
Durham E-Theses

Computational Aerodynamics on unstructed meshes

Zheng, Yun

How to cite:

Zheng, Yun (2004) Computational Aerodynamics on unstructed meshes, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/2830/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, Durham University, University O�ce, Old Elvet, Durham DH1 3HP
e-mail: e-theses.admin@dur.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/2830/
 http://etheses.dur.ac.uk/2830/
htt://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

COMPUTATIONAL AERODYNAMICS ON
UNSTRUCTURED MESHES

by
Yun Zheng

A thesis submitted to the University of Durham
for the degree of Doctor of Philosophy

A copyrSglhii of this ihesis resits
with ths mthm. No qwioltaitioim

poor writtem comsemt
51

School of Engiinieeriiiig ^-' 'v- ' ^

University of Durham ^IwK'
Sdemce Site, South Road " '"^'
mrMm D H l 3LE ^ ^^^^ ^̂ ^̂ ,̂ February 2004

Declaration

I declare that no material presented in this dissertation has been submitted toward any
degree, either at this university or anywhere else.

Yun Zheng

A(sIkiiii(D)wl©dl^M©iiii4

First and foremost, I thank my family for being so supportive
over the many years that I have been in school. I would
especially thank my wife for her encouragement and support
during this long journey. I also thank my mother and
mother-in-law for looking after my daughter during I am
studying.

I would like to express my sincerely gratitude to my
supervisor, Professor Li He for his generous financial support,
continuous interest and guidance during this study. Thanks to
Dr. David Gregory-Smith and Dr. Alex White for their
constructive advices on this thesis.

I am also indebt to my friends and colleagues in the Professor
L. He's CFD group, particularly Dr. H. Li, Dr. T. Chen, Dr. R
Vasunthukumm. for many useful discussions.

I would like thank my colleagues in Imperial College London,
especially Dr. J. Henderson, Dr. X. Wu, Dr. M. Kim for
useful discussion and helpful tips. I would especially like to
thank Mr. Z. Liu and Dr. J. Henderson for proofreading this
thesis.

A B S T R A C T

New 2D and 3D unstructured-grid based flow solvers have been developed for

simulating steady compressible flows for aerodynamic applications. The codes

employ the full compressible Euler/Navier-Stokes equations. The Spalart-Allmaras

one equation turbulence model is used to model turbulence effects of flows. The

spatial discretisation has been obtained using a cell-centred finite volume scheme on

unstructured-grids, consisting of triangles in 2D and of tetrahedral and prismatic

elements in 3D. The temporal discretisation has been obtained with an explicit

multistage Runge-Kutta scheme. An "inflation" mesh generation technique is

introduced to effectively reduce the difficulty in generating highly stretched 2D/3D

viscous grids in regions near solid surfaces. The explicit flow method is accelerated

by the use of a multigrid method with consideration of the high grid aspect ratio in

viscous flow simulations. A solution mesh adaptation technique is incorporated to

improve the overall accuracy of the 2D mviscid and viscous flow solutions. The 3D

flow solvers are parallelised in a MIMD fashion aimed at a PC cluster system to

reduce the computing time for aerodynamic applications.

The numerical methods are first applied to several 2D inviscid flow cases, including

subsonic flow in a bump charmel, transonic flow around a NACA0012 airfoil and

transonic flow around the RAE 2822 airfoil to validate the numerical algorithms. The

rest of the 2D case studies concentrate on viscous flow simulations including

laminar/turbulent flow over a flat plate, transonic turbulent flow over the RAE 2822

airfoil, and low speed turbulent flows in a turbine cascade with massive separations.

The results are compared to experimental data to assess the accuracy of the method.

The over-resolved problem with mesh adaptation on viscous flow simulations is

addressed with a two phase mesh reconstruction procedure. The solution convergence

rate with the aspect ratio adaptive multigrid method and the direct connectivity based

multigrid is assessed in several viscous turbulent flow simulations.

Several 3D test cases are presented to validate the numerical algorithms for solving

Euler/Navier-Stokes equations. Inviscid flow around the M6 wing airfoil is simulated

on the tetrahedron based 3D flow solver with an upwind scheme and spatial second

order finite volume method. The efficiency of the multigrid for inviscid flow

simulations is examined. The eflficiency of the parallelised 3D flow solver and the PC

cluster system is assessed with simulations of the same case with different

partitioning schemes. The present parallelised 3D flow solvers on the PC cluster

system show satisfactory parallel computing performance. Turbulent flows over a flat

plate are simulated with the tetrahedron based and prismatic based flow solver to

validate the viscous term treatment. Next, simulation of turbulent flow over the M6

wing is carried out with the parallelised 3D flow solvers to demonstrate the overall

accuracy of the algorithms and the efficiency of the multigrid method. The results

show very good agreement with experimental data. A highly stretched and

well-formed computational grid near the solid wall and wake regions is generated

with the "inflation" method. The aspect ratio adaptive multigrid displayed a good

acceleration rate. Finally, low speed flow around the NREL Phase 11 Wind turbine is

simulated and the results are compared to the experimental data.

