1,118 research outputs found

    Electromagnetic design search and optimisation of photonic bandgap devices on distributed computational resources

    No full text
    Photonic crystals are devices with periodically modulated dielectric constant, designed to exhibit band gaps in a frequency spectrum in which electromagnetic waves cannot propagate. Tuning the properties of these structures to achieve precise band gaps before fabrication is of high interest to photonic crystal manufacturers. In this paper, we present the process of finding and optimising a photonic crystal design using a high-throughput Condor-based compute cluster and transparent database technology for easy storage, retrieval and reuse of the created designs. We also demonstrate how a band gap diagram can easily be obtained on a compute cluster when using the developed user interface technology. The optimisation process can easily be adapted to other problem area

    High performance computing of explicit schemes for electrofusion jointing process based on message-passing paradigm

    Get PDF
    The research focused on heterogeneous cluster workstations comprising of a number of CPUs in single and shared architecture platform. The problem statements under consideration involved one dimensional parabolic equations. The thermal process of electrofusion jointing was also discussed. Numerical schemes of explicit type such as AGE, Brian, and Charlies Methods were employed. The parallelization of these methods were based on the domain decomposition technique. Some parallel performance measurement for these methods were also addressed. Temperature profile of the one dimensional radial model of the electrofusion process were also given

    Computational Aerodynamics on unstructed meshes

    Get PDF
    New 2D and 3D unstructured-grid based flow solvers have been developed for simulating steady compressible flows for aerodynamic applications. The codes employ the full compressible Euler/Navier-Stokes equations. The Spalart-Al Imaras one equation turbulence model is used to model turbulence effects of flows. The spatial discretisation has been obtained using a cell-centred finite volume scheme on unstructured-grids, consisting of triangles in 2D and of tetrahedral and prismatic elements in 3D. The temporal discretisation has been obtained with an explicit multistage Runge-Kutta scheme. An "inflation" mesh generation technique is introduced to effectively reduce the difficulty in generating highly stretched 2D/3D viscous grids in regions near solid surfaces. The explicit flow method is accelerated by the use of a multigrid method with consideration of the high grid aspect ratio in viscous flow simulations. A solution mesh adaptation technique is incorporated to improve the overall accuracy of the 2D inviscid and viscous flow solutions. The 3D flow solvers are parallelised in a MIMD fashion aimed at a PC cluster system to reduce the computing time for aerodynamic applications. The numerical methods are first applied to several 2D inviscid flow cases, including subsonic flow in a bump channel, transonic flow around a NACA0012 airfoil and transonic flow around the RAE 2822 airfoil to validate the numerical algorithms. The rest of the 2D case studies concentrate on viscous flow simulations including laminar/turbulent flow over a flat plate, transonic turbulent flow over the RAE 2822 airfoil, and low speed turbulent flows in a turbine cascade with massive separations. The results are compared to experimental data to assess the accuracy of the method. The over resolved problem with mesh adaptation on viscous flow simulations is addressed with a two phase mesh reconstruction procedure. The solution convergence rate with the aspect ratio adaptive multigrid method and the direct connectivity based multigrid is assessed in several viscous turbulent flow simulations. Several 3D test cases are presented to validate the numerical algorithms for solving Euler/Navier-Stokes equations. Inviscid flow around the M6 wing airfoil is simulated on the tetrahedron based 3D flow solver with an upwind scheme and spatial second order finite volume method. The efficiency of the multigrid for inviscid flow simulations is examined. The efficiency of the parallelised 3D flow solver and the PC cluster system is assessed with simulations of the same case with different partitioning schemes. The present parallelised 3D flow solvers on the PC cluster system show satisfactory parallel computing performance. Turbulent flows over a flat plate are simulated with the tetrahedron based and prismatic based flow solver to validate the viscous term treatment. Next, simulation of turbulent flow over the M6 wing is carried out with the parallelised 3D flow solvers to demonstrate the overall accuracy of the algorithms and the efficiency of the multigrid method. The results show very good agreement with experimental data. A highly stretched and well-formed computational grid near the solid wall and wake regions is generated with the "inflation" method. The aspect ratio adaptive multigrid displayed a good acceleration rate. Finally, low speed flow around the NREL Phase 11 Wind turbine is simulated and the results are compared to the experimental data

    Parallelizing a very high resolution climate model using clusters of workstations with PVM and performance and load balance analyses

    Get PDF
    Environment and climate change problems are very complicated, and their research and operational prediction heavily depend on powerful computer techniques. Even with today most powerful supercomputer, the climate and environmental models are still limited to very coarse resolution. In this paper, we report our recent effort in parallelizing our very-high-resolution numerical model systems. First, the mathematical equations, algorithms, and numerical schemes are designed and analyzed; then domain decomposition, data decomposition, and functional decomposition schemes are tested in our implementations on clusters of HP workstations and/or DEC Alpha stations with PVM; finally, the performance and load balance are analyzed. Shelterbelts cause significantly inhomogeneous computation distribution on the domain, therefore, common and easiest domain decomposition does not work well on our problem. Special care must be taken to treat computations around shelterbelts. With carefull design of algorithms, we found that cheap and still powerful workstations or PCs make it possible to run these models in clusters of workstations or PCs

    Implicit Simulations using Messaging Protocols

    Full text link
    A novel algorithm for performing parallel, distributed computer simulations on the Internet using IP control messages is introduced. The algorithm employs carefully constructed ICMP packets which enable the required computations to be completed as part of the standard IP communication protocol. After providing a detailed description of the algorithm, experimental applications in the areas of stochastic neural networks and deterministic cellular automata are discussed. As an example of the algorithms potential power, a simulation of a deterministic cellular automaton involving 10^5 Internet connected devices was performed.Comment: 14 pages, 3 figure

    Decomposition Algorithms for Stochastic Programming on a Computational Grid

    Get PDF
    We describe algorithms for two-stage stochastic linear programming with recourse and their implementation on a grid computing platform. In particular, we examine serial and asynchronous versions of the L-shaped method and a trust-region method. The parallel platform of choice is the dynamic, heterogeneous, opportunistic platform provided by the Condor system. The algorithms are of master-worker type (with the workers being used to solve second-stage problems, and the MW runtime support library (which supports master-worker computations) is key to the implementation. Computational results are presented on large sample average approximations of problems from the literature.Comment: 44 page

    An Application Perspective on High-Performance Computing and Communications

    Get PDF
    We review possible and probable industrial applications of HPCC focusing on the software and hardware issues. Thirty-three separate categories are illustrated by detailed descriptions of five areas -- computational chemistry; Monte Carlo methods from physics to economics; manufacturing; and computational fluid dynamics; command and control; or crisis management; and multimedia services to client computers and settop boxes. The hardware varies from tightly-coupled parallel supercomputers to heterogeneous distributed systems. The software models span HPF and data parallelism, to distributed information systems and object/data flow parallelism on the Web. We find that in each case, it is reasonably clear that HPCC works in principle, and postulate that this knowledge can be used in a new generation of software infrastructure based on the WebWindows approach, and discussed in an accompanying paper
    corecore