then, almost 
surely, 

sup 
K∈Kn (Cn ) 

Ψ(K, xIk , NIk ) → 0 

as k → ∞, where for each k ∈ N, Ψ(K, xIk , NIk ) is defined by  (33) with q = Ik , 
xIk  = (x1k , . . . , xIk k ), and NIk  = (N1k , . . . , NIk k ). 
Proof. Let 0 < ε < 1 and let {(gL, gU ) : j = 1 , . . .  , m} be an ε-net with bracketing 

j j n n 
, as provided by Lemma 4.6. Let K ∈ K (C0 ) and let g = gK ∈ G. Choose 

j ∈ {1 , . . . ,  m} such that gL  ≤ g ≤ gU .  Define N + = max{Nik , 0} and N− = 
j j ik ik 

N + 

ik − Nik for k ∈ N and i = 1 , . . .  , Ik . Then for k ∈ N, we have 

1  Ik 1  Ik 

Ψ(K, xIk , NIk )   =       
I 

i=1 

g(x  )N +  
 

ik I 
  

k i=1 

g(xik )N− 

Ik   
gU (x 

I 
)N + − 1       gL(x )N− 

≤ Ik
 

j 
i=1 

ik ik 
 

 

I j 
i=1 

ik ik 

 
where 

≤  Wk (ε), 

 
(37) Wk (ε) =   max 

( 
1  Ik

   
gU (xik )N + − 

Ik   
gL(xik )N− 

j=1,...,m I j 
i=1 

ik Ik
 

j ik 
i=1 

is independent of K. Consequently, 
(38) sup 

K∈Kn (Cn ) 

Ψ(K, xIk , NIk ) ≤ Wk (ε), 

for all 0 < ε < 1. 
Fix j ∈ {1 , . . .  , m}, and let 

Xik = gU (xik )N + − gU (xik )E(N +), 
j ik j ik 

for k ∈ N and i = 1 , . . .  , Ik . Since gU (xik ) ≤ 1, it is easy to check that the random 
variables Xik satisfy the hypotheses of Proposition 4.7. By (36) with mk = Ik , we 
obtain, almost surely, 

1 lim sup 

 

Ik   
gU (xik )N + = lim sup 

 

Ik   
gU (xik )E(N +). 

k→∞ I j 
i=1 

ik 
k→∞ I j ik 

i=1 

k 

1 

1 
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The same argument, with limits superior replaced by limits inferior, applies when 
Xik is defined by Xik = gL(xik )N− − gL(xik )E(N−). Our moment assumption on 

j ik j ik 
the random variables Nik implies that there is a constant C such that 

E(N +) = E(N−) = 
1 

E(|N |) ≤ C. 
ik ik 2 ik 

Also, by Lemma 4.6(i) we have   gU − gL  
1  ≤ ε and by Lemma 4.6(ii) we may 

j j assume that gU − gL ≥ 0, for i = 1 , . . .  , m. Therefore, almost surely, 
j j 

lim sup Wk (ε) 
k→∞ 

( 
 

1  Ik 

 
 

1  Ik        
U

 +  L − 
max 

=1,...,m 
lim sup 

k→∞ I 
i=1 

gj (xik )E(Nik) − lim inf 
k→∞ I 

i=1 

gj (xik )E(Nik ) 

( / 
1  Ik

 

1  Ik 
\  

max C 
=1,...,m 

lim sup 
k→∞ 

      
I 

i=1 

gU (xik ) − lim inf 
→∞ 

      
I 

i=1 

gL(xik ) 
( 

C  
r ( U L ) Cε  

max 
=1,...,m 2n   

2Cn 
gj (x) − gj (x)   dx ≤ 2n . 

This and (38) complete the proof. D 

Lemma 4.9. Let K0 ⊂ Cn be a convex body with its centroid at the origin. Suppose 
that Pk 

surely, 
is an output from Algorithm NoisyCovLSQ as stated above.  Then, almost 

(39) lim |gK0 − gPk |Ik  
= 0. 

k→∞ 

Proof. Let Qk be the o-symmetric polytope from the input of Algorithm Noisy- 
CovLSQ that satisfies, almost surely, (17). Fix a realization for which (17) holds. 
We may assume that 

lim δ(∇K0, Qk ) = 0, 
k→∞ 

as the other case is completely analogous. By [46, Theorem 4.2.1], S(Qk , ·) con- 
verges weakly to S(∇K0, ·) as k → ∞. By [10, Theorem 6.8], weak convergence 
is equivalent to convergence in the Prohorov metric, so S(Qk , ·) converges in the 
Prohorov metric to S(∇K0, ·) as k → ∞. Now Lemma 4.3 ensures that if Jk is 
the convex polytope corresponding to Qk in that lemma, then S(Jk , ·) converges 
in the Prohorov metric to S(K0, ·) as k → ∞.  We may assume that the centroid 
of Jk is at the origin for each k. By Lemma 4.2 (with K and L replaced by K0 
and Jk , respectively), there are constants a1 and k0 ∈ N, depending only on K0, 
such that Jk ⊂ a1Bn for all k ≥ k0.  By Blaschke’s selection theorem and the fact 
that a convex body is determined up to translation by its surface area measure, 
the sequence (Jk ) has an accumulation point and every such accumulation point 
must be a translate of K0.  But Jk  and K0  have their centroids at the origin and 
K0 ⊂ Cn, so 

lim δ(K0, Jk ∩ Cn) = lim δ(K0, Jk ) = 0. 
k→∞ k→∞ 

(This consequence of the fact that dP (S(K0, ·), S(Jk, ·)) → 0 as k → ∞ can also 
be derived from a stability estimate of Hug and Schneider [31, Theorem 3.1], but 

≤ 
j
 k k 

≤ 
j
 k k 

≤ 
j
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we do not need the full force of that result here.) It follows from the continuity of 
volume that   gK0  − gJk∩Cn    ∞ → 0 as k → ∞ and hence that 
(40) lim  gK — gJ  ∩Cn 

 
 = 0. 

k→∞
 

0
 k 0  Ik 

Next, we observe that Jk can serve as the P (a) in Lemma 4.4. By its definition, 
a translate of Pk is contained in Cn, and the quantity Ψ(Pk , xI , NI ) is unaffected 0 k k 

by this translation. From Lemma 4.8 we obtain 
n 

(41) lim Ψ(Pk , xIk , NIk ) = 0   and lim  Ψ(Jk ∩ C0 , xIk , NIk ) = 0. 
k→∞ k→∞ 

Now (39) follows directly from (34) (with P (a) replaced by Jk ), (40), and (41).   D 

Theorem 4.10.  Suppose that K0  ⊂ Cn  is a convex body with its centroid at the 
origin. Suppose also that K0 is determined, up to translation and reflection in the 
origin, among all convex bodies in Rn, by its covariogram.  If Pk , k ∈ N, is an 
output from Algorithm NoisyCovLSQ as stated above, then, almost surely, 

(42) min{δ(K0, Pk ), δ(−K0, Pk )} → 0 

as k → ∞. 

Proof.  By Lemma 4.9, almost surely, 

(43) |gK0  − gPk |Ik  
→ 0, 

as k → ∞.  Fix a realization for which this statement holds.  For each k, Pk  has 
its centroid at the origin and is a translate of a subset of Cn, so Pk ⊂ 2Cn and by 

0 0 

Blaschke’s selection theorem, (Pk ) has an accumulation point, L, say. Note that L 
must also have its centroid at the origin and be a translate of a subset of Cn. 

Let (Pkt ) be a subsequence converging to L.  Then since gK0  − gPkt   converges 
uniformly to gK0 − gL as kl → ∞, we have 

 2 1 
r

 2 

 gK0 − gPkt  I → 2n 2Cn 
(gK0 (x) − gL(x)) dx, 

as kl → ∞. From this and (43), we obtain  gK0 − gL L2 (2Cn = 0, and hence, since 
covariograms are clearly continuous, gK   = gL  on 2Cn.  As the supports of gK 

and gL are contained in 2Cn, we have gK = gL in Rn. The hypothesis on K0 now 
implies that L = ±K0. Since L was an arbitrary accumulation point of (Pk ), we 
obtain (42). D 

 
5.  Approximating the Blaschke body via the covariogram 

Algorithm  NoisyCovBlaschke 

Input:  Natural numbers n ≥ 2 and k; mutually nonparallel vectors ui ∈ Sn−1, 
i = 1 , . . .  , k, that span Rn; noisy covariogram measurements 

M (1) (1) (2) (2) 

ijk = gK0 (o) + Nijk and   Mijk = gK0 ((1/k)ui) + Nijk , 
for i = 1 , . . .  ,k and j = 1 , . . .  , k2, of an unknown convex body K0 ⊂ Cn whose cen- 
troid is at the origin, where the N (m)’s are row-wise independent (i.e., independent 
for fixed k) zero mean random variables with uniformly bounded sixth moments. 

kt 
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Task:   Construct an o-symmetric convex polytope Qk  that approximates the 
Blaschke body ∇K0. 

Action: 
1. For i = 1 , . . .  ,k and j = 1 , . . .  , k2, let 

k2 1       
(1) (2) 

yik = k2
 
 
j=1 

k(Mijk − Mijk ). 

2. With the natural numbers n ≥ 2 and k and vectors ui ∈ Sn−1, i = 1 , . . .  , k, 
use the sample means yik instead of noisy measurements of the brightness function 
bK (ui) as input to Algorithm NoisyBrightLSQ (see [24, p. 1352]). The output of 
the latter algorithm is Qk . 

For a fixed finite set u1, . . .  , uq of points in Sn−1, define a pseudonorm | · |q by 

/ 
1  q \1/2 

(44) |f|q = 
    
q 

i=1 

f (ui)2 , 

where f is any real-valued function on Sn−1. For a convex body K contained in Cn, 
a sequence (ui) in Sn−1, and a vector Xk = (X1k , . . . , Xkk ) of random variables, 
let 

1   k 
Ψ(K, (ui), Xk ) =  

   
 

k 
i=1 

bK (ui)Xik . 

The same set of notation was used for a technically different pseudonorm and 
function Ψ in the previous section, but this should cause no confusion. 

 
Lemma 5.1.  Let K0  be a convex body in Rn with centroid at the origin and such 
that rBn  ⊂ K0  ⊂ Cn  for some r  > 0.  Let (ui) be a sequence in Sn−1.  If Qk  is 
an output from Algorithm NoisyCovBlaschke as stated above, then, almost surely, 
there is a constant c6 = c6(n, r) such that 

2 c6 

(45) |bK0  − bQk |k ≤ 2Ψ(Qk , (ui), Xk ) − 2Ψ(K0, (ui), Xk ) +  k |bK0  − bQk |k , 

for all k ∈ N. Here Xk = (X1k , . . . , Xkk), with 
2 

1  k     
(1) (2) 

 
 

for i = 1 , . . .  , k. 