SUBJECT TERMS: unstructured-grid, multigrid, adaptive mesh refinement, parallel

computing

Contents

List of Figures IV

List of Tables VIII

Nomenclature I X

L Introduction 1

1.1 Background 1

1.2 Objectives and Contributions of the Present Work 10

1.3 Thesis Outline 12

2. Literature Review 15

2.1 Unstructured-Grid Method 16

2.2 Unstructured Mesh Generation 21

2.3 Solution Mesh Adaptation 23

2.4 Multigrid Acceleration 25

2.5 Parallel Computing 27

2.6 CFD on Wind Turbine Applications 34

2.7 Summary Comments 35

3. Flow Models arad Discretisation 38

3.1 Governing Equations 39

3.2 Non-Dimensionalisation 43

3.3 Turbulence Modelling 44

3.4 Spatial Discretisation 49

3.5 Time Discretisation 62

3.6 Boundary Conditions 64

4. Mesh GeeeratioE aud Adaptation 71

4.1 Unstructured Mesh Generation 72

4.2 Mesh Adaptation 81

5. Multngrid Method 87

5.1 Introduction 88

5.2 Generation of a Sequence of Mesh Levels 89

5.3 Intergrid Transfer 93

5.4 Stability and Timestep of Multigrid Approach 95

6. Parallel Computing 96

6.1 Parallel Computing Environment 97

6.2 Multi-Block Method and Parallel Computing 100

6.3 Partitioning Unstructured Meshes 101

6.4 Performance of Parallel Computing 104

6.5 Parallel Implementation on Distributed Systems 110

7. 2D Validatiom and Discussion US

7.1 Results for Euler Algorithm 116

I I

7.2 Laminar Flows over a Flat Plate 126

7.3 Results for Turbulent flows 131

7.4 Concluding Remarks 147

8. 3D Validation and Discussion 148

8.1 Inviscid Flows around ONERA M6 Wing 149

8.2 Parallel Computing Performance 150

8.3 Turbulet Flows over a Flat Plate 153

8.4 Turbulent Flows over ONERA M6 Wing 154

8.5 Inviscid/Tiu-bulent Flows over Wind Turbine Blade 157

8.6 Concluding and Remarks 161

9. Conclusions and Recommendations 179

9.1 Conclusions and Highlights 181

9.2 Suggestion for Further Research 181

Reference 184

I I I

Lmt (D)ff Ffignflires

2.1 Cell-centred vs. cell-vertex scheme 17

2.2 Three-dimensional control volume: tetrahedron 18

2.3 A modem wind turbine used in commercial wind farms 34

3.1 Rotating Cartesian coordinate 42

3.2 2D control volume: triangle 50

3.3 3D control volume: tetrahedron 51

3.4 3D control volume: prism 52

3.5 Fluxes across a cell interface 57

3.6 Gradients valuation of the cell C using surrounding cells 60

3.7 Evaluation of first derivatives on 2D triangular cells 61

3.8 Evaluation of first derivatives on cells sharing a triangular interface 61

3.9 Evaluation of first derivatives on cells sharing a quadrangular interface 62

3.10 Ghost cells for boundary condition treatment 65

3.11 Wall function for tetrahedral elements near the solid wall 69

3.12 Wall function for prismatic cells near a solid wall 69

4.1 Mesh generation for an airfoil using the inflation method 78

4.2 Shift an open wall 79

4.3 Inflating sharp ended objects 80

4.4 sketch of subdivision types for a triangle 84

5.1 2D coarser levels from fine mesh for far from wall regions 91

5.2 2D coarser meshes generation in viscous layers 93

IV

5.3 3D coarser meshes generation 93

6.1 Cluster of PCs in the University of Durham 99

6.2 A 2D unstructured mesh and its compatible graph 104

6.3 Block interface 109

6.4 Interface treatment 109

6.5 Flow chart of parallel computing 114

7.1 Unstructured-grid in a 2D channel 116

7.2 Mach number contours 117

7.3 Mach number and Pressure distributions on the wall 117

7.4 The initial computational mesh around NACA 0012 118

7.5 Sequence of the unstructured meshes 119

7.6 Mach number contours 120

7.7 Entropy increase contours 120

7.8 Pressure coefficient distribution on the airfoil 121

7.9 Convergence history 121

7.10 Computational mesh around the RAE 2822 airfoil 123

7.11 Sequence of coarser levels 124

7.12 Mach number contours 125

7.13 Comparison of the surface pressure distribution 125

7.14 Comparison of convergence histories 126

7.15 Computational grid for the flat plate flow 127

7.16 Laminar flow over a flat plate 129

7.17 Velocity profiles at various Reynolds numbers 130

7.18 Velocity profile against the law of wall 131

7.19 Convergence history 132

7.20 Unstructured-grid over the RAE 2822 airfoil 133

7.21 Computational grid near the airfoil 134

7.22 Mach number contours 135

7.23 Eddy viscosity contours 135

7.24 Comparison of surface pressure distribution 136

7.25 Multigrid meshes used in AAMG near the airfoil 138

V

7.26 Convergence histories 139

7.27 Computational meshes around a turbine blade 140

7.28 Mach number contours 141

7.29 Flow vectors near the separation 141

7.30 Pressure coefficient comparison 141

7.31 Convergence histoi7 142

7.32 Close view of the mesh near the leading and trailing edge 143

7.33 Convergence histories 143

7.34 Close view the final mesh 144

7.35 Mach number contours 145

7.36 Flow vectors and eddy viscosity in the separation region 145

7.37 Blade pressure distribution 146

7.38 Convergence histories 146

8.1 Computational grid 163

8.2 Mach number contours 164

8.3 Surface pressure distributions 164

8.4 Convergence histories 164

8.5 A Linux PC cluster system 165

8.6 Two zones of the computational grid 165

8.7 Tliree zones of the computational grid 166

8.8 Four zones of the computafional grid 167

8.9 Observed speedup 167

8.10 Tetrahedral grid for the flat plate 168

8.11 Velocity profile on the tetrahedron mesh 168

8.12 Velocity profile on the prismatic mesh 169

8.13 Convergence history 169

8.14 Surface profile of the M6 wing 170

8.15 New interface grid 170

8.16 Mesh on the wing surface 171

8.17 3D view of the surface mesh 171

8.18 Four zones of the computational grid 172

V I

8.19 Mach number contours on the wing surface 172

8.20 Pressure distributions 173

8.21 Convergence comparison of single grid and multigrid solutions 174

8.22 NREL wind turbine 174

8.23 Pitch angle of the non-twisted blade 175

8.24 Velocity triangle 175

8.25 Computational grid for single passage 176

8.26 Pressure distributions on the wind turbine (7 m/s) 177

8.27 Pressure distributions on the wind turbine (13 m/s) 177

8.28 Pressure distributions on the wind turbine (19 m/s) 178

8.29 3D plot of the flow at 22%-28% of the span (7 m/s) 178

V I I

List of Tables

8.1 Specification of the PC cluster system 151

Summary of the single processor run 152

