5 research outputs found

    CT-FEA of inhomogeneous lumbar with different loadings of the spinal cage

    Get PDF
    Interbody fusion has recently been successfully used to treat degenerative spinal instability. Without needing to test it in vitro, finite element analysis (FEA) was used to reflect the biomechanical interaction between lumbars and cages. However, the complex geometry of the lumbar region was not accurately modeled by the numerous studies that relied on homogenous, simplified models. This study aims to fill this knowledge gap by creating an inhomogenous lumbar model and using computed tomography finite element analysis (CT-FEA) to assess the biomechanical characteristics of a spinal cage implanted in the model. CT images were used to create a 3D inhomogenous lumbar model of L4-L5. In order to assess the biomechanical characteristics of the implanted cage, a spinal cage was inserted between the lumbar model, and the model was subjected to FEA with loads ranging from 500 N to 1200 N. As the load applied to the assembled model varied from 500 N to 1200 N, the results showed that the maximum principal's stress increased. With values of 12.33 MPa and 0.102 Pa, respectively, the von Mises stress for a load of 500 N had the lowest maximum and minimum values. At 1200 N of force, the highest stress was indicated by the maximum and minimum values of the Von Mises Stress, which were 30.37 MPa and 0.244 Pa, respectively. The stress distribution demonstrated that the inhomogeneous lumbar model was applicable and that using FEA could produce promising results. The significance of taking into account the spinal cages' biomechanical characteristics in non-homogeneous lumbar models is shown by this study. CT-FEA can be a valuable tool for assessing the biomechanical characteristics of spinal cages in non-homogeneous lumbar models. The significance of taking into account the spinal cages' biomechanical characteristics in non-homogeneous lumbar models is shown by this study

    Studies on Spinal Fusion from Computational Modelling to ‘Smart’ Implants

    Full text link
    Low back pain, the worldwide leading cause of disability, is commonly treated with lumbar interbody fusion surgery to address degeneration, instability, deformity, and trauma of the spine. Following fusion surgery, nearly 20% experience complications requiring reoperation while 1 in 3 do not experience a meaningful improvement in pain. Implant subsidence and pseudarthrosis in particular present a multifaceted challenge in the management of a patient’s painful symptoms. Given the diversity of fusion approaches, materials, and instrumentation, further inputs are required across the treatment spectrum to prevent and manage complications. This thesis comprises biomechanical studies on lumbar spinal fusion that provide new insights into spinal fusion surgery from preoperative planning to postoperative monitoring. A computational model, using the finite element method, is developed to quantify the biomechanical impact of temporal ossification on the spine, examining how the fusion mass stiffness affects loads on the implant and subsequent subsidence risk, while bony growth into the endplates affects load-distribution among the surrounding spinal structures. The computational modelling approach is extended to provide biomechanical inputs to surgical decisions regarding posterior fixation. Where a patient is not clinically pre-disposed to subsidence or pseudarthrosis, the results suggest unilateral fixation is a more economical choice than bilateral fixation to stabilise the joint. While finite element modelling can inform pre-surgical planning, effective postoperative monitoring currently remains a clinical challenge. Periodic radiological follow-up to assess bony fusion is subjective and unreliable. This thesis describes the development of a ‘smart’ interbody cage capable of taking direct measurements from the implant for monitoring fusion progression and complication risk. Biomechanical testing of the ‘smart’ implant demonstrated its ability to distinguish between graft and endplate stiffness states. The device is prepared for wireless actualisation by investigating sensor optimisation and telemetry. The results show that near-field communication is a feasible approach for wireless power and data transfer in this setting, notwithstanding further architectural optimisation required, while a combination of strain and pressure sensors will be more mechanically and clinically informative. Further work in computational modelling of the spine and ‘smart’ implants will enable personalised healthcare for low back pain, and the results presented in this thesis are a step in this direction

    Human lumbar spine biomechanics: study of pathologies and new surgical procedures