Xik = k  j=1 
(Nijk − Nijk ), 

Proof. For i = 1 , . . .  , k, we have 

gK0 (o) − gK0 ((1/k)ui) 

 
 

k2   
(1) 

 

 

 
(2) 

yik = + 
1/k k  j=1 

(Nijk − Nijk ) = μik + Xik , 

say, where the Xik ’s are row-wise independent zero mean random variables. Note 
that the yik ’s are also row-wise independent. Furthermore, by Khinchine’s inequal- 
ity (see, for example, [29, (4.32.1), p. 307] with α = 6), there is a constant C such 
that 

k2 

E 
( )    6  

, 
|Xik |6    ≤ E    N (1) − N (2)  

k2 
j=1 

ijk ijk   

1 
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from which we see that the Xik ’s also have uniformly bounded sixth moments. By 
Lemma 3.1, 

lim μik = bK0 (ui). 
k→∞ 

In fact, the convergence is uniform. This is because for each u ∈ Sn−1, we have 
(n−1)/2 

 
and 
(46) 

bK0 (u) ≤ bCn (u) ≤ b(
√n/2)Bn (u) = (n/4) κn−1 

/ 
1    n−1

\ n − 1 
0 ≤ bK0 (u) − μik ≤ 1 −  1 − 2rk bK0 (u) ≤ b (u), k 1/(2r), 

2rk 

by Lemma 3.1, so there is a constant c7 = c7(n, r) such that 
c7 

(47) 0 ≤ bK0 (ui) − μik ≤ k , 

for all k ∈ N and i = 1, . . . , k. 
By the formulation of Algorithms NoisyCovBlaschke and NoisyBrightLSQ (see 

[24, p. 1352] and take [24, Proposition 2.1] into account), Qk minimizes 
k 

(48) 
  

(bK (ui) − yik )2
 

i=1 

over the class of all o-symmetric convex bodies K in Rn. By (7), for each convex 
body there is an o-symmetric convex body with the same brightness function. From 
this it follows that Qk is actually a minimizer over the class of all convex bodies K 
in Rn. Substituting K = Qk and K = K0 in (48), we obtain 

k k   
(bQ  (ui) − μik − Xik )2 ≤     (bK  (ui) − μik − Xik )2 . 

k 
i=1 

0 
i=1 

Rearranging and using (44), we obtain 
k 

2 
  

|bK0 − bQk |k ≤ k  
i=1 

(bQk (ui) − bK0 (ui)) (Xik − (bK0 (ui) − μik )). 

The definition of Ψ and the Cauchy-Schwarz inequality yield 

|bK0 − bQk |k ≤ 2Ψ(Qk , (ui), Xk ) − 2Ψ(K0, (ui), Xk ) 
/ 

1  k \1/2 

+ 2|bK0 − bQk |k 
    
k 

i=1 

(bK0 (ui) − μik ) . 

In view of (47), this proves (45) with c6 = 2c7. D 
 

Lemma  5.2.  Suppose  that  the  assumptions  of  Lemma  5.1 are  satisfied  with  a 
sequence (ui) such that (u∗) is evenly spread.   Let C  be a uniform upper bound 
for  the  second  moments  of  the  Xik’s.   Then,  almost  surely,  there  are  constants 
c8 = c8(C, n, r, (ui)) and N1 = N1((Xik), (ui)) such that 

(49) S(Qk ) ≤ c8, 

for all k ≥ N1. 
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Proof.  By the Cauchy-Schwarz inequality, 
/ 

1  k \1/2 

Ψ(Qk , (ui), Xk ) − Ψ(K0, (ui), Xk ) ≤ |bK0 − bQk |k 

 
This and (45) imply that 

     
2 . k ik 

i=1 

/ 
1  k \1/2 

c
 

|bK0 − bQk |k ≤ 2     
2

 

k ik 
i=1 

+  6 , k 

for all k ∈ N. Since the Xik ’s have uniformly bounded sixth moments, we can apply 
Proposition 4.7 with mk and Xik replaced by k and X2

 — E 
(
X2 

)
, respectively, 

to conclude that the first term on the right-hand side is bounded, almost surely. 
Thus, almost surely, there are constants c9 = c9(C, n, r) and N2 = N2((Xik), (ui)) 
such that 

(50) |bK0 − bQk |k ≤ c9, 
for all k ≥ N2.  As (u∗) is evenly spread, we can apply [24, Lemma 7.1] with K 
and L replaced by ΠK0  and ΠQk , respectively.  Using this, the fact that ΠK0  ⊂ 
ΠCn = 2Cn ⊂ √nBn (see [20, p. 145]), and (4), we find that there are constants 

0 c10 0 

10 i 
 

3 3 i 

= c   ((u )) and N = N ((u )) such that 
√  

(51) bQk  ≤ c10|bK0 − bQk |k + 2   n, 

for k ≥ N3. Finally, (49) follows directly from (50), (51), and (6). D 

Lemma  5.3.  Suppose  that  the  assumptions  of  Lemma  5.1 are  satisfied  with  a 
sequence (ui) such that (u∗) is evenly spread. Then, almost surely, 
(52) lim |bK0 − bQk |k = 0. 

k→∞ 

Proof. Choose a constant C1 such that E 
( 

Xik |2
) 

≤ C1 for all i and k. Due to (45) 
and (50), there is, almost surely, a constant c11 = c11(C1, n, r) such that 

2 c11 

(53) |bK0  − bQk |k  ≤ 2Ψ(Qk , (ui), Xk ) − 2Ψ(K0, (ui), Xk ) +   k  , 
for all k ≥ N2. By Proposition 4.7 with mk = k and Xik replaced by bK0 (ui)Xik , 
the variable Ψ(K0, (ui), Xk ) converges to zero, almost surely, as k → ∞. 

n 
For m ∈ N, let Hm = {K ∈ K  

almost surely, 
: S(K) ≤ m}. If we can show that for all m ∈ N, 

(54) lim sup |Ψ(K, (ui), Xk )| = 0, 
k→∞ K∈Hm 

then by (49), almost surely, 
lim Ψ(Qk , (ui), Xk ) = 0. 

k→∞ 

This and (53) will yield (52), completing the proof. 
To prove (54), note first that by (5), we have 

k k   1  1 
r 

|Ψ(K, (ui), Xk )| =     
  1     |ui · v|Xik   dS(K, v). 

  k 
i=1 2  Sn−1   k i=1
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Since S(K) = S(K, Sn−1) ≤ m for K ∈ Hm, it is enough to prove that, almost 
surely, 

k 

(55) lim sup 
  1     |ui · v|X ik  = 0. 

k→∞ v∈Sn−1  k i=1 

This follows essentially from the uniform continuity of the function |ui ·v|, v ∈ Sn−1, 
and the fact that Sn−1 is compact. Indeed, suppose that (55) does not hold almost 
surely. Choose a constant C2  such that E(|Xik|) ≤ C2  for all i and k. Then there 
is a δ > 0 such that 

 
(56) lim sup 

 
sup 1   k 

|ui · v|Xik  > δC2 

k→∞ v∈Sn−1 k i=1
 

with positive probability. Let {w1,..., wm} be a δ/2-net in Sn−1. For any realiza- 
tion and any k ∈ N, there is a vk ∈ Sn−1 such that 

1   k 1   k 
(57) |ui · vk |Xik =   sup |ui · v|Xik . 

k 
i=1 v∈Sn−1 k i=1 

Let Aj  denote the set of all events such that an accumulation point of (vk ) has 
distance  at  most  δ/2 from  wj ,  j = 1, . . . , m.   For  a  realization in  Aj  and  any 
subsequence (kl) of (k) such that |vkt − wj | ≤ δ holds for sufficiently large k, we 
have, almost surely, 

  
kt

   
1
 

1   k
t 

1   k
t 

lim sup 
   

 |ui · vkt |Xikt − |ui · wj |Xikt    ≤ δ lim sup |Xikt | ≤ δC2, 
kt →∞ 

  kl 
  i=1 kl 

i=1 kt →∞ kl 
i=1 

by Proposition 4.7 with mk and Xik replaced by kl and |Xikt | − E(|Xikt |), respec- 
tively.   But Proposition 4.7,  with mk  and Xik  replaced by kl  and |ui · wj |Xikt , 
respectively, also implies that, almost surely, the second term on the left-hand side 
converges to zero, as kl → ∞. In view of (57), this yields 

 
lim sup 

 
sup 1   k

t 

|ui · v|Xikt  ≤ δC2, 
kt →∞ v∈Sn−1 kl 

i=1
 

for almost all events in Aj . As any sequence in Sn−1 has at least one accumulation 
point, the latter inequality holds, almost surely, contradicting (56). D  
Theorem  5.4.  Let  K0  ⊂ Cn  be  a  convex  body  with  its  centroid  at  the  origin.  Let 
(ui) be a sequence in Sn−1 such that (u∗) is evenly spread. If Qk is an output from 
Algorithm NoisyCovBlaschke as stated above, then, almost surely, 
(58) lim δ(∇K0, Qk ) = 0. 

k→∞ 

Proof.  We have o ∈ int K0, so there is an r  > 0 such that rBn  ⊂ K0.  By Lem- 
mas 5.2 and 5.3, we can fix a realization for which both (49) and (52) are true. 
Using (4), we observe that (52) is equivalent to 
(59) lim |hΠK0 − hΠQk |k = 0. 

k→∞ 

We also have hΠQk  = bQk  ≤ S(Qk), so by (49), the sets ΠQk are uniformly bounded. 
With these observations and the fact that (u1, −u1, u2, −u2,... ) is evenly spread, 
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we can follow the proof of [24, Theorem 6.1]), from the fourth line, with K and P̂k 
replaced by ΠK0 and ΠQk , respectively, to conclude that 
(60) lim δ(ΠK0, ΠQk ) = 0. 

k→∞ 
Now rBn ⊂ K0 ⊂ Cn yields sBn ⊂ ΠK0 ⊂ tBn with s = κn 1rn−1 and t = 

√
n. 

0 − 
Moreover, (4) and (7) give Π(∇K0) = ΠK0. Hence (60) implies that 

Bn ⊂ Π(∇K0), ΠQk ⊂ 3t Bn, 2 
for sufficiently large k, where s and t depend only on n and r. Exactly as in the 
proof from (48) to (49) of [24, Theorem 7.2] (which in turn follows the proof of [25, 
Lemma 4.2]), this leads to 

r0Bn ⊂ ∇K0, Qk ⊂ R0Bn, 
for sufficiently large k, where r0  > 0 and R0  depend only on n and r.   Then 
(58) follows from (60) and the Bourgain-Campi-Lindenstrauss stability result for 
projection bodies (see [11] and [16], or [20, Remark 4.3.13]). D 

6. Approximating the difference body via the covariogram 

Throughout this section, ϕ will be a nonnegative bounded measurable function 
on Rn with support in Cn, such that 

{
 ϕ(x) dx = 1. 

0 Rn 

Algorithm NoisyCovDiff(ϕ) 
Input: Natural numbers n ≥ 2 and k; positive reals δk and εk ; noisy covariogram 

measurements 
(61) Mik = gK0 (xik ) + Nik , 
of an unknown convex body K0 ⊂ Cn at the points xik , i = 1 , . . .  , Ik , in the cubic 
array 2Cn ∩ , where the Nik ’s are row-wise independent zero mean random 
variables with uniformly bounded fourth moments. 

Task:  Construct an o-symmetric convex polytope Qk in Rn that approximates 
the difference body DK0. 

Action: 
1. Let ϕεk (x) = ε− ϕ(x/εk ) for x ∈ Rn , and let 

(62) 
Ik r / Ik 

\ 
gk (x) =      Mik 

i=1 

 
(1/k)Cn +xik 

ϕεk (x − z) dz = 
  

Mik 1(1/k)Cn +x 
i=1 

· ϕεk (x). 

2. Define the finite set 
(63) Sk = {x ∈ 2Cn ∩ (1/k)Zn : gk (x) ≥ δk }. 

The output is the convex polytope Qk = (1/2)(conv Sk + (−conv Sk )). 