Summary of the two-zone run 152

Summary of the three-zone run 152

Summary of the four-zone run 153

Definitions of the test cases 158

Angle of attack at different spanwise positions 158

Flow conditions of simulations 159

8.2

8.3

8.4

8.5

8.6

8.7

8.8

VII I

Nomenclature

Latin Characters

a sound speed
A area, element, node
B element, node

skin friction coefficient

specific heat at constant pressure

pressure coefficient

specific heat at constant volume
C constant parameter, element, node
CFL Courant-Friedrichs-Levy number
e energy
E total energy per unit, error
E normalised error

f specific function
¥,F\F- - mass flux vector
G viscous flux vector
H Enthalpy
k tui'bulent kinetic energy
K constant
L length
M Mach number
N number of nodes, elements
n outward pointing vector
P pressure
Pr Prandtl number
q heat flux, primitive variable vector
Q conservative variable vector
r radius, distance to the cell centroid
res residual

IX

R source term vector
Re Reynolds number
s area
S strain, source term vector, rotation term vector
t time
T temperature
u,v,w
V volume
K dependent variables of specific equations
w residue vector
X position vector

Greek Characters
A orthogonal part of the face area vector
Ar time step
e entropy
K coefficient of thermal conductivity
r heat capacity ratio
T stress tensor
P density

V

V

T

CO

dynamic viscosity
kinematic viscosity
dependent variable of a specific turbulence model
stress tensor
rotational speed, vorticity

Superscripts
A

+,-
n

unit vector, Roe averaged value
value of left/right side of a face
iteration level

Subscripts
00

c
/
/
L, R
n
ref
t
trip

far field
centre of element
value of number i (cell, points, etc)
laminar
value of left/right side of a face
element index
reference value for non-dimensionisation
turbulence
value on the transition point

w
mm, max

Abbreviations

value on solid surface
minimum,maximum

API
CFD
CFL
DNS
FDS
FVS
FVM
LES
PVM
MPI
TVD
V M
2D
3D

application programming interface
computational fluid dynamics
courant friedrichs lewy number
direct numerical simulation
flux difference splitting
flux vector splitting
finite volume method
large eddy simulation
parallel virtual machine
message passing interface
total variation diminishing
virtual machine
two dimensional
three dimensional

X I

Chapter 1 Introduction

Chapter 1

Introduction

1.1 Background

Whereas a particular aerodynamic application could concern about the complex shock

wave interaction associated with a rocket, or internal flows in turbomachinery, the

common feature is that they are all dependent on fluid mechanics. In order to improve

their performance, it is very important to understand the characteristics of flows. A

powerful alternative to classical fluid mechanics and experimental methods of

aerodynamic analysis is Computational Fluid Dynamics (CFD). CFD is widely

accepted as a powerful means to study complex phenomena such as turbulence in the

modem engineering community. Furthermore, CFD can provide the possibility of

optimising the design of products with dramatic reduction of cost and time of product

development.

In the past decade, benefiting greatly from dramatic improvements in computer

technology, such as the central processor, memory and network technologies, the

development of modern CFD methods has been significantly enhanced so that

industrial applications with complex geometries may be considered. After years'

research efforts, it is clear that a modem computational method for industry

applications must have certain features:

Chapter 1 Introduction

It must be able to deal with complex configurations, like multiple bodies and complex
boundaries. This means that either unstructured meshes or multi-block structured
grids should be used.

The method must be able to resolve complex flow features, such as shock waves,

boundary layer interaction, and flow separation and attachment. Many such complex

flow features are associated with turbulence. Due to complex nature of the

mathematic modelling of turbulence effects, the most common used method to

simulate turbulent flows is still to adopt turbulence models. This would require not

only a higher order spatial discretisation scheme and adequate turbulence modelling

but also either a global mesh refinement or mesh adaptation technique.

Finally, the ability to obtain results in reasonable computing time is always very

important for practical CFD applications. This requires effective convergence

acceleration techniques such as the multigrid method and/or the parallel computing

technique to reduce overall computing time.

These requirements pose new challenges on both the design of numerical algorithms

and computing techniques.

1.1.1 Unstructured-Grid Method in CFD

In past decades, much progress has been made in developing computational

techniques for predicting flowfields about complex configurations. These techniques

include both structured and unstructured grid methods, both of which have their own

advantages and disadvantages.

Conventional CFD methods are usually based on structured grids (H-mesh, 0-mesh,

C-mesh, etc) with a topologically rectangular structure and usually remain fixed

throughout the simulation. This approach has been the mainstream of CFD for many

years due to the limitation of computing resource in the past. Unfortunately, the

generation of a suitable computing grid is not easy. Many, often conflicting, issues

need to be addressed: the leading edge of an aerofoil needs increased grid density to

avoid excessive numerical entropy increase, whereas for regions far from solid wall

Chapter 1 Introduction

usually less grid points are desired for economic computing. Also for accurate
Shockwave resolution grid density is required to be increased; and so on. One method
to deal with complex geometry configurations is the application of multi-blocked
structured-grids. For this method, the complex computing domain is divided to
several relatively regular sub-domains for grid generation. This process is nearly
impossible to be automatised because it requires certain CFD expertise and human
intervention. In some extremely three-dimensional geometry it is a very difficult task
just to generate an adequate computing grid with this multiblock technique.