    Get PDF
    This thesis aims to shed light on the process that undergoes the lumbar spine as a result of intervertebral disc degeneration and different lumbar surgeries, paying special attention on the main risk factors and how to overcome them. Low back pain is the leading musculoskeletal disorder in all developed countries generating high medical related costs. Intervertebral disc degeneration is one of the most common causes of low back pain. When conservative treatments fail to relieve this pain, lumbar surgery is needed and, in this regard, lumbar fusion is the \textquotedblleft gold standard\textquotedblright technique to provide stability and neural decompression.Degenerative disc disease has been studied through two different approaches. An in-vivo animal model was reproduced and followed-up with MRI and mechanical testing to see how the water content decreased while the stiffness of the tissue increased. Then, degeneration was induced in a single disc of the human lumbar spine and the effects on the adjacent disc were investigated by the use of the finite element models. Further on, different procedures for segmental fusion were computationally simulated. A comparison among different intersomatic cage designs, supplemented with posterior screw fixation or placed in a stand-alone fashion, showed how the supplementary fixation drastically decreased the motion in the affected segment increasing the risk of adjacent segment disease more than a single placed cage. However, one of the main concerns regarding the use of cages without additional fixation is the subsidence of the device into the vertebral bone. A parametric study of the cage features and placement pointed to the width, curvature, and position as the most influential parameters for stability and subsidence.Finally, two different algorithms for tissue healing were implemented and applied for the first time to predict lumbar fusion in 3D models. The self-repairing ability of the bone was tested after simple nucleotomy and after instrumentation with internal fixation, anterior plate or stand-alone intersomatic cage predicting, in agreement with previous animal and clinical studies, that instrumentation may be not necessary to promote segmental fusion. In particular, the intervertebral disc height was seen to play an important role in the bone bridge or osteophyte formation.To summarize, this thesis has focused in the main controversial issues of intervertebral disc degeneration and lumbar fusion, such as degenerative process, adjacent segment disease, segment stability, cage subsidence or bone bridging. All the models described in this thesis could serve as a powerful tool for the pre-clinical evaluation of patient-specific surgical outcomes supporting clinician decisions. This thesis aims to shed light on the process that undergoes the lumbar spine as a result of intervertebral disc degeneration and different lumbar surgeries, paying special attention on the main risk factors and how to overcome them. Low back pain is the leading musculoskeletal disorder in all developed countries generating high medical related costs. Intervertebral disc degeneration is one of the most common causes of low back pain. When conservative treatments fail to relieve this pain, lumbar surgery is needed and, in this regard, lumbar fusion is the \textquotedblleft gold standard\textquotedblright technique to provide stability and neural decompression. Degenerative disc disease has been studied through two different approaches. An in-vivo animal model was reproduced and followed-up with MRI and mechanical testing to see how the water content decreased while the stiffness of the tissue increased. Then, degeneration was induced in a single disc of the human lumbar spine and the effects on the adjacent disc were investigated by the use of the finite element models. Further on, different procedures for segmental fusion were computationally simulated. A comparison among different intersomatic cage designs, supplemented with posterior screw fixation or placed in a stand-alone fashion, showed how the supplementary fixation drastically decreased the motion in the affected segment increasing the risk of adjacent segment disease more than a single placed cage. However, one of the main concerns regarding the use of cages without additional fixation is the subsidence of the device into the vertebral bone. A parametric study of the cage features and placement pointed to the width, curvature, and position as the most influential parameters for stability and subsidence. Finally, two different algorithms for tissue healing were implemented and applied for the first time to predict lumbar fusion in 3D models. The self-repairing ability of the bone was tested after simple nucleotomy and after instrumentation with internal fixation, anterior plate or stand-alone intersomatic cage predicting, in agreement with previous animal and clinical studies, that instrumentation may be not necessary to promote segmental fusion. In particular, the intervertebral disc height was seen to play an important role in the bone bridge or osteophyte formation. To summarize, this thesis has focused in the main controversial issues of intervertebral disc degeneration and lumbar fusion, such as degenerative process, adjacent segment disease, segment stability, cage subsidence or bone bridging. All the models described in this thesis could serve as a powerful tool for the pre-clinical evaluation of patient-specific surgical outcomes supporting clinician decisions. <br /

    Patient-Specific Implants in Musculoskeletal (Orthopedic) Surgery

    Get PDF
    Most of the treatments in medicine are patient specific, aren’t they? So why should we bother with individualizing implants if we adapt our therapy to patients anyway? Looking at the neighboring field of oncologic treatment, you would not question the fact that individualization of tumor therapy with personalized antibodies has led to the thriving of this field in terms of success in patient survival and positive responses to alternatives for conventional treatments. Regarding the latest cutting-edge developments in orthopedic surgery and biotechnology, including new imaging techniques and 3D-printing of bone substitutes as well as implants, we do have an armamentarium available to stimulate the race for innovation in medicine. This Special Issue of Journal of Personalized Medicine will gather all relevant new and developed techniques already in clinical practice. Examples include the developments in revision arthroplasty and tumor (pelvic replacement) surgery to recreate individual defects, individualized implants for primary arthroplasty to establish physiological joint kinematics, and personalized implants in fracture treatment, to name but a few
    corecore