The input δk in the algorithm is a threshold parameter. The function gk (x) is a 
Gasser-Müller type kernel estimator for gK0 with kernel function ϕ and bandwidth 
εk . As the design points xik  are deterministic, gk is a multivariate fixed design 
kernel estimator. Such estimators are common in multivariate regression and are 
discussed in detail by Ahmad and Lin [3]. Among other things, strong pointwise 
consistency and a bound for the rate of weak pointwise convergence are given there. 
We shall need uniform bounds and establish them in the next two lemmas. By [3, 

s 
2 

n 
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Theorem 1], for any x ∈ Rn, gk (x) is an asymptotically unbiased estimator for 
gK0 (x), if εk → 0 as k → ∞. We shall show that this holds uniformly in x. 
Lemma 6.1.  Suppose  that K0,  εk ,  and gk  are as in  Algorithm  NoisyCovDiff(ϕ). 
For each k ∈ N and x ∈ Rn, 

|E (gk (x)) − gK0 (x)| ≤ n(εk + 1/k). 
Consequently, gk is uniformly asymptotically unbiased whenever limk→∞ εk = 0. 

Proof. Using (61), (62), and the definition of ϕεk , we obtain 
Ik 

(64) |E (gk (x)) − gK (x) 
 

 
i=1 

|gK0 (xik ) − gK0 (x)| 
r 
 

(1/k)Cn +xik 

ϕεk (x − z) dz, 

for all x ∈ Rn. The support of ϕε is contained in εk Cn, so for fixed x, the support 
n + x. Now if xik /∈ (εk + 1/k)Cn + x, 

then εk Cn + x and (1/k)Cn + xik are disjoint, so the corresponding summand in 
0 0 

(64) vanishes.  Moreover, for xik ∈ (εk + 1/k)Cn + x, Corollary 3.3 and the fact 
that the diameter of Cn is 

√
n imply that 

 
Consequently, 

|gK0 (xik ) − gK0 (x)| ≤ n(εk + 1/k). 

|E (gk (x)) − gK0 (x)|  ≤  n(εk + 1/k) 
Ik 

  
 
i=1 

r 

r 
 

(1/k)Cn +xik 

ϕεk (x − z) dz 

≤  n(εk + 1/k) ϕεk (x − z) dz = n(εk + 1/k), 
Rn 

 

as required. D 
In [3, Lemma 1], a polynomial rate of convergence result in the weak sense is 

established for independent identically distributed measurement errors with poly- 
nomial tails. In contrast, we assume only uniformly bounded fourth moments and 
obtain a convergence rate that holds uniformly, using the Lipschitz continuity of 
the covariogram. 

Lemma 6.2. Suppose that K0, εk , and gk are as in Algorithm NoisyCovDiff(ϕ) 
and let δ  > 0 and limk→∞ εk  = 0.  Then there are constants c12  = c12(ϕ) and 
N4 = N4((εk ), n) ∈ N such that 
(65) Pr (|gk (x) − gK0 (x)| > δ) ≤ c12(2k + 1) 
for all k ≥ N4  and all x ∈ Rn. 
Proof. Let x ∈ Rn and k ∈ N be fixed and define 

r 

δ−4 (kεk ) −3n, 

(66) βik = βik (x) =  
 

for i = 1 , . . .  , Ik . Then 

 
(1/k)Cn +xik 

ϕεk (x − z) dz, 

(67) βik ≤ ϕε       V ((1/k)Cn) =  ϕ    (kε )−n 

and 
 

(68) 
Ik   

βik ≤ 
i=1 

r 
ϕεk (x − z) dz = 1. 

Rn 

k 

n 
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In view of (61), (62), and (66), 
 

Ik 

gk (x) − E (gk (x)) =     βik Nik 
i=1 

is a sum of zero mean independent random variables.  The assumption that the 
Nik ’s have uniformly bounded fourth moments implies that E 

( 
Nik |4

) 
≤ C for 

some constant C and all i and k. Now, using Markov’s inequality, Khinchine’s 
inequality (see, for example, [29, (4.32.1), p. 307] with α = 4), (67), and (68), we 
obtain 

⎛ 
Ik

 

Pr (|gk (x) − E (gk (x)) | ≥ δ/2)    ≤  (δ/2)−4E 
  

  
i=1 

 4⎞       
  

Ik 

≤  cδ−4Ik       E 
( 

βik Nik |4
 
 

i=1 

Ik 

≤  c Cδ−4Ik        β4
 

i=1 

≤  c Cδ−4Ik 
( 

ϕ  
 

Ik 

(kε )−n)3         β 
∞ k ik 

i=1 

(69) ≤ c12(2k + 1)nδ−4(kεk )−3n, 
3 

for all δ  > 0, where c is a constant and c12 = cC ϕ ∞. By Lemma 6.1, there is 
a constant N4  = N4((εk ), n) ∈ N such that for all k ≥ N4  and x ∈ Rn, we have 
|E (gk (x)) − gK0 (x)| ≤ δ/2 and therefore 

Pr (|gk (x) − gK0 (x)| > δ)   ≤  Pr (|gk (x) − E (gk (x)) | + |E (gk (x)) − gK0 (x)| > δ) 

≤  Pr (|gk (x) − E (gk (x)) | > δ/2) . 

Now (65) follows from this and (69). D 

For a convex body K in Rn and δ > 0, let K(δ) = {x ∈ Rn : gK (x) ≥ δ}. Since 

K is concave on its support, K(δ) is a compact convex set, sometimes called a 
convolution body of K. References to results on convolution bodies can be found 
in [20, p. 378]. 

Lemma 6.3. Let K be a convex body in Rn. If 0 < δ < V (K), then 

δ1/n 
1 − 

V (K)1/n DK ⊂ K(δ). 

Proof. Let t = (δ/V (K))1/n and let x ∈ (1 − t)DK. Since DK is the support of 
gK , there is a y in the support of gK such that x = (1 − t)y + to. As gK is concave 
on its support, we have 

gK (x)1/n ≥ (1 − t)gK (y)1/n + tgK (o)1/n ≥ tV (K)1/n = δ1/n. 

It follows that x ∈ K(δ). D 
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Theorem 6.4. Suppose that K0, δk , εk , and gk are as in Algorithm NoisyCovDiff(ϕ). 
Assume that limk→∞ εk = limk→∞ δk = 0 and that 
(70) lim inf δ4ε3nkn−3/2 > 0. k  k 

k→∞ 

Let c13  > 
√

n(2/V (K0))1/n.  If Qk  is an output from Algorithm NoisyCovDiff(ϕ) 
as stated above, then, almost surely, 

(71) δ(DK0, Qk ) ≤ c13δ1/n, 

for sufficiently large k.   In particular, almost surely, Qk  converges to DK0, as 
k → ∞. 

Proof. Let 
ak = max 

x∈2Cn∩(1/k)Zn 

By Lemma 6.2 and (70), we have 

Pr (ak ≥ δk )   ≤ 
 

 

|gk (x) − gK0 (x)|. 

 
Pr (|gk (x) − gK0 (x)| ≥ δk ) 

x∈2Cn∩(1/k)Zn 

≤ c12(2k + 1)2nδ−4(kεk )−3n = O 
(
  

3/2   . 

k k− 

Therefore, by the Borel-Cantelli lemma, we see that, almost surely, ak  < δk  for 
sufficiently large k. Fix a realization and a k ∈ N such that ak < δk and 

 
(72) 

   
2δk 

V (K0) 

 1/n 

+ 
3 

s(K0)k 
≤ 1, 

where s(K0) = max{ρ ≥ 0 : ρCn ⊂ DK0}. As ak < δk , the definition (63) of Sk 

implies 1   n 

K0(2δk ) ∩ k Z 
⊂ Sk ⊂ DK0. 

The set on the left is o-symmetric, and DK0 is convex and o-symmetric, so 
  n 

(73) 
 

We claim that 

conv K0(2δk ) ∩ k Z ⊂ Qk ⊂ DK0. 

3   n 1  n
 

 
(74) K0(2δk ) 8 k C0 ⊂ conv K0(2δk ) ∩ k Z , 
where Minkowski difference 8 is defined by (2). Indeed, let x ∈ K0(2δk ) 8 (3/k)Cn. 
As {y + (1/k)Cn : y ∈ (1/k)Zn} is a covering of Rn, there is a y ∈ (1/k)Zn with 

(1/k)Cn + y and hence y ∈ (1/k)Cn + x. It follows that 
0 0 

1 n 3   n 

x ∈ k (2C0 ) + y ⊂ k C0 + x ⊂ K0(2δk ). 
As the vertices of (1/k)(2Cn) + y are in (1/k)Zn, we have x ∈ conv (K0(2δk )∩ 
(1/k)Zn ), proving the claim. 

Let tk = (2δk /V (K0))1/n. The fact that DK0 is convex and contains the origin, 
(72), Lemma 6.3 (with δ = 2δk ), and the definition of s(K0) imply that 

3 
 

3 3   n 
1 −  tk + 

s(K )k DK0 = (1 − tk ) DK0 8 DK0 

s(K0)k ⊂ K0(2δk ) 8 k C0 . 

x ∈ 
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From this, (74), and (73), we obtain 
3 

1 −  tk + 
s(K )k DK0 ⊂ Qk ⊂ DK0. 

As DK0 ⊂ √nBn, this yields 
    

3
 / 

2
 
 
 1/n 3

√
n 

\
 

δ(DK0, Qk ) ≤ 
√

n tk + 
s(K0)k 

= 
√

n 
V (K0) 

+ 
s(K0)kδ1/n

 
δ1/n. 

By (70), kδ1/n → ∞ as k → ∞, and (71) follows. D 

The estimate (71) reveals that the rate of convergence of Qk to DK0 depends 
on the asymptotic behavior of the threshold parameter δk , which is linked to the 
bandwidth εk by (70). If we assume that V (K0) is bounded from below by a known 
constant, then c13 in the statement of Theorem 6.4 can be chosen independent of 
K0. We note the resulting rate of convergence as a corollary, where we choose εk 
and δk as appropriate powers of k. In particular, it shows that a convergence rate 
of k−p can be attained, where p is arbitrarily close to 1/4 − 3/(8n). 

Corollary 6.5. Suppose K0, δk , εk , and gk are as in Algorithm NoisyCovDiff(ϕ). 
Let 0 < b < V (K0), let δk = k−(n−3αn−3/2)/4, and let εk = k−α, for some 0 < α < 
1/3 − 1/(2n). If Qk is an output from Algorithm NoisyCovDiff(ϕ) as stated above, 
then, almost surely, 

    
2   1/n 

δ(DK , Q ) n 
b 

k−(1−3α−3/(2n))/4, 

for sufficiently large k. 

Remark 6.6. Here we outline how a stronger assumption, but one that still ap- 
plies to all the noise models of practical interest, on the random variables in Algo- 
rithm NoisyCovDiff(ϕ) leads to a better convergence rate in Corollary 6.5. 

Consider a family {Xα : α ∈ A} of zero mean random variables with variances 
α that satisfy the hypothesis of Bernstein’s inequality (see [14, Theorem 5.2, p. 27] 

or [49, Lemma 2.2.11]), that is, 

(75) |E (Xm)| ≤ m! σ2 Hm−2, 
α 2 α 

for some H > 0 and all α ∈ A and m = 2, 3 , . . .  , and also have uniformly bounded 
variances, that is, 

(76) σ2  ≤ σ2, 

say, for all α ∈ A. If the family {X1, . . .  , Xr } of independent zero mean random 
variables satisfies (75) with A = {1 , . . .  , r}, then Bernstein’s inequality states that 

/ r \ 
δ2

 
Pr          Xi  ≥ δ ≤ 2 exp  − , 

 
 

for all δ > 0. 