By contrast, the unstructured-grid methodology offers some significant advantages

compared to the traditional structured-grid method for simulating flows over complex

geometries. This is mainly attributed to the promise that the construction of

unstructured grids around complex configurations, such as a multi-element airfoil,

requires much less time than a comparable multiblock structured-grid. Unstructured

meshes usually have irregular connectivity and contain triangular elements in two-

dimensions, while tetrahedral, prismatic and/or hexahedral elements are used in three-

dimensions. This gives the unstructured-mesh method ability to use fine local grids

without affecting the mesh in rest of the domain. In addition, because of its irregular

connectivity on an unstructured-grid, an automatic mesh refinement technique can be

carried out more easily to improve the accuracy of the solution with less computing

cost than dealing with a structured-grid. Furthermore, the homogeneous data

structures across the computing domain used in unstructured mesh methods enable

good load balancing and scalability for parallel computing on parallel computers or

cluster systems.

Although the unstructured grid approach enjoys its advantages over the structured

grid approach in some areas, the unstructured-grid based flow solvers usually suffer

several disadvantages:

• Complex data structures and extra storage are required. A flow solver utilising

the unstructured mesh method needs complicated data structure to describe the

geometry connectivity. Therefore the efficiency of this method is not as high

Chapter 1 Introduction

as a structured-grid method because of indirect memory addressing, and extra
memory is needed to store these information. In some three-dimensional
cases, the connectivity data usually requires more storage (both memory and
hard disk) than actual flow variables.

• Generation of adequate meshes for viscous computations is difficult.

Although the generation of isotropic unstructured meshes for some extreme

complex geometry can be done in a matter of hours, the generation of highly

stretched viscous grids remains a challenge.

• Accuracy may be compromised. With years of research, many high order

schemes have been developed for the structured-grid method. Unfortunately,

most of them are unable to be applied directly to an unstructured-grid method.

• Poor convergence rate. The traditional structured-grid permits the use of

highly efficient methods such as the Alternative Direction Implicit (ADI)

iteration scheme and multigrid to accelerate the solution. Unfortunately, most

of these powerful convergence acceleration methods could not be employed

easily in the unstructured-grid method or the efficiency is reduced when

implemented on unstructured meshes. Generally, CFD flow solvers utilising

unstructured grids are slower than structured-grid solvers.

• Discretisation using triangles (2D) and tetrahedral (3D) is more expensive to

evaluate than structured-grid using quadrilateral/hexahedra.

The use of unstructured meshes poses new challenges both on design of new

algorithms and the grid generation technique in computational fluid dynamics. In the

following sections, we will discuss the issues of accuracy, convergence, mesh

generation and parallel computing on unstructured mesh methods.

1.1.2 Mesh Adaptation

The accuracy of CFD methods is an interesting topic. It is defined by the difference

between a numerical solution and the actual flow, which is usually unavailable. A

Chapter 1 Introduction

numerical solution is often obtained following discretisation of the governing
equations on the solution domain. The difference, also referred to as the error, is often
associated with two discretisation phases. The error due to first part of the
discretisation is often referred to as the modelling error, which is defined as the
difference between the actual state of the flow and an exact numerical solution of the
mathematical model. The discussion of the modelling error is beyond the current
study. Our interest is focused on reducing the second group of the errors that originate
from the spatial discretisation of the flow domain to improve the accuracy of the
solution.

To reduce spatial discretisation errors, one can either use higher quality computing

grids or dynamically refined computing meshes within the areas where the numerical

errors are most likely to occur. In the past, much work has been done in developing

high order numerical schemes such as the TVD scheme for computational fluid

dynamics. It seems the use of a mesh adaptation technique may offer further accuracy

improvement in CFD simulations.

Mesh adaptation is one of the major advantages of the unstructured-grid method over

the traditional stmctured one due to its ability to concentrate computational as well as

storage resources to regions where they are most needed, (i.e. regions where the

numerical error mostly occurs.) Thus, flow solvers utilising mesh adaptation

techniques can achieve adequately accurate results with reasonable computational

costs in terms of both CPU time and storage. Furthermore, using the mesh adaptation

technique can decrease the user expertise and effort required to produce satisfactory

simulations by reducing the dependence on the grid used to initiate the process.

The mesh adaptation technique has achieved great success in solving the Euler

equations in past years. However, solving the Navier-Stokes equations with

turbulence effects using this technique has been less successful. Difficulties to

reconstmct quality viscous meshes in the boundary layer and inadequate error

estimation both contribute to the failure of this method in viscous flow simulations.

Chapter 1 Introduction

1.1.3 Mesh Generation

Designing a fully automatic two- and three- dimensional mesh generator is the

ultimate goal of the research of the unstructured mesh generation. This fully

automatic mesh generation requires software that could take the description of

geometry boundary definition and produce a well-formed mesh throughout the flow

domain without user intervention. There are several difficulties for this "fully

automatic" mesh generation:

1. Description of boundaries. In two dimensions, these boundaries could be

described as several curves that define the geometry. These curves could be

splines or connected straight lines. In three dimensions, it could be difficult to

specify a curved surface. A possible way would be using some sort of

established geometry systems.

2. Generation of high quality elements. A desire for high quality meshes for

complex geometries is the driving force for using the unstructured-grid

method. Researchers realised a long time ago that poor mesh quality, often

caused by non-smooth mesh and stretched elements, always leads to

unsmooth (and very likely unphysical) solutions and poor convergences.

3. Viscous mesh generation problems. For inviscid flow problems, even in some

extremely complex geometry configurations, some mesh generation packages

could produce well-formed triangular (2D) or tetrahedral (3D) elements in a

matter of hours. For viscous flow problems, stretched meshes are required in

regions of viscous effect domination, such as boundary layer and wakes.

Generation of this kind of mesh is extremely difficult especially for complex

3D configurafions.

