480 research outputs found

    Computational control of flexible aerospace systems

    Get PDF
    The main objective of this project is to establish a distributed parameter modeling technique for structural analysis, parameter estimation, vibration suppression and control synthesis of large flexible aerospace structures. This report concentrates on the research outputs produced in the last two years. The main accomplishments can be summarized as follows. A new version of the PDEMOD Code had been completed based on several incomplete versions. The verification of the code had been conducted by comparing the results with those examples for which the exact theoretical solutions can be obtained. The theoretical background of the package and the verification examples has been reported in a technical paper submitted to the Joint Applied Mechanics & Material Conference, ASME. A brief USER'S MANUAL had been compiled, which includes three parts: (1) Input data preparation; (2) Explanation of the Subroutines; and (3) Specification of control variables. Meanwhile, a theoretical investigation of the NASA MSFC two-dimensional ground-based manipulator facility by using distributed parameter modeling technique has been conducted. A new mathematical treatment for dynamic analysis and control of large flexible manipulator systems has been conceived, which may provide an embryonic form of a more sophisticated mathematical model for future modified versions of the PDEMOD Codes

    The NASA controls-structures interaction technology program

    Get PDF
    The interaction between a flexible spacecraft structure and its control system is commonly referred to as controls-structures interaction (CSI). The CSI technology program is developing the capability and confidence to integrate the structure and control system, so as to avoid interactions that cause problems and to exploit interactions to increase spacecraft capability. A NASA program has been initiated to advance CSI technology to a point where it can be used in spacecraft design for future missions. The CSI technology program is a multicenter program utilizing the resources of the NASA Langley Research Center (LaRC), the NASA Marshall Space Flight Center (MSFC), and the NASA Jet Propulsion Laboratory (JPL). The purpose is to describe the current activities, results to date, and future activities of the NASA CSI technology program

    Dynamic Analysis of a Two Member Manipulator

    Get PDF
    Attenuating start-up and stopping vibrations when maneuvering large payloads attached to flexible manipulator systems is a great concern for many space missions. To address this concern, it was proposed that the use of smart materials, and their applications in smart structures, may provide an effective method of control for aerospace structures. In this paper, a modified finite element model has been developed to simulate the performance of piezoelectric ceramic actuators, and was applied to a flexible two-arm manipulator system. Connected to a control voltage, the piezoelectric actuators produce control moments based on the optimal control theory. The computer simulation modeled the end-effector vibration suppression of the NASA manipulator testbed for berthing operations of the Space Shuttle to the Space Station. The results of the simulation show that the bonded piezoelectric actuators can effectively suppress follow-up vibrations of the end-effector, stimulated by some external disturbance

    Dynamic Analysis of a Two Member Manipulator Arm

    Get PDF
    Attenuating start-up and stopping vibrations when maneuvering large payloads attached to flexible manipulator systems is a great concern for many space missions. To address this concern, it was proposed that the use of smart materials, and their applications in smart structures, may provide an effective method of control for aerospace structures. In this paper, a modified finite element model has been developed to simulate the performance of piezoelectric ceramic actuators, and was applied to a flexible two-arm manipulator system. Connected to a control voltage, the piezoelectric actuators produce control moments based on the optimal control theory. The computer simulation modeled the end-effector vibration suppression of the NASA manipulator testbed for berthing operations of the Space Shuttle to the Space Station. The results of the simulation show that the bonded piezoelectric actuators can effectively suppress follow-up vibrations of the end-effector, stimulated by some external disturbance

    Computational Control of Flexible Aerospace Systems

    Get PDF
    The main objective of this project is to establish a distributed parameter modeling technique for structural analysis, parameter estimation, vibration suppression and control synthesis of large flexible aerospace structures. This report concentrates on the research outputs produced in the last two years of the project. The main accomplishments can be summarized as follows. A new version of the PDEMOD Code had been completed. A theoretical investigation of the NASA MSFC two-dimensional ground-based manipulator facility by using distributed parameter modelling technique has been conducted. A new mathematical treatment for dynamic analysis and control of large flexible manipulator systems has been conceived, which may provide a embryonic form of a more sophisticated mathematical model for future modified versions of the PDEMOD Codes

    Large space structures and systems in the space station era: A bibliography with indexes (supplement 04)

    Get PDF
    Bibliographies and abstracts are listed for 1211 reports, articles, and other documents introduced into the NASA scientific and technical information system between 1 Jul. and 30 Dec. 1991. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems

    The NASA SBIR product catalog

    Get PDF
    The purpose of this catalog is to assist small business firms in making the community aware of products emerging from their efforts in the Small Business Innovation Research (SBIR) program. It contains descriptions of some products that have advanced into Phase 3 and others that are identified as prospective products. Both lists of products in this catalog are based on information supplied by NASA SBIR contractors in responding to an invitation to be represented in this document. Generally, all products suggested by the small firms were included in order to meet the goals of information exchange for SBIR results. Of the 444 SBIR contractors NASA queried, 137 provided information on 219 products. The catalog presents the product information in the technology areas listed in the table of contents. Within each area, the products are listed in alphabetical order by product name and are given identifying numbers. Also included is an alphabetical listing of the companies that have products described. This listing cross-references the product list and provides information on the business activity of each firm. In addition, there are three indexes: one a list of firms by states, one that lists the products according to NASA Centers that managed the SBIR projects, and one that lists the products by the relevant Technical Topics utilized in NASA's annual program solicitation under which each SBIR project was selected

    MIT Space Engineering Research Center

    Get PDF
    The Space Engineering Research Center (SERC) at MIT, started in Jul. 1988, has completed two years of research. The Center is approaching the operational phase of its first testbed, is midway through the construction of a second testbed, and is in the design phase of a third. We presently have seven participating faculty, four participating staff members, ten graduate students, and numerous undergraduates. This report reviews the testbed programs, individual graduate research, other SERC activities not funded by the Center, interaction with non-MIT organizations, and SERC milestones. Published papers made possible by SERC funding are included at the end of the report

    Large space structures and systems in the space station era: A bibliography with indexes

    Get PDF
    Bibliographies and abstracts are listed for 1219 reports, articles, and other documents introduced into the NASA scientific and technical information system between July 1, 1990 and December 31, 1990. The purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems

    Space construction activities

    Get PDF
    The Center for Space Construction at the University of Colorado at Boulder was established in 1988 as a University Space Engineering Research Center. The mission of the Center is to conduct interdisciplinary engineering research which is critical to the construction of future space structures and systems and to educate students who will have the vision and technical skills to successfully lead future space construction activities. The research activities are currently organized around two central projects: Orbital Construction and Lunar Construction. Summaries of the research projects are included
    corecore