  
   
i=1 

2 (δH + 
),r

 σi ) 

Suppose that the random variables Nik in Algorithm NoisyCovDiff(ϕ) are row- 
wise independent, zero mean, and satisfy (75) and (76). Then Bernstein’s inequality 
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can be applied in the proof of Lemma 6.2, together with (67) and (68), to show 
that 

δ2(kεk )n 

(77) Pr(|gk (x) − E (gk (x)) | ≥ δ/2) ≤ 2 exp − 
4 ϕ ∞ (δH + 2σ2) 

,
 

for all δ > 0. (Compare the weaker upper bound in (69).) As at the end of the proof 
of Lemma 6.2, this results in the same upper bound for Pr (|gk (x) − gK0 (x)| > δ). 
The improved bound (77), combined with the argument of Theorem 6.4, leads to 
the assumption 

 
(78) lim inf 

k→∞ 
k (kεk )n 

log k 

 
> c14 

 

(n + 2), 

where c14  = 12 ϕ    σ2, instead of (70).  In Corollary 6.5 we take instead δ   = 
k−n(1−α)/2 log k and εk = k−α, for some 0 < α < 1. The final conclusion is that if 
Qk is an output from Algorithm NoisyCovDiff(ϕ), then, almost surely, 

    
2   1/n 

δ(DK0, Qk ) ≤ 
√

n k−(1−α)/2(log k)1/n, 

for sufficiently large k.  In particular, a convergence rate of k−p can be attained, 
where p is arbitrarily close to 1/2. 

Note that families of zero mean Gaussian and centered Poisson random variables 
satisfy (75) and (76). Also, if two independent families with the same index set sat- 
isfy (75) and (76), the same is true for their sums (with possibly different constants 
H  and σ2). 

7. Phase retrieval: Framework and technical lemmas 

In this section we set the scene for our results on phase retrieval, beginning with 
the necessary material from Fourier analysis. 

Let g be a continuous function on Rn whose support is contained in [−1, 1]n and 
let L ≥ 1. By the classical theory, the Fourier series of g is 

  
cz eiπz·x/L, 

z∈Zn 

for x ∈ [−L, L]n, where 
1 

cz = 
(2L)n 

Let 

r 
[−L,L]n 

g(t)e− iπz·t/L dt = 1 
(2L)n 

r 
g(t)e−iπz·t/L 

Rn 

dt = 1 
(2L) 

g(πz/L). 
� 

k = {z ∈ Zn : z = (z1, . . .  , zn), |zj | ≤ k, j = 1 , . . .  , n}. 
If g is also Lipschitz, then by [35, Theorem 3], the square partial sums 

  
cz eiπz·x/L 

z∈Zn 

of the Fourier series of g converge uniformly to g. Therefore, if g is also an even 
function, we can write 

(79) g(x) =  1 
(2L)n 

  
g(πz/L)eiπz·x/L  = 1 � 

(2L)n 
z∈Zn 

  
g(πz/L) cos πz · x,  
� L 

z∈Zn 

for all x ∈ [−L, L]n, where equality is in the sense of uniform convergence of square 
partial sums. 

n 

b 
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2
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k 
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Let Zn(+) be a subset of Zn such that 

k k 
(80) Zn(+) ∩ (−Zn(+)) = ∅  and   Zn = {o} ∪ Zn(+) ∪ (−Zn(+)) . 

k k k k k 

Suppose that g is even and for some fixed 0 < γ < 1 and each k ∈ N, we can obtain 
noisy measurements 
(81) gz,k = g(z/kγ ) + Xz,k , g, for z ∈ {o} ∪ Zn(+), where the Xz,k ’s are row-wise independent (i.e., in- 
of � k 
dependent for fixed k) zero mean random variables.  Define Xz,k = X−z,k , for 
z ∈ (−Zn(+)) and note that then Xz,k = X −z,k for all z ∈ Zn.  Since g is even, 
� gz,k = � for z ∈ Zn.  Using these facts, (79) with 
L = πkγ , and (81), we obtain 

 

 
(82) 

  1  
(2πkγ )n 

  
gz,k 

z∈Zn 

z  x 
cos 

kγ 

⎛ ⎞ 

= g(x) +  
  1  
(2πkγ )n 

⎝
 Xz,k cos 

z · x   

kγ   − g 
( z    
�  kγ cos 

z · x 

kγ  
⎠ , 

z∈Zn z∈Zn\Zn 

for all x ∈ [−πkγ , πkγ ]n. Here the left-hand side is an estimate of g(x) and the sec- 
ond and third terms on the right-hand side are a random error and a deterministic 
error, respectively. 

Since it has all the required properties, we can apply the previous equation to 
the covariogram g = gK   of a convex body K0  contained in Cn, in which case 
 0  = |1   0 | .  In order to move closer to the notation used earlier, we now use 
i as an index and again list the points in [−1, 1]n ∩ (1/k)Zn = (1/k)Zn, but this 
time a little differently.   We let x0k  = o, list the points in (1/k)  k (+) as xik , 
i = 1 , . . .  ,I l  = ((2k + 1)n − 1) /2, and then let xik = −x( 

Now let zik = k1−γ xik , so that 
i)k for i = −Il , . . . , −1. 

(1/kγ )Zn = {zik : i = −Il , . . . ,I l  }. 
 gjk 

k k k gK0 zjk ,k jk 

Setting � =   and Xjk = Xz ,k , we use (81) to rewrite (82) as 

(83) Mk (x) = gK0 (x) + Nk (x) − dk (x), 
where 

t 

1 k 

(84) Mk (x) =  
   

 
(2πkγ )n 

j=−It 

cos(zjk  · x)gjk 

is an estimate of gK0 , 
t 

1 k 

(85) Nk (x) =  
   

 
(2πkγ )n 

j=−It 

cos(zjk  · x)Xjk 

is a random variable, and 
1 ( z · x  g 

 
(z/kγ ) 

(86) dk (x) = (2πkγ )n 

is a deterministic error. 

 
z∈Zn\Zn 

cos 
kγ 
 K0 

We shall need three technical lemmas. The first of these provides a control on 
the deterministic error. 

− 
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gK0  = |1K0 | 

k 

  K 

k 

k 

K 
γ 

k k 

gK 
γ 

  

0 
    

  
  

n 
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Lemma  7.1.  Let  dk  = sup{|dk (x)| : x ∈ Rn}.   Then  dk  = O(kγ−1(log k)n) as 
k → ∞. 

Proof. From (86), the fact that     2 is nonnegative, and (79) with g = gK 

and L = πkγ , we have 
1 

(87) dk ≤ (2πkγ )n 

For t ∈ R, let 

  

z∈Zn\Zn 

 

gK0 

 
(z/kγ ) = gK 

 
1 

(o) − 
(2πkγ )n 

 
  

g
  0 

z∈Zn 

 
(z/kγ ). 

k 

Dk (t) =      eilt = 
l=−k 

sin((k + 1/2)t) 
sin(t/2) 

be the Dirichlet kernel. Note that for x = (x1, . . . , xn) ∈ Rn, we have 
n  / k 

  
eiz·x = 

n   
\ 

eimxl 

n 

= 
n 

Dk (xl). 
z∈Zn l=1 m=−k l=1 

n 
Using this and the fact that gK0  is even, with support in [−1, 1] , we obtain 

1 
 (2πkγ )n 

  
g (z/kγ )    = 1   r

  0 (2πkγ )n 

 
 
 γ γ n 

gK0 (x)e−iz·x/k  dx 

z∈Zn z∈Zn 

1 r 
= 

[−πk  ,πk  ] 

n 
gK0 (x) 

 
Dk (−xl/kγ 

 
 
) dx 

(2πkγ )n [−πkγ ,πkγ ]n l=1 
n 

(88) 
1 

= 
(2π)n 

r 
[−1,1]n 

0 (yk ) 
n 
 

l=1 

Dk (yl) dy. 

Since 
{ π

 
−π 

Dk (t) dt = 2π, we have 

1 
(89) gK0 (o) = (2π)n 

Thus, by (87), (88), and (89), 
  

r 

[−π,π]n 
gK0 (o) 

n 
n 
 

l=1 

 

Dk (yl) dy. 
 
 

n 

1 r 
dk ≤ (gK (o) − gK (ykγ )) 

n
 Dk (yl) dy

 
   

 (2π)n [−1,1]n 
 

l=1 
n 

(90) + gK (o) 
 
   

n 
Dk (yl) dy .   

 (2π)n [−π,π]n \[−1,1]n l=1 
γ 

By Proposition 3.2, gK0  is Lipschitz and hence the Lipschitz norm of gK0 (yk 
O(kγ ). Now [35, Theorem 1] implies that 

) is 

n n−1 

1 r 
(91) 

(g (o) g (ykγ )) 
n 

D (y ) dy
 
 c   kγ−1         (log k)n−l, 

  
 (2π)n 

K0 

[−1,1]n 

— K0 k   l 
l=1   ≤  15 

  
l=0 

for some constant c15 independent of k. (In the statement of [35, Theorem 1], Dj (Y ) 
should be DJ (Y ). In that theorem we are taking α = 1 and J = (k, k, . . . , k) ∈ Zn.) 

In view of (90) and (91), the proof will be complete if we show that 
 

(92) 

r n 
n 

Dk (xl)dx = O(1/k), 
[−π,π]n\[−1,1]n l=1 

0
 

 

0 

0 

1 r 
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l=1 

Sn−1 0 

p
 

v(k) 

v(k) 
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as k → ∞.  To this end, observe that, by trigonometric addition formulas and 
integration by parts, 
r −1  

Dk (t) dt = 
r π 

Dk (t) dt = 
r π sin(kt) cos(t/2) r π 

dt + 
 
cos(kt) dt 

−π 1 1 sin(t/2) 1 

cos k cot(1/2) 
= 

r π cos(kt) d 
+ (cot(t/2))  dt − sin k 

(93) 
Now 

k 
= O(1/k). 

1 k dt k 

n 

where 

[−π, π]n \ [−1, 1]n = 
I
(Ai ∪ Bi), 

i=1 

Ai = {(x1,... , xn)  : −1 ≤ xj ≤ 1 for j  < i , 1 ≤ xi ≤ π, −π ≤ xj ≤ π for j > i} 
and Bi = −Ai. By (93), we have, for each i, r n 

n 
Dk (xl)dx = 

 r 1 

Dk (t)dt 
 i−1 r π 

Dk (t)dt 
 r π 

Dk (t)dt 
 n−i 

Ai l=1 −1 1 −π 

= (2π − O(1/k))i−1 O(1/k) (2π)n−i. 
Since int (Ai) ∩ int (Aj ) = ∅, for each i, j with i /= j, int (Ai) ∩ int (Bj ) = ∅, for each 
i, j, and 

nn
 Dk (xl) is even, the previous estimate proves (92). D 

It is possible that the previous lemma could also be obtained via some estimates 
proved in [12] for the rate of decay of 

{
 |1 K (ru)|2 du as r → ∞. 

The next two lemmas will allow us to circumvent Proposition 4.7, the version of 
the Strong Law of Large Numbers used earlier. 

Lemma  7.2.  Let  Yjk ,  j = 1, . . . , mk ,  k ∈ N,  be  a  triangular  array  of  row-wise 
independent zero mean random variables with uniformly bounded fourth moments, 
where mk ∼ kn as k → ∞. Let ν and apqk , p, q = 1 , . . .  , mk , be constants such that 
|apqk | = O(kν ) as k → ∞ uniformly in p and q, where 2n − 4nγ + 2ν < −1. Then, 
almost surely, 

1 mk 

 
as k → ∞. 