A huge amount of research has been invested to develop fully automatic two- and

three-dimensional unstructured mesh generators. The 2D/3D inviscid mesh

generation has reached a mature state. Even for some extremely complex geometry

such as a full aircraft, with the aid of modern computers, the generation of high

quality unstructured meshes for inviscid simulations are possible. However, the

Chapter 1 Introduction

generation of viscous meshes, especially in 3D complex configurations, is still less
than mature. The main reason is that most unstructured-grid generators are isotropic
based: triangles (2D) and tetrahedral (3D). Triangular and tetrahedral elements are
ideal for discretisation the domain without any preferred direction. In viscous flow
simulations, different resolutions in various directions are desired due to disparity of
the flow. Isotropic based mesh generation techniques experience difficulties in
delivering the desired directional resolution. An alternative mesh generation
technique is required to resolve this problem.

1.1.4 Multigrid Method

Generally speaking, flow solvers utilising unstructured meshes are slower than those

based on structured grids. The key factors behind the lower computational efficiency

of the unstructured grid method are:

1) It requires complex data structures to store the connectivity of elements,

introducing the access overhead of memory through indirect addressing.

2) It is difficult to construct an efficient multigrid or implicit solution procedure

on unstructured meshes to accelerate the convergence.

3) Solution of viscous flows, due to using a highly stretched triangle (2D) or

tetrahedral (3D) in boundary layer regions, results in slower convergence than

the more body-fitted quadrilateral (2D) or hexahedral (3D) structured grids.

With carefully optimised coding, the overhead caused by indirect memory access and

complex data structure in the unstructured-grid method could be relieved, but it

cannot be avoided. The second and third factors can be minimized by using a

carefully designed multigrid technique.

A fine mesh resolves small-scale features of the flow field, but is slow to converge. A

coarse mesh converges quickly but loses small-scale features of the flow field. The

goal of a multigrid method is to obtain a solution with a fine grid resolution, but in a

low number of iterations that is characteristic of a coarse grid. From a time-

Chapter 1 Introduction

integration viewpoint, the convergence rate is dictated by the length of time-step,
since disturbances with long length scales are propagated at relevant characteristic
speeds. The use of coarse grids (thus larger time-steps) should then propagate error
disturbances more quickly, leading to faster convergence. For an explicit time-
marching scheme, the time-step is limited by the minimum mesh spacing due to the
stability requirement. Hence a good coarse mesh level should always increase the
time-step to achieve better accelerate ratio.

The multigrid method has been demonstrated as an effective means to accelerate

solutions on structured grids. Multigrid on unstructured grids, especially with mixed-

elements is still at very early stage of development. In recent years, some progress has

been made toward developing multigrid techniques on unstructured meshes. Various

successful multigrid methods have been developed for Euler solutions. However,

most of these methods achieve less satisfactory results for viscous flow problems due

to the presence of high grid aspect ratio.

High aspect ratio grids are commonly encountered near wall regions in high Reynolds

number flows, where the grid must be refined very tightly in the direction normal to

the wall to resolve the high velocity gradient. A second type of problem in which

highly stretched meshes may be found is in the mixing flow regions. The magnitude

of these grid aspect ratios maybe order of 10 to 1000 depending on cases. For two-

dimensional problems, the grid aspect ratio (AR) of a grid may be defined as,

AR^^ (1-1)

For a typical CFD problem, the time step to march the solution to a steady state can

be obtained by computing the minimum time step in the two directions,

. \CFLxAx CFLxAy]
A r , = m m , — ^ (1-2)

I ^ - v J,

Chapter 1 Introduction

Here, and are the acoustic eigenvalues in the respective coordinate directions.

The time step definition above illustrates the problem experienced with high aspect

ratio grids. When the aspect ratio is higher than unity, the time step is likely to be

restricted by the time step in the direction of the smaller grid spacing. This results in

poor error damping and propagation. Thus slow to converge. The problem of solving

a complex flow model such as the Navier-Stokes equations using an unstmctured

mesh method requires efficient and robust solution acceleration means to reduce the

stiffness caused by the high grid aspect ratio.

1.1.5 Parallel Computing

CFD, as its name implies, inevitably involves computing issues, such as CPU power

and memory technology etc. Obtaining results in less time has always been a major

consideration in CFD. Generally speaking, there are two ways to reduce the

computing time: using more efficient numerical methods to accelerate the solution,

such as muhigrid approaches and implicit schemes, or using computers that are more

powerful.

The computing power of the fastest computers has grown exponentially from 1940's

to the present, averaging a factor of 10 every five years. As computers become ever

faster, it can be tempting to suppose that they wil l eventually become "fast enough"

to solve all the computing problems in very short time. However, history suggests

that as a particular technology satisfies known applications, new applications will

arise that are enabled by that technology and that will demand the development of

new technology. Development at the high end of computing has been motivated by

numerical simulations of complex systems such as weather, climate, mechanical

devices, electronic circuits, manufacturing processes, nuclear reaction and chemical

reactions.

A very important trend changing the face of computing in recent years is the

enormous increase in the capabilities of the networks, performance of commodity

processors as costs of the computer and networking equipment simultaneously drop.

This trend makes it feasible to develop applications that use physically distributed

Chapter 1 Introduction

resources as i f they were part of the same computer. A typical CFD application of this
sort may be clustering commodity processors together with available networking
equipment, to complement mid-level high performance computing systems.

A cluster is a type of parallel or distributed processing system, consisting of a

collection of networked stand-alone computer systems working together as a single

computing resource. On a typical cluster system, each of the machines can be a

complete system, usable for a wide range of other computing applications. This leads

to the suggesfion to claim all the wasted computing power of old PCs/ workstations.

This idea is such a temptation since in some places one can easily find many old PCs

that are suitable for clustering.

Although this type of cluster parallel computing is cheap, highly available and can

scale to very large systems, there are some problems for using cluster parallel

computing on CFD applications. First, most networked hardware is not designed for

cluster parallel computing. The latency is generally very high and bandwidth

relatively low compared to traditional parallel computer systems with attached

processors. Secondly, most CFD codes are designed for serial computing. Some may

need major modifications.