Zk =  
    

(2πkγ )2n 
p,q=1 

apqk Ypk Yqk → 0, 

Proof. Note that E(Ypk Yqk ) = E(Ypk )E(Yqk ) = 0 unless p = q. Therefore 

1 mk 1 mk 

E(Zk ) =  
   

 
(2πkγ )2n 

p,q=1 

apqk E(Ypk Yqk ) =  
   

 
(2πkγ )2n 

p=1 

appk E(Y 2 ). 

Since the Ypk ’s have uniformly bounded second moments, |E(Zk )| = O(kn−2nγ+ν ) 
and hence E(Zk ) converges to zero as k → ∞. 

Let 

pqrs = cov (Ypk Yqk , Yrk Ysk ) = E(Ypk Yqk Yrk Ysk ) − E(Ypk Yqk )E(YrkYsk ). 

If the cardinality of the set {p, q, r, s} is 3 or 4, then at least one of the indices, say 
p, is different from all the others and 

pqrs = E(Ypk )E(Yqk Yrk Ysk ) − E(Ypk )E(Yqk )E(YrkYsk ) = 0 − 0 = 0. 
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If the cardinality of the set {p, q, r, s} is 1, then 
v(k) (k) 4 2   2 

pqrs = vpppp = E(Ypk ) − E(Ypk ) . 

If the cardinality of the set {p, q, r, s} is 2, then either p = q, r = s and p /= r, and 
v(k) (k) 2 2 2 2 

pqrs = vpprr = E(Ypk Yrk ) − E(Ypk )E(Yrk) = 0, 

or p = r, q = s and p /= q, and 
v(k) (k) 2 2 2 2 2 2 2 

pqrs = vpqpq = E(Ypk Yqk ) − E(Ypk Yqk ) 

or p = s, q = r and p /= q, and 
= E(Ypk )E(Yqk) − E(Ypk )  E(Yqk )  , 

v(k) (k) 2 2 2 2 2 2 2 

pqrs = vpqqp = E(Ypk Yqk ) − E(Ypk Yqk ) = E(Ypk )E(Yqk) − E(Ypk )  E(Yqk )  . 
In view of the fact that the Yjk ’s have uniformly bounded fourth moments, the 
covariances v(k)

 

1 
are also uniformly bounded, and hence 

mk 

var (Zk ) =  
   

 
(2πkγ )4n 

p,q,r,s=1 

apqk arsk v(k)
 

m = 1 a2
 

 
v(k) 

⎛ 
mk

 

1 
a2

 
mk 

(k) 
  

⎞ 
(k) 

(2πkγ )4n 
 
p=1 

ppk pppp + 
(2πkγ )4n 

⎝
 
p/=q=1 

pqk vpqpq +  
p/=q=

1 

apqk aqpk vpqqp⎠ 

= O 
(
k2n−4nγ+2ν ) . 

Let ε  > 0.  For sufficiently large k, we have ε − E(Zk ) > 0, and for such k, by 
Chebyshev’s inequality, 

Pr(Zk > ε) = Pr
(
Zk − E(Zk ) > ε − E(Zk )

) 
≤ (ε 

var (Zk ) 
E(Z ))2 

= O k
 2n−4nγ+2ν ) . 

— k 

Our hypothesis and the Borel-Cantelli Lemma imply that, almost surely, Zk con- 
verges to zero, as k → ∞. D 

Lemma 7.3. Let Y (r), j = 1 , . . .  , mk , r = 1, 2, k ∈ N, be a triangular array of 
row-wise independent (i.e., independent for  fixed  k)  zero  mean  random  variables 
with uniformly bounded fourth moments, where  mk  ∼ kn  as  k  → ∞.  Let  ν  and 
apqk , p, q = 1 , . . .  , mk , be constants such that |apqk | = O(kν ) as k → ∞ uniformly 
in p and q, where 2n − 4nγ + 2ν < −1.  Then, almost surely, 

  1 mk
     

(1) (2) (1) (2) 

 
as k → ∞. 

Zk = 
(2πkγ )2n 

 
p,q=1 

apqk Ypk  Ypk  Yqk  Yqk   → 0, 

Proof. As in the proof of Lemma 7.2, we have 
m   1   

 (  
(1)  2

   (  
(2)  2

  

E(Zk ) = (2πkγ )2n 
 
p=1 

appk E Ypk E Ypk , 

so |E(Zk )| = O(kn−2nγ+ν ) and hence E(Zk ) converges to zero as k → ∞. 
Let 

w(k) 
( 

(1) (2) (1) (2) (1) (2) (1) (2)   . 
pqrs = cov Ypk  Ypk  Yqk  Yqk  , Yrk  Yrk  Ysk  Ysk 
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Straightforward modifications to the proof of Lemma 7.2 and the assumption of 
uniformly bounded fourth moments yield 

  1 mk
 

var (Zk ) =  
   

 
(2πkγ )4n 

p,q,r,s=1 

apqk arsk w(k)
 

m = 
1 

a2
 

 
w(k) 

⎛ 
mk

 

1 
a2

 
mk 

(k) 
  

⎞ 
(k) 

(2πkγ )4n 
 
p=1 

ppk pppp + 
(2πkγ )4n 

⎝
 

 

p/=q=

1 

pqk wpqpq +  

p/=q=

1 

apqk aqpk wpqqp⎠ 

= O 
(
k2n−4nγ+2ν ) . 

The proof is concluded as in Lemma 7.2. D 
 

8. Phase retrieval from the squared modulus 

This section addresses Problem 2 in the Introduction. 
 

Algorithm  NoisyMod2LSQ 
Input:  Natural numbers n ≥ 2 and k ;  a real number γ such that 0 <  γ < 1; 

noisy measurements 
gik 2 

K0     ik ik (94) � = |1     (z )| + X  , 
of the squared modulus of the Fourier transform of the characteristic function of 
an unknown convex body K0 ⊂ Cn whose centroid is at the origin, at the points in 

{zik : i = 0, 1 , . . .  ,I l } = {o} ∪ (1/kγ )Zn(+), 
k k 

where Zn(+) satisfies (80) and where the Xik ’s are row-wise independent zero 
mean random variables with uniformly bounded fourth moments; an o-symmetric 
convex polytope Qk in Rn, stochastically independent of the measurements � , 
that approximates either ∇K0  or DK, in the sense that, almost surely, 

lim δ(∇K0, Qk ) = 0, or lim δ(DK0, Qk ) = 0. 
k→∞ k→∞ 

Task:  Construct a convex polytope Pk  that approximates K0, up to reflection 
in the origin. 

Action: 1. Let � = � , for i = −Il , . . . , −1, let x = kγ−1z , i = −Il , . . . ,I l  , be 
gik g(−i)k k ik ik k k 

the points in the cubic array 2Cn ∩ (1/k)Zn, and let 
t 

1 k 

(95) Mk (xik ) =  
   

 
(2πkγ )n 

j=−It 

cos(zjk · xik )gjk , 

for i = −Il , . . . ,I l  . 
k k 

2. Run Algorithm NoisyCovLSQ with inputs n, k, Qk , and with Mik replaced by 
Mk (xik ), for i = −Il , . . . ,I l  and with the obvious re-indexing in i. The resulting 

k k 
output Pk of that algorithm is also the output of the present one. 

 
The main result in this section corresponds to Theorem 4.10 above. We first 

state it and then show that it can be proved by suitable modifications to the proof 
of Theorem 4.10 if in addition γ > 1/2 + 1/(4n). 
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Theorem 8.1. Suppose that K0 ⊂ Cn is a convex body with its centroid at the 
origin. Suppose also that K0 is determined, up to translation and reflection in the 
origin, among all convex bodies in Rn, by its covariogram.  Let 

 
(96) 1/2 + 1/(4n) < γ < 1. 

If Pk , k ∈ N, is an output from Algorithm NoisyMod 2LSQ as stated above, then, 
almost surely, 

 

 
as k → ∞. 

min{δ(K0, Pk ), δ(−K0, Pk )} → 0 

 

As we shall now show, the proof of this theorem basically follows the analysis 
given in Section 4. Of course, alterations must be made, since the measurements 
Mik in Algorithm NoisyCovLSQ have been replaced by the new measurements 
Mk (xik ) defined by (95) or equivalently by (84) with x = xik . In view of (83), we 
have 

 

Mk (xik ) = gK0 (xik ) + Nk (xik ) − dk (xik ), 
i = −Il , . . . ,I l  , where Nk (xik ) and dk (xik ) are given by (85) and (86), respectively, 

k k 
with x = xik . 

We begin with a lemma. Note that Ik = 2Il + 1, so the expression in the lemma 
is the sample mean. Also, recall that by their definition, the random variables Xik 
have uniformly bounded fourth moments, and Xpk and Xqk are independent unless 
p = ±q, in which case they are equal. 

Lemma 8.2. Let Nk (xik )+ = max{Nk (xik ), 0} for all i and k. If (96) holds, then, 
almost surely, 

 

t 

1 k      
Nk (xik )+ → 0, 

k 
 

as k → ∞. 

Proof. Note firstly that 

i=−It 

 
 

t t 

1 k 1 k 
t ⎞1/2 

1 k     
Ik 

i=−It 

Nk (xik )+ ≤ 
  

 

 Ik 
i=−It 

|Nk (xik )| ≤ ⎝  
k 

  
i=−It 

Nk (xik )2⎠ . 

 

Thus it suffices to prove that, almost surely, 
 

t 

1 k 

 
 

as k → ∞. 

Sk =  
    Ik 
i=−It 

Nk (xik )2
 → 0, 

⎛ 
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k k 

I I 

k k 

k 
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I 
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I 

k 
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We have 
t t 

⎞2 

1 k 1 k       
Sk = I k i=−It 

⎝
(2πkγ )n 

 
p=−It 

cos(zpk · xik )Xpk ⎠ 

t ⎛ t ⎞ 
1 k 1 k 

= 
(2πkγ )2n 

    
⎝ 

Ik
 

p,q=−It 

  
i=−It 

cos(zpk · xik ) cos(zqk · xik )⎠ Xpk Xqk 

1 
= 

(2πkγ )2n 

t 
k   

p,q=−It 

 
cpqk Xpk Xqk , 

say. Since c(−p)qk = cp(−q)k = cpqk , it is clearly enough to show that, almost surely, 

It 

1 k     
c X   X 0, (2πkγ )2n 

p,q=1 

as k → ∞. In view of (96) and the fact that |cpqk | = O(1), this follows from 
Lemma 7.2 with Yjk = Xjk , mk = Il , apqk = cpqk for all p, q, and k, and ν = 0.    D 

Proof of Theorem 8.1. We shall indicate the modifications needed in Section 4. No 
changes are required in the lemmas before Lemma 4.4. For the latter, we shall 
use the same notation as before, with the understanding that the indexing has 
changed and the new random variables Nk (xik ) replace the random variables Nik 
of Section 4. Thus we write 

t ⎞1/2 

1 k 

|f|Ik = ⎝ 
I 
k i=−It 

f (zi)2⎠ , 

with corresponding changes in indexing in the definitions of xIk , NIk , and Ψ. With 
the same proof as Lemma 4.4, we now have the inequality 

2 n 2 |gK0 − gPk |Ik  
≤ 2Ψ(Pk , xIk , NIk ) − 2Ψ(P (a) ∩ C0 , xIk , NIk ) + gK0 − gP (a)∩Cn   

 
(97) 

 
t 

+ 
2      

(
gP (a) 

 

Cn (xik ) − g (xik )
) 

dk (xik ), 

0  Ik 

 
 

instead of (34). 