To take advantages of the cluster parallel computing for CFD applications, especially

when using the systems not designed for high performance computing, some

considerations have to be put on the network design, mesh partitioning, data structure,

interface treatment and communication schemes.

1.2 Objectives and Contributions of the Present Work

The objective of the current research is to develop efficient and accurate 2D and 3D

unstructured mesh flow solvers for aerodynamics applications.

The specific objectives of this project are to:

• Develop accurate and efficient flow solvers capable of solving the

Euler/Navier-Stokes on 2D/3D unstructured meshes.

10

Chapter 1 ^ hitroduction

Develop a solution mesh adaptation technique to improve accuracy of inviscid

and viscous flow simulations for aerodynamic applications on unstructured

meshes.

Develop an efficient multigrid method capable of dealing with high grid

aspect ratio in viscous flow simulations.

• Validate the numerical algorithms and assess their accuracy and efficiency.

• Explore the possibility of clustering current office PCs in University of

Durham for parallel computing and identify the strengths and weaknesses of

this kind of cluster system for CFD applications. Develop accurate and

efficient parallel numerical algorithms and conduct preliminary testing to

verify the effectiveness and potential of these algorithms.

• Conduct numerical studies on the flows around a wind turbine blade with the

numerical algorithms developed.

Some specific contributions have been made in the following areas:

• Three distinct unstructured flow solvers: a triangle-based 2D solver, a

tetrahedron-based 3D solver and a prism-based 3D solver (semi-structured), have

been developed to solve the Navier-Stokes equations for aerodynamics

applications. These flow solvers feature cell-centred Finite Volume discretisation

schemes applicable to arbitrary complex geometry configurations, Roe's upwind

scheme, spatially second-order order, and the explicit multistage Runge-Kutta

method.

• An adaptive mesh refinement technique has been incorporated with the 2D flow

solver to achieve accurate results with reasonable computing cost.

• An "inflation" strategy for generating 2D and 3D viscous meshes has been

developed and validated.

11

Chapter 1 Introduction

• A new multigrid approach, Aspect-Ratio Adaptive Multigrid, has been developed
and validated for two- and three- dimensional flow cases. The effectiveness has
been demonstrated.

• The parallel computing technique has been coupled with the three-dimensional

flow solver on a PC cluster system to reduce computing time.

• Flows around an NREL Phase 11 wind turbine blade have been simulated with the

presented 3D flow solver. Satisfactory results have been achieved.

1.3 Thesis Outline

Chapter 2 provides a literature review of development of CFD methods on

unstructured meshes and relevant subjects.

In Chapter 3, flow models and numerical discretisation are summarised. The

governing equations of fluids are presented, followed by nondimensionalisation and

turbulence modelling. Next, the spatial discretisation, including two- and three-

dimensional finite volume schemes, a second order scheme construction, and an

upwind technique, are described. In this section, the idea of using an alternative

control volume in viscous layers is introduced. Subsequently, the temporal

discretisation based on a multistage Runge-Kutta approach is discussed. This chapter

is concluded with the description of physical and numerical boundary conditions.

Chapter 4 outlines the mesh generation method and mesh adaptation techniques.

First, the advancing front method for generation of two-dimensional inviscid

unstructured meshes is reviewed. Next, a new strategy for generating viscous

unstructured meshes for two and three dimensions is established. The final section of

this chapter discusses the mesh adaptation techniques including the error estimation

and the mesh reconstruction procedure.

Chapter 5 outlines a multigrid method for improving overall convergence rate of

unstructured-grid based flow solvers. It starts with an introduction of different ways

to generate the sequence of grids. First, a traditional semi-coarsening method - Direct

12

Chapter 1 Introduction

Connected Multigrid is proposed. Then a new approach - Aspect ratio Adaptive
Multigrid is presented for viscous computations on high aspect ratio grids. This
chapter ends with a discussion of the timestep and stability of this multigrid method.

The parallel computing technique is presented in Chapter 6. It includes the mesh

partitioning techniques, parallel computing environment, load balancing and

communication schemes.

In Chapter 7, the algorithm developed in previous chapters is applied on several 2D

test cases. The first case is inviscid flows in a bump channel, which is designed to

check the numerical accuracy of inviscid algorithm established in previous section.

To further examine the accuracy of the inviscid algorithm and demonstrate the

efficiency of the multigrid method and effectiveness of the mesh adaptation technique,

inviscid flows over NACA0012 airfoil are simulated. The next test case is about

laminar flow over a flat plate. In this case, the accuracy of using the upwind scheme

for viscous simulation and boundary condition treatment are examined. The turbulent

flow cases include viscous flows over a flat plate, the RAE2822 Airfoil , and a turbine

cascade. The turbulent flow over flat plate is presented to check the implementation

of current turbulence models and the coupled solution method. The RAE2822 airfoil

flow case is presented to demonstrate the accuracy of the current method and

effectiveness of the aspect ratio adaptive multigrid method. The simulations of flows

in a turbine cascade include detailed comparison with experimental data as well as

results using the traditional multigrid method and the aspect ratio adaptive multigrid

method. This chapter ends with the summary of the 2D algorithm and some

conclusions.

In Chapter 8, the 3D validation and discussion are presented. The algorithms

developed in previous chapters including the multigrid and parallel computing

techniques are applied to 3D inviscid and turbulent flows. The first case is an inviscid

flow over the ONERA M6 wing, for which experimental data is widely available in

the public domain. This provides a validation on the inviscid algorithm developed in

previous chapters. In the next section, the parallel computing results are presented on

a PC cluster system. Laminar and turbulent flows over a flat plate are discussed to

13

Chapter 1 Introduction

check the viscous treatment and turbulence models used in current research. Next,
viscous flow over the ONERA M6 wing is simulated to demonstrate the accuracy of
the current 3D flow solvers. The result is achieved on the cluster system with a
Multiple Instruction Multiple Data (MIMD) implementation. The convergence rate of
the new multigrid strategy is also presented. The last 3D test case concerns flow over
a wind turbine. Inviscid solution has been achieved on a single blade configuration.
Pressure distribution comparisons with experimental data are presented. Attempt has
been made to solve the turbulent flow around the wind turbine blade has failed. The
reason has been investigated. This chapter is concluded with the discussion of overall
3D results and general conclusions.