Ik 
∩ 0 Pk 

i=−It 

Proposition 4.5 and Lemma 4.6 are unchanged.  We do not require Proposi- 
tion 4.7 in order to conclude as in Lemma 4.8 that, almost surely, 
(98) sup 

K∈Kn (Cn ) 

Ψ(K, xIk , NIk ) → 0, 

as k → ∞.  Indeed, it is enough to show that, almost surely, the new expression 
corresponding to (37), namely, ⎧ 

Wk (ε) =   max  
⎨

 

 

t 
k    

gU (xik )Nk (xik ) + − 

 t    
gL(xik )Nk (xik ) −

⎬ 
, 

j=1,...,m ⎩ Ik i=
 −It 

Ik 
i=−It 

converges to zero, as k → ∞.  This follows from Lemma 8.2, because the coeffi- 
cients gU (xik ) and gL(xik ) are uniformly bounded by 1 and Lemma 8.2 holds both 

j j 

I 

⎛ 

1 1 
⎭ 
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when such coefficients are inserted and when Nk (xik )+ is replaced by Nk (xik )− = 
Nk (xik ) − Nk (xik )+ = max{−Nk (xik ), 0}. 

All this is enough to ensure that Lemma 4.9 still holds. Indeed, since a translate 
of Pk is contained in Cn and Ψ(Pk , xI , NI ) is unchanged by such a translation, 

0 k k 

we know from (98) that, almost surely, the first and second terms on the right- 
hand side of (97) converge to zero, as k → ∞.  We have gP (a)∩Cn (xik ) ≤ 1 and 

n n 
gPk (xik ) ≤ V (2C0 ), since Pk  ⊂ 2C0 , and then Lemma 7.1 implies that the new 
fourth term on the right-hand side of (97) converges to zero as k → ∞. The rest of 
the proof of Lemma 4.9 proceeds as before. 

The proof of the main theorem, Theorem 4.10, now applies without change. D 
 

The user of Algorithm NoisyMod2LSQ must supply as input an o-symmetric 
convex polytope Qk in Rn that approximates either ∇K0 or DK. For this purpose 
we provide two algorithms that do the work of Algorithm NoisyCovBlaschke and 
Algorithm  NoisyCovDiff(ϕ). 

Algorithm  NoisyMod2Blaschke 
Input:  Natural numbers n ≥ 2 and k; a positive real number hk ; mutually 

nonparallel vectors ui ∈ Sn−1, i = 1 , . . .  , k, that span Rn; noisy measurements 
2 

gik K0     ik ik (99) � = |1     (z )| + X  , 
of the squared modulus of the Fourier transform of the characteristic function of 
an unknown convex body K0 ⊂ Cn whose centroid is at the origin, at the points in 

{zik : i = 0, 1 , . . .  ,I l } = {o} ∪ (1/kγ )Zn(+), 
k k 

where Zn(+) satisfies (80) and where the Xik ’s are row-wise independent zero mean 
random variables with uniformly bounded fourth moments. 

Task:   Construct an o-symmetric convex polytope Qk  that approximates the 
Blaschke body ∇K0. 

Action: 
1. Let gik = g(−i)k , for i = −Ik , . . . , −1, and let 

t t 

1 k 1 k      
gjk

  
k k  i 

 
jk k 

i gjk 

Mk (o) = (2πkγ )n 
� 

j=−It 

and   M (h u ) =  
(2πkγ )n 

j=−It cos(z 
· h u )� , 

for i = 1 , . . .  , k. Then for i = 1 , . . .  , k, let 
Mk (o) − Mk (hk ui) 

(100) yik = . 
k 

2. With the natural numbers n ≥ 2 and k and vectors ui ∈ Sn−1, i = 1 , . . .  , k, 
use the quantities yik instead of noisy measurements of the brightness function 
bK (ui) as input to Algorithm NoisyBrightLSQ (see [24, p. 1352]). The output of 
the latter algorithm is Qk . 

We shall show that the argument of Section 5 can be modified to yield a con- 
vergence result corresponding to Theorem 5.4. It is clear that any such result must 
require the input hk to satisfy hk → 0 as k → ∞, but we need a stronger condi- 
tion phrased in terms of parameters ε and γ that satisfy (101). Since the second 
inequality in (101) is equivalent to γ > (2n + 5 − 4ε)/(4n + 4), which decreases as 
n increases and equals (9 − 4ε)/12 when n = 2, it is possible to choose γ and ε so 
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that (101) is satisfied. Specifically, one can choose 3/4 ≤ γ  < 1 and 0 < ε < 1 − γ. 
Note also that (101) implies (96). 

There is considerable flexibility in the choice of the parameter hk , and it would 
be possible to introduce a further parameter qk by working with input vectors 
ui ∈ Sn−1, i = 1 , . . .  , qk , where qk → ∞ as k → ∞. To avoid overcomplicating the 
exposition, however, we shall not discuss this any further. 
Theorem 8.3.  Let K0 ⊂ Cn  be a convex body with its centroid at the origin.  Let 
(ui) be a sequence in Sn−1  such that (u∗) is evenly spread.   Suppose that hk  ∼ 
kγ− 1+ε, k ∈ N, where ε and γ satisfy 

(101) 0 < ε < 1 − γ and 2n − 4nγ + 4(1 − γ − ε) < −1. 

If Qk is an output from Algorithm NoisyMod 2Blaschke as stated above, then, almost 
surely, 

lim δ(∇K0, Qk ) = 0. 
k→∞ 

Proof. We shall indicate the changes needed in Section 5. Note that by (100), and 
(83) with x = o and x = hk ui, we have 

Mk (o) − Mk (hk ui) 
yik = 

k 

= gK0 (o) − gK0 (hk ui) 
hk 

+ Nk (o) − Nk (hk ui) 

hk 
− 

dk (o) − dk (hk ui) , hk 

for i = 1 , . . .  , k, where Nk (o), dk (o), Nk (hk ui), and dk (hk ui) are given by (85) and 
(86) with x = o or x = hk ui, as appropriate. 

In the proof of Lemma 5.1, we now have 

yik = ζik + Tik , 
where 
(102) 

ζik = 

 
gK0 (o) − gK0 (hk ui) 

hk 
− 

 
dk (o) − dk (hk ui) 

hk 

 
 
 

and Tik  = 

 
 
Nk (o) − Nk (hk ui) , 

hk 

for i = 1 , . . .  , k. Since hk ∼ kγ−1+ε for 0 <  ε  < 1 − γ, the second term in the 
previous expression for ζik converges to zero as k → ∞, by Lemma 7.1, and hence 
ζik → bK0 (ui) as k → ∞, as before, for i = 1 , . . .  , k. Moreover, 

bK0 (ui) − ζik = bK0 (ui) − gK0 (o) − gK0 (hk ui)   + 
hk 

dk (o) − dk (hk ui) , 
hk 

so arguing as in the proof of Lemma 5.1, we use Lemma 3.1 with t = hk to obtain 
(46) with t = hk , that is, 

0 ≤ bK0 (ui) − 

if hk ≤ 2r. We also have 

gK0 (o) − gK0 (hk ui) 
hk ≤ (n − 1)hk b (u  ), 

dk (o) − dk (hk ui) = O(k−ε), hk 

by Lemma 7.1, so there is a constant c16 = c16(n, r) such that 
β 

|bK0 (ui) − ζik | ≤ c16k−  , 

h 
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for β = min{ε, 1 − γ + ε} and all k ∈ N and i = 1, . . . , k.  The rest of the proof 
of Lemma 5.1 can be followed, yielding that, almost surely, there is a constant 
c17 = c17(n, r) such that 

2 c17 

(103) |bK0  − bQk |k ≤ 2Ψ(Qk , (ui), Tk ) − 2Ψ(K0, (ui), Tk ) + kβ |bK0  − bQk |k , 

for all k ∈ N. (Again, we assume that the obvious changes are made in the notation.) 
The next task is to check that Lemma 5.2 still holds. With (103) in hand, this 

rests on proving that, almost surely, 

1   k 

Vk =          2
 

k ik 
i=1 

is bounded. In fact we claim that, almost surely, Vk → 0 as k → ∞. To see this, 
note that 

1  k      N (o) − N (h u )   2 

Vk =   
k 

i=1 
 

1   k 

k 
 

⎛ 
  1  

k k  i 

hk 

t k 1  

 

 
cos(z  h  u )

 ⎞
 

= 
k 

⎝ 
i=1 

 
1 

(2πkγ )n 

t 
k 

  − 
j=−It 

jk ·  k  i 

hk 
Xjk⎠ 

 
 

where 

= 
(2πkγ )2n 

  
p,q=−It 

apqk Xpk Xqk , 

1 k 
(104) apqk =

 (
 

kh2
 
i=1 

1 − cos(zpk · hk ui) 
)(

1 − cos(zqk · hk ui)
)
 

and hence |apqk | ≤ 4/h2 . As in the proof of Lemma 8.2, we may take the indices p, q 
from 1 to Il , and then, by (101), the claim follows from Lemma 7.2 with mk = Il k k 

and ν = 2(1 − γ − ε). 
At this stage the work for Lemma 5.3 is already done. Indeed, by the Cauchy- 

Schwarz inequality, 
/ 

1  k \1/2 

Ψ(Qk , (ui), Tk ) − Ψ(K0, (ui), Tk ) ≤ |bK0  − bQk |k 
      

2
 

k ik 
i=1 

1/2 

= |bK0 − bQk |k Vk . 

Using this and (103) we see that, almost surely, 
1/2 c17 

 

as k → ∞. 
|bK0 − bQk |k ≤ 2Vk + kβ   → 0, 

Finally, the proof of Theorem 5.4 can be applied without change. D 

The next algorithm corresponds to Algorithm NoisyCovDiff(ϕ).  As for that 
algorithm, ϕ is a nonnegative bounded measurable function on Rn with support in 
C0 , such that 

{
 ϕ(x) dx = 1. 
Rn 

I 

I 

2 
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Algorithm NoisyMod2Diff(ϕ) 

Input: Natural numbers n ≥ 2 and k; positive reals δk and εk ;  a real number γ 
satisfying 0 < γ < 1; noisy measurements 

gik 2 
K0     ik ik (105) � = |1     (z )| + X  , 

of the squared modulus of the Fourier transform of the characteristic function of 
an unknown convex body K0 ⊂ Cn whose centroid is at the origin, at the points in 

{zik : i = 0, 1 , . . .  ,I l } = {o} ∪ (1/kγ )Zn(+), 
k k 

where Zn(+) satisfies (80) and where the Xik ’s are row-wise independent zero mean 
random variables with uniformly bounded fourth moments. 

Task:  Construct an o-symmetric convex polytope Qk in Rn that approximates 
the difference body DK0. 

Action: 1. Let � = � , for i = −Il , . . . , −1, let x = kγ−1z , i = −Il , . . . ,I l  , be 
gik g(−i)k k ik ik k k 

the points in the cubic array 2Cn ∩ (1/k)Zn, and let 
t 

1 k 

(106) Mk (xik ) =  
   

 
(2πkγ )n 

j=−It 

cos(zjk · xik )gjk , 

for i = −Il , . . . ,I l  . 
k k 

2. Run Algorithm NoisyCovDiff(ϕ) with inputs n, k, δk , εk , and Mik replaced 
by Mk (xik ), for i = −Il , . . . , I l and with the obvious re-indexing in i. The output 

k k 
Qk of that algorithm is also the output of the present one. 

 
We shall show that the argument in Section 6 used to prove Theorem 6.4 can be 

modified to yield the following convergence result. 

Theorem 8.4. Suppose K0, δk , εk , and gk are as in Algorithm NoisyMod 2Diff(ϕ). 
Assume that limk→∞ εk = limk→∞ δk =0 and that 
(107) lim inf δ4k4γn−3n−3/2 > 0, 

k→∞ 

where γ  > 3(1 + 1/(2n))/4. If Qk is an output from Algorithm NoisyMod 2Diff(ϕ) 
as stated above, then, almost surely, 

δ(DK0, Qk ) ≤ c13δk   , 
for sufficiently large k. In particular, almost surely, Qk converges to DK0 as k → 
∞. 

Proof. Algorithm NoisyMod2Diff(ϕ) can be regarded formally as Algorithm Noisy- 
CovDiff(ϕ) with Mik and Nik replaced by Mk (xik ) defined by (106) and Nk (xik ) − 
dk (xik ) defined by (85) and (86) with x = xik , respectively. We follow the argu- 
ments of Section 6 with this substitution in mind. 

For Lemma 6.1, we note first that by (85), E(Nk (xik )) = 0 for all i and k.  The 
same calculations as in the proof of Lemma 6.1 lead to 

|E(gk(x)) − gK0 (x)| ≤ n(εk + 1/k) + dk , 
where dk is as in Lemma 7.1.  By that lemma, dk → 0 as k → ∞ and hence the 
second statement in Lemma 6.1 still holds. 
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Next, for Lemma 6.2, recall the definition (66) of βik (x). Then we have, by (85), 
t 
k 

gk (x) − E(gk(x))  = 
  

i=−It 

βik (x)Nk (xik ) 

1 
= 

(2πkγ )n 

t 
k   

j=−It 

t 
k 

  
⎝ 

i=−It 

⎞ 

βik (x) cos(zjk · xik )⎠ 
 

Xjk 

1 
= 

(2πkγ )n 

t 
k   

j=−It 

 
ξjk (x)Xjk, 

say. This is a weighted sum of independent random variables, so we can apply 
Khinchine’s inequality (see, for example, [29, (4.32.1), p. 307] with α = 4) to 
obtain 

⎛ 
t 4

⎞   k   
 

t c(2k + 1)n k
 

E ⎜
    

  
 i=−It 

βik (x)Nk (xik )  ⎜ ≤   
  (2πkγ )4n 

  
j=−It 

E |ξjk (x)Xjk| 

for some constant c > 0. Also, 
t 4 
k 

|ξjk (x)|4 ≤ ⎝ 
 

 
i=−It 

βik (x)⎠ ≤ 1, 

by (68).  The same argument as in the proof of Lemma 6.2 now leads to the 
conclusion that there are constants c18  = c18(ϕ) and N5  = N5((εk ), n) ∈ N such 
that if δ > 0, then 
(108) Pr(|gk (x) − gK0 (x)| > δ) ≤ c18(2k + 1) 
for all k ≥ N5 and all x ∈ Rn. (Compare (65).) 

k−4γnδ−4, 

Lemma 6.3 is unchanged. With (107) instead of the hypothesis (70) of Theo- 
rem 6.4 and with the new estimate (108), we arrive in the proof of Theorem 6.4 at 
the estimate 

Pr(ak ≥ δk ) ≤ c18(2k + 1)3nk−4γnδ−4 = O(k−3/2), 
so the Borel-Cantelli Lemma can be used as before. This is all that is required to 
allow the proof of Theorem 6.4 to go through until near the end, when we use the 
fact that kδ1/n → ∞ as k → ∞. By (107) and the fact that γ < 1, this still holds. 
Then the conclusion is the same, namely that, almost surely, 

δ(DK0, Qk ) ≤ c13δ1/n, 
for sufficiently large k. D 

Concerning Corollary 6.5, by using γ > 3(1 + 1/(2n))/4 and (107) instead 
of (70), we can achieve a convergence rate arbitrarily close to k−1/4+3/(8n), the 
same as before. If we assume instead that the random variables Xik in Algo- 
rithm NoisyMod2Diff(ϕ) are row-wise independent, zero mean, and satisfy (75) 
and (76), that γ > 1/2, and that 

 
(109) lim inf 

n(2γ−1) 
k 

 
> c19 

 

(n + 2), 
k→∞ log k 

I 

I 

I 

4 

I 

⎛ 

⎛ 

2n 

k 
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where c19 = c19(n, σ) = (3n+2σ2)/((2π)2n), then a rate arbitrarily close to k−1/2
 

can be obtained by the methods outlined in Remark 6.6. 
 

9. Phase retrieval from the modulus 

This section addresses Problem 3 in the Introduction. A simple trick converts 
Problem 3 into one very closely related to Problem 2, considered in the previous 
section. Suppose, more generally, that noisy measurements are taken of 

/
� here g g ,  w   

is an even continuous real-valued function on Rn with support in [−1, 1]n.  The 
just-mentioned trick is to take two independent measurements at each point, mul- 
tiply the two, and use the resulting quantities in place of the measurements of g 
considered earlier. Thus instead of (81) above we have, for r = 1, 2, measuremen 

�
 

z,k = 
/
� z/kγ ) + Xz,k , 

g(r) g( 
(r) 

of 
/
� or z ∈ {o} ∪ Zn(+), where Zn(+) satisfies (80) and where the X (r) ’s are 
g,  f k k z,k 

row-wise independent (i.e., independent for fixed k) zero mean random variables 
with uniformly bounded fourth moments. Then we replace g̃z,k in (81) by 

    (1)  (2) 

g(z/kγ 
g( 

(
X(1) (2)

  (1) (2) 

(110) gz,k = gz,k gz,k = � ) + 
/
� z/kγ ) z,k + Xz,k + Xz,k Xz,k . 

Setting gjk = gK0 zjk ,k and Xjk = Xzjk ,k , the same notation and analysis that gave 
(83), but now using (82) and (110), leads instead to 

M k (x) = gK0 (x) + N k (x) − dk (x), 

where 
 
 
 

t 

1 k   
 

 (111) M k (x) =  
   

 (2πkγ )n 
j=−It 

cos(zjk  · x)gjk 

is an estimate of gK0 (x),  

 
It   

  1  k   
gK

 jk γ
 

( 
(1) 

jk 
(2)
  

(112) 
N k (x) = (2πkγ )n 

1 
j=−It 

t 
k 

 0 (z 
/k ) cos(z 

· x) Xjk + Xjk 

+ cos(zjk · x)X X 
(2πkγ )n j=−It 

jk jk 

is a random variable, and the deterministic error dk (x) is given as before by (86). 
For our analysis it will be convenient to let 

It   
  1  k   

gK
 jk γ

 
( 

(1) 

jk 
(2)
  

(113) N k1(x) = (2πkγ )n 

and 
j=−It 

 
 

1 

 0 (z 
 

t 
k 

/k ) cos(z 
· x) Xjk + Xjk 

    
(1) (2) 

(114) N k2(x) = (2πkγ )n 

so that N k (x) = N k1(x) + N k2(x). 

 

j=−It 

cos(zjk · x)Xjk  Xjk  , 

I 

I 
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To keep the exposition brief, we shall not give a formal presentation of our algo- 
rithms, called  Algorithm  NoisyModLSQ,  Algorithm  NoisyModBlaschke, 
and Algorithm NoisyModDiff(ϕ), since they are very similar to Algorithm 
NoisyMod2LSQ, Algorithm NoisyMod2Blaschke, and Algorithm NoisyMod2Diff(ϕ), 
respectively. In each case the input is as before, except that instead of (94), (99), 
and (105), we now have measurements 

g(r) (r) 

ik  = |1 K0 (zik )| + Xik , 
for r = 1, 2, of the modulus of the Fourier transform of the characteristic function 
of K0, where the X(r)’s are row-wise independent zero mean random variables with 
uniformly bounded fourth moments.  The task is the same in each case.  For the 

    (1)  (2) 

actions, we first let gik = gik gik   and then follow the actions of the appropriate algorithms in the previous section, replacing g by g.  Thus in the action of each 

algorithm, we replace M  (x) by M  (x) d 
� 

by (111), for the appropriate x. 

Theorem 9.1.  Theorem  8.1 holds when Algorithm NoisyMod 2LSQ is replaced by 
Algorithm   NoisyModLSQ. 

 
Proof. In the action of Algorithm NoisyModLSQ, the measurements used in Algo- 
rithm NoisyCovLSQ are now M k (xik ), i = −Il , . . . ,I l  , where M k (xik ) is given by k k 
(111) with x = xik . Thus we have 

M k (xik ) = gK0 (xik ) + N k (xik ) − dk (xik ), 
i = −Il , . . . ,I l  , where N k (xik ) and dk (xik ) are given by (112) and (86), respec- 

k k 
tively, with x = xik . 

We claim that Lemma 8.2 holds when Nk (xik ) is replaced by N k (xik ).  To see 
this, use the triangle inequality to obtain 

 
t 

1 k         

 

t 

1 k         
⎞1/2 

    
Ik 

i=−It 

N k (xik )+ ≤ ⎝ 
Ik

 

⎛ 

  
i=−It 

It 

N k (xik )2⎠ 

⎞1/2 ⎛ 
It 

 

⎞1/2 

1 k         1 k             
≤  ⎝ 

Ik
 
i=−It 

N k1(xik )2⎠ ⎝ 
Ik

 

  
i=−It 

N k2(xik )2⎠ , 

where N k1(xik ) and N k2(xik ) are given by (113) and (114), respectively, with x = 
x  . Since g    is bounded, the same analysis as in the proof of Lemma 8.2, up to 
a constan   to the first of the two sums in the previous expression.  So it 
suffices to prove that, almost surely, 

 
t 

  1 k         

Sk =  
    

Ik 
i=−It 

N k2(xik )2
 → 0, 

as k → ∞. As in the proof of Lemma 8.2, it is enough to show that, almost surely, 
It 

1 k     
cpqk X(1) (2) (1) (2) 

(2πkγ )2n 
 
p,q=1 

pk Xpk Xqk Xqk  → 0, 

as k → ∞. This follows from Lemma 7.3 and proves the claim. 

⎛ 

+ 
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With this in hand, we can conclude exactly as in the proof of Theorem 8.1 
that Algorithm NoisyCovLSQ works with the new measurements under the same 
hypotheses. D 

We remark that the computation of E(Zk ) in Lemma 7.3 shows why we take 
two independent measurements of 

/ 
and multiply, rather than taking a single 

measurement and squaring it. In the latter case we would be led to 
  1 mk

     
2 2

 2n−2nγ+ν 

E(Zk ) = (2πkγ )2n 
 
p,q=1 

apqk E(Ypk )E(Yqk) = O(k ), 

which may be unbounded as k → ∞. 

Theorem 9.2. Theorem 8.3 holds when Algorithm NoisyMod 2Blaschke is replaced 
by Algorithm NoisyModBlaschke. 

Proof.  We now have 
 

where ζik is as in (102) and 
yik = ζik + T ik , 

  
(115)  T ik = 

N k (o) − N k (hk ui) 
hk 

= N k1(o) − N k1(hk ui) + 
hk 

N k2(o) − N k2(hk ui) , 
hk 

for i = 1 , . . .  , k, where N k1 and N k2  are given by (113) and (114).  The proof 
of Theorem 8.3 can be followed, except that for Lemma 5.2, one now shows that, 
almost surely, 

  1 2 

V k =  
    

k 
i=1 

T ik → 0 

as k → ∞. Using the fact that the earlier analysis applies to N k1, and using also 
the triangle inequality, as we did in the proof of Theorem 9.1, with (115), we see 
that it suffices to examine 

t 

1 k     
apqk X(1) (2) (1) (2) 

(2πkγ )2n 
 
p,q=1 

pk Xpk Xqk Xqk , 

where apqk is given by (104). Then Lemma 7.3 shows that it is possible to choose γ 
and ε exactly as in Theorem 8.3 to ensure that Lemma 5.2 holds. No further changes 
are required, so Algorithm NoisyCovBlaschke works with the new measurements 
under the same hypotheses as in Theorem 8.3. D 

Theorem 9.3. Theorem 8.4 holds when Algorithm NoisyMod 2Diff(ϕ) is replaced 
by  Algorithm  NoisyModDiff(ϕ). 