Chapter 9 summaries the thesis and offers some conclusions and suggestions for

future research.

14

Chapter 2 Literature Review

Chapter 2

Literature Review

This chapter is an overview of unstructured mesh methods in computational fluid

dynamics. A survey of numerical methods including the finite volume method,

upwind scheme, turbulence modelling is also presented with particular emphasis on

unstructured meshes. The discussion of unstructured mesh generation in complex

geometry configurations is focused on the generation of highly stretched viscous

meshes. Next, the efforts of improving the accuracy of unstructured mesh methods

with solution mesh adaptation are reviewed. The discussion of the multigrid method

on unstructured meshes is focused on different methods in simulating viscous flow

problems with high aspect ratio grids. Further topics, such as parallelisation software,

mesh partitioning and load balancing methods and state-of-art of parallelised CFD

flow solver are also discussed in detail. This chapter also provides a brief review of

CFD in wind turbine applications.

15

Chapter 2 ^ Literature Review

2.1 Unstructured=Grid Method

The use of arbitrary control volumes to solve fluid equations can be traced back to

early 80's. Jameson and Marvriplis' (1986) leading work of solving the Euler

equations on two-dimensional irregular meshes is the earliest results in this field.

They effectively extended the Finite Volume Method (FVM) established on

structured grids and use a central difference scheme with some dissipative terms to

suppress the odd-even decoupling. Their finite volume scheme is based on a

cell-centred setting on triangular meshes, which are obtained from subdividing

structured grids. Since then, much research has been carried out on the development

of flow solvers based on unstructured meshes, including the mesh generation

methods, discretisation schemes, higher order schemes, convergence acceleration

methods, data structures and parallel computing techniques.

2.1.1 Finite Volume Scheme

The majority of discretisation of the governing equations on unstructured meshes is

based on two lines of methods, Finite Element Method (FEM) and Finite Volume

Method (FVM). The finite volume scheme has achieved great success both on

structured meshes (Jameson et al. 1981; Denton 1983; He 1993) and unstructured

meshes (Frink 1996; Marvriplis 1992; Holmes 1994).

In the framework of a finite volume scheme, there are several distinct choices of the

control volume for unstructured meshes, such as cell-centred (Figure 2.1a) and

cell-vertex (Figure 2.1b) depending on where to store the flow variables. The

cell-vertex method exploits an efficient edge-based data structure, and has been

demonstrated to be easier in implementation of parallel computing and multigrid

(Marvriplis 1990; Marvriplis 1992; Venkatakrishnan and Mavriplis 1994). The

cell-centred method seems more expensive than the cell-vertex method on a given

mesh (Barth 1991) but the solution quality of the cell-centred setting is clearly

superior to the cell-vertex one (Pothen et al. 1993). The issue of cell-vertex vs.

cell-centred approximations is still an open one. In the present work, a cell-centred

16

Chapter 2 Literature Review

finite volume scheme on both two and three dimensional unstructured meshes is

implemented.

(a) 2D cell-centred scheme (b) 2D cell-vertex scheme

Figure 2.1 Cell-centred vs. cell-vertex scheme

The three-dimensional simulations of inviscid flows based on tetrahedral cells (Figure

2.2) have achieved tremendous success (Frink et al. 1991; Dawes 1992; Mamiplis

1992; Crumpton and Giles 1997). However, using this kind of control volume in

viscous flow simulations has been less successflil. This is mainly due to the difficulty

to generate adequate computing meshes in viscous effect dominated regions and poor

convergence rate caused by using highly stretched tetrahedral elements in these

regions. Aftosmis et al (1994) examined the accuracy of viscous flow simulations by

using various triangular meshes and quadrilaterals. The conclusion is that using

triangular elements in boundary layer regions can not achieve improvement in

solution accuracy. This leads to the development of the hybrid discretisation scheme.

Connel and Braaten (1994) adopted a hybrid approach in 3D viscous flow

simulations. In their approach, structured/semi-structured grids are used in the near

wall regions to overcome the difficulty of mesh generation in these regions. Sbardella

et al (1997) also presented a hybrid discretisation scheme for solving Navier-Stokes

equations in turbomachinery applications. In both cases, layers of structured-grids are

used near wall regions and several successful cases have been demonstrated.

Therefore, the surfaces of solid walls are discretised with structured-grids. This

17

Chapter 2 Literature Review

method is proven to be effective in some appUcations (Sbardella and Imregun 2000;
Sayraa et al. 2000), such as flows around turbine blades, in which the geometry of the
blade surface is relatively simple. However, when simulating flows around an object
whose geometry of its surface is complex, such as a whole aircraft, it is often very
hard to discretise the surface with a single structured-grid, and this method becomes
less useftal.

A

Figure 2.2 Three-dimensional control volume: tetrahedron

2.1.2 Upwind Scheme

In the solution of hyperboUc equations such as Euler equations, the theory of

characteristics is crucial in determining the directions of the signal propagation. The

information gained from the characteristics theory has been very useful not only in

the boundary condition treatment but also in the development of a computational

method: upwind scheme. The use of upwind schemes offers several advantages over a

central-difference formulation (Amaladas and Kamath 1998). Due to the fact that the

upwind scheme being a characteristic based method with the introduction of physical

properties of the equations into the discretised formulation aiming at preventing

numerical oscillations, while artificial dissipation terms have to be added to a

central-difference scheme for stability reasons. For viscous flow simulations, with the

upwind scheme the resolution of the boundary layer typically requires only half as

many points as with a central-difference code (Zheng and He 2001).