Proof. Note that by (112), we have E(N k (xik )) = 0 for all i and k. Therefore the 
same calculations as in the proof of Theorem 8.4 show that the second statement 
in Lemma 6.1 still holds. 

In Lemma 6.2, it is enough in view of the proof of Theorem 8.4 to consider the 
contribution to gk (x) − E(gk (x)) from N k2(xik ), namely, 

 
t t 

1 k k     
βik (x) cos(zjk · xik )X X . 

(2πkγ )n j=−It i=−It 
jk jk 

k k 
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This allows the same estimate as before, up to a constant. No further changes are 
required, so Algorithm NoisyCovDiff(ϕ) works with the new measurements under 

the same hypotheses as in Theorem 8.4. D 
 

The previous result provides a convergence rate for Algorithm NoisyModDiff(ϕ) 
arbitrarily close to k−1/4+3/(8n), as was noted for Algorithm NoisyMod 2Diff(ϕ) 

after Theorem 8.4. If we assume instead that the random variables Xik in Algo- 
rithm NoisyModDiff(ϕ) are row-wise independent, zero mean, and satisfy (75) and 
(76), that γ > 1/2, and that (109) holds, then a rate arbitrarily close to k−1/2 can 
be obtained by the methods outlined in Remark 6.6. 

 
 

10. Appendix 

10.1. Convergence rates. Rates of convergence for Algorithm NoisyCovDiff(ϕ), 
and hence for the two related algorithms for phase retrieval, are provided in Corol- 
lary 6.5 and Remark 6.6. For the other algorithms, however, rates of convergence 
are more difficult to obtain. To explain why, it will be necessary to describe some 
results from [24], where convergence rates were obtained for algorithms for re- 
constructing convex bodies from finitely many noisy measurements of either their 
support functions or their brightness functions. The algorithms are called Algo- 
rithm NoisySupportLSQ and Algorithm NoisyBrightnessLSQ, respectively. 

In [24], an unknown convex body K is assumed to be contained in a known ball 
RBn, R > 0, in Rn. An infinite sequence (ui) in Sn−1 is selected, and one of the al- 
gorithms is run with noisy measurements from the first k directions in the sequence 
as input. The noise is modeled by Gaussian N (0, σ2) random variables. With an 
assumption on (ui) slightly stronger than the condition that it is evenly spread 
(but still mild and satisfied by many natural sequences) and another unimportant 
assumption on the relation between R and σ, it is proved in [24, Theorem 6.2] that 
if Pk is the corresponding output from Algorithm NoisySupportLSQ, then, almost 
surely, there are constants C = C(n, (ui)) and N  = N (σ, n, R, (ui)) such that 

(116) δ2(K, Pk )  ≤ C σ4/(n+3)R(n−1)/(n+3)k−2/(n+3), 

for k ≥ N , provided that the dimension n ≤ 4.  Here δ2  is the L2  metric, so that 
n−1 

δ2(K, Pk ) =  hK − hPk   2, where   · 2 denotes the L2 norm on S . Convergence 
rates for the Hausdorff metric are then obtained by using the known relations 
between the two metrics. 

It is an artifact of the method that while convergence rates can also be obtained 
for n ≥ 5, neither these nor those for the Hausdorff metric are expected to be 
optimal. In contrast, it has recently been proved by Guntuboyina [28] that the 
rate given in (116) for n ≤ 4 is the best possible in the minimax sense.  With 
the additional assumption that K is o-symmetric, corresponding rates for Algo- 
rithm NoisyBrightLSQ are obtained in [24, Theorem 7.6] from those for Algo- 
rithm NoisySupportLSQ by exploiting (4) and the Bourgain-Campi-Lindenstrauss 
stability theorem for projection bodies. 

There are two principal ingredients in the proof of (116). The first is [24, Corol- 
lary 4.2], a corollary of a deep result of van de Geer [48, Theorem 9.1]. This corollary 
provides convergence rates for least squares estimators of an unknown function in 
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a class G, based on finitely many noisy measurements of its values, where the noise 
is uniformly sub-Gaussian. The result and the rates depend on having a suitable 
estimate for the size of G in terms of its ε-entropy with respect to a suitable pseudo- 
metric. The second ingredient is a known estimate (see [24, Proposition 5.4]) of the 
ε-entropy of the class of support functions of compact convex sets contained in Bn, 
with respect to the L∞ metric. 

It should be possible to apply this method to obtain convergence rates for Algo- 
rithm NoisyCovBlaschke and the two related algorithms for phase retrieval. With 
Gaussian noise, or more generally uniformly sub-Gaussian noise, this requires a 
modification to [48, Theorem 9.1] that, in our situation, allows (53) to be used in- 
stead of the same inequality without the term c11/k. (Compare [48, (9.1), p. 148].) 
This would yield the same convergence rates given in [24, Theorem 7.6] for Algo- 
rithm NoisyBrightLSQ. To cover the case of Poisson noise, however, one can make 
the general assumption that the random variables are row-wise independent, zero 
mean, and satisfy (75) and (76), as in Remark 6.6. This creates considerable fur- 
ther technical difficulties. It may well be possible to overcome these, using the 
machinery behind another result of van de Geer [48, Theorem 9.2]. But, as van de 
Geer points out in [48, p. 134], there is a price to pay: One now requires a uniform 
bound on the class G of functions, as well as estimates of ε-entropy “with bracket- 
ing”. The former condition might be dealt with by (49), which implies that the sets 
ΠQk are uniformly bounded for any fixed realization. It should also be possible to 
obtain the latter, by combining suitable modifications of the bracketing argument 
of Lemma 4.6 and of the proof in [24, Theorem 7.3] of the ε-entropy estimate for 
the class of zonoids contained in Bn. 

But we have not carried out a complete investigation into convergence rates for 
Algorithm NoisyCovBlaschke and the related algorithms for phase retrieval, despite 
having a strategy for doing so, described in the previous paragraph. The main rea- 
son is that there are more serious technical obstacles in achieving convergence rates 
for Algorithm NoisyCovLSQ, even for the case of Gaussian noise. In principal, 
the method outlined above could be applied by taking G to be the class of covar- 
iograms of compact convex subsets of the unit ball in Rn. However, an estimate 
would be required of the ε-entropy of this class with respect to the L∞ metric or 
some other suitable pseudo-metric. Even if this were available, an application of 
the theory of empirical processes as described above would yield convergence rates 
not for δ2(K, Pk ) but rather for   gK − gPk    2.  To obtain rates for δ2(K, Pk ), one 
would then also need suitable stability versions of the uniqueness results for the 
Covariogram Problem described in the Introduction. In view of the difficulty of 
these uniqueness results, proving such stability versions will presumably be very 
challenging. 

In summary, a full study of convergence rates for the other algorithms proposed 
here must remain a project for future study. 

 

10.2. Implementation issues. The study undertaken in this paper is a theoretical 
one. Although we propose algorithms in enough detail to allow implementation, 
the laborious task of writing all the necessary programs, carrying out numerical 
experiments, and comparing with other algorithms, largely lies ahead. 

At the present time we only have a rudimentary implementation of Algorithms 
NoisyCovBlaschke and NoisyCovLSQ. The programs were written, mainly in Mat- 
lab, by Michael Sterling-Goens while he was an undergraduate student at Western 
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Washington University and are confined to the planar case. Algorithm NoisyCov- 
Blaschke seems to be very fast; this is to be expected, since it is based on Algo- 
rithm NoisyBrightnessLSQ, which is also fast even in three dimensions. Behind 
both of these latter two algorithms is a linear least squares problem (cf. [25, (18) 
and (19)]). In contrast, the least squares problem (18) in Algorithm NoisyCovLSQ 
is nonlinear. Preliminary experiments indicate that reasonably good reconstruc- 
tions, such as those depicted in Figures 1–4 (based on Gaussian N (0, σ2) noise, 
k = 60 equally spaced directions in Algorithm NoisyCovBlaschke and k =  8 in 
Algorithms NoisyCovLSQ), can usually be obtained in a reasonable time in the 
planar case. Occasionally, however, reconstructions can be considerably worse, 
particularly for regular m-gons for very small m. Better and faster reconstructions, 
also in higher dimensions, will probably require bringing to bear the usual array of 
techniques for nonlinear optimization, such as simulated annealing. 

 

  
 

Figure 1. Pentagon, no noise Figure 2. Pentagon, σ = 0.01 
 
 

  
 

Figure 3. Ellipse, no noise Figure 4.  Ellipse, σ = 0.01 
 

Since the least squares problem (18) is nonlinear, it is important to control the 
number of variables, that is, the number of facets of the approximation Qk to the 
Blaschke body ∇K0 of K0. To a large extent, Algorithm NoisyCovBlaschke already 
does this; the potential O(kn−1) variables that would otherwise be required (see 
[24, p. 1335]) is, as experiments show, considerably reduced. In fact, if there is little 
or no noise, a linear programming version of the brightness function reconstruction 
program due to Kiderlen (see [25, p. 289], where it is stated for measurements 
without noise) is not only even faster, but also produces approximations Qk to 
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∇K0  with at most 2k facets.  Beyond this, there is the possibility of using the 
pruning techniques discussed in [41, Section 3.3]. 

There is also the possibility of changing the variables in the least squares prob- 
lem (18).  A convex polytope P whose facet outer unit normals are a subset of 
a prescribed set {±uj : j = 1 , . . .  , s} of directions can be specified by the vector 
h = (h+, h− , . . .  , h+, h−) such that 

1 1 s s 
P = P (h) = {x ∈ Rn : −h− ≤ x · uj ≤ h+, j = 1 , . . .  , s}. 

j j 

The possible advantage in using these variables arises from the fact that, by the 
Brunn-Minkowski inequality (cf. [21, Section 11]), the covariogram gP (h)(x) turns 
out to be (1/n)-concave (i.e., gP (h)(x)1/n is concave) on its support in the combined 
variable (h, x). One may therefore try solving the problem 

Ik 

(117) min     
(
Mik − gP (h)(xik )

)
 

i=1 

over the variables h+, h−, . . . , h+, h−. By expanding the square in (117), approxi- 
1 1 s s 

mating the sums by integrals, and using the Prékopa-Leindler inequality [21, Sec- 
tion 7], the objective function can be seen as an approximation to the difference of 
two log-concave functions. These admittedly weak concavity properties may help. 

Regularization is often used to improve Fourier inversion in the presence of noise. 
We expect this to be of benefit in implementing the phase retrieval algorithms, 
where preliminary investigations indicate that regularization will allow the restric- 
tion on the parameter γ to be considerably relaxed. 

Corresponding to the two basic approaches to reconstruction—one via the 
Blaschke body and one via the difference body—there are two different sampling 
designs. For the former, measurements are made first at the origin and at points in 
a small sphere centered at the origin and then again at points in a cubic array. For 
the latter, measurements are made twice, each time at points in a cubic array. These 
sampling designs are a matter of convenience, at least regarding the cubic array. It 
should be possible to use a variety of different sets of measurement points, at least 
for reconstructing from covariogram measurements, with appropriate adjustments 
in the consistency proofs. 
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