18

Chapter 2 Literature Review

Venkatakrishnan and Barth (1989) proposed the idea of using an upwind scheme on
two-dimensional triangular meshes to improve the accuracy of the solution. They
employed a variable extrapolation - MUSCL scheme (van Leer 1979) on a cell-vertex
setting, which is devised by Desideri and Dervieux (1988) on unstructured-grids, to
achieve higher accuracy, as done by other authors (Frink et al. 1991; Frink 1992;
Knight 1993). However, oscillations are still present in their results. The following
work by Barth and Jespersen (1989) presented a monotonicity principle in
multidimensional cases. The idea is to reconstruct the distribution of flow variables in
a control volume to be bounded by the values of its neighbour elements. This
reconstruction satisfies the monotonicity principle by constructing a truly
multidimensional limiter. They employed Roe's upwind scheme (Roe 1981) to
evaluate the inviscid fluxes. This method demonstrated smooth results even in
transonic flow cases.

Frink (1994) presented another approach to achieving oscillation-fi-ee in transonic

flow cases. A weighted averaging procedure is employed to interpolate the flow

variables from the cell centre to mesh points in a cell-centred finite volume setting.

The weighted averaging is based on the distance of a mesh point to its cell centre.

Flow variables on the centre of elements and mesh points are used to compute

gradients within the cell. Roe's approximate Riemann solver (Roe 1981) and an

explicit multistage Runge-Kutta scheme (Jameson et al. 1981) are employed to

compute inviscid flux contributions and to advance the solution to steady state.

Although this reconstruction is linear and not monotonicity preserving, it seems that

the averaging process generates enough dissipation to overcome the oscillation in

transonic flow simulations. In this method, the averaging procedure is performed on

elements and nodes, while a limiter has to be applied on edges (2D)/ faces (3D),

which are outnumbered elements and nodes in most cases. Thus, this approach seems

to be slightly more efficient than an MUSCL scheme. Holmes and Connell (Holmes

1994) proposed a modified reconstruction procedure which is linearity preserving.

Frink et al (1996) extended the reconstruction procedure to three-dimensional

unstructured meshes.

19

Chapter 2 Literature Review

2.1.3 Turbulent Flow Simulation

In the light of the success of the three-dimensional Euler solution (Marvriplis 1992;

Frink 1996; Barth 1995; Frink et al. 1991; Crumpton and Giles 1997;

Venkatakrishnan et al. 1991), some attempts have been made toward solving the

Navier-Stokes equations on unstructured meshes (Wang et al. 1999; Mavriplis 2000;

Barth 1995; Sbardella and Imregun 2000; Haselbacher et al. 1999). In the early stage,

the gradients in an element used for viscous fluxes computation are worked out by

simply integrating all the edges (2D)/ faces (3D) which composite the element. This

procedure is very computationally expensive because of the need for integrating over

all the faces. Barth (1991) proposed the idea of discretisation of viscous terms using a

finite element procedure which is less expensive to compute. Another contribution of

his work is an edge-based data structure, which greatly improved the efficiency of

CFD flow solvers based on unstructured meshes and is widely used in other

researchers' work (Frink 1994; Sbardella et al. 1998; Marvriplis 1992) ever since.

The idea of the discretisation of viscous terms using a finite element procedure can

also be found in Frink's work (1996).

One important phenomenon for complex viscous flows is turbulence, which is very

difficult to simulate due to the existence of a wide range of scales. The turbulence

effect is normally modelled by using turbulence models in the CFD community. The

most popular turbulence models can be classified by the number of equations used to

calculate turbulence effects as: zero-equation models, one-equation models and two

equation models. Due to the lack of structured-like grid lines, most popular

zero-equation models such as the Baldwin-Lomax model (Balwin and Lomax 1991)

are very hard to be implemented on unstructured meshes. Nevertheless, there are

several reports of success with this model (Marvriplis 1991). One equation and

two-equation models have the advantage of being easier to be implemented on

unstructured-grids and could potentially achieve better results. A one-equation model,

the Spalart-Allmaras model (Spalart and Allmaras 1992) gains popularity on

unstructured meshes; partially because it is less expensive than most two-equation

models and easier to be implemented on unstructured-grids than most algebraic

20

Chapter 2 Literature Review

models. Frink (1996) incorporated the Spalart-Allmaras model in his
three-dimensional flow solver with a wall fiinction for computing turbulent flow over
the ONERA M6 wing. His results show reasonable agreement with the experiment
(Schmitt and Charpin 1979). Wang et al. (1999) report their extensive research on
two two-equation models, the k-s and SST k-co model (Wilcox 1993), and
Spalart-Allmaras one equation model using an unstructured-grid flow solver. Their
results show advantage of the two-equation models over the one-equation model in
some cases. However, Spalart-Allmaras model produces excellent results in most
cases and it is less computationally expensive.

2.2 Unstructured Mesh Generation

Unstructured mesh generation is a relatively new field for most CFD researchers.

Within a few years tremendous advances in many diverse fields have been made

toward fully automatic mesh generations both in two- and three-dimension.

There are two major unstructured mesh generation methods for the two-dimensional

flow computation, the advancing-front method (Lo 1985) and the Delaunay

triangulafion method (Bowyer 1981; Waston 1981). The advancing-front method

starts with boundaries of the domain as the initial front. Then triangles are generated

from the current front into empty domain, and the front is updated. The operation is

repeated unfil the whole domain is triangulated. The Delaunay method adopts the

empty circumcircle property of the computational domain. It is generally more

efficient than the advancing-front method (Liu and Hwang 2001). However, the

advancing-fi-ont method has the advantage of being more robust because the

boundary integrity is guaranteed. A ful l review of unstructured mesh generation

theories and methods can be found in Ref (Barth 1995). Currently, the automated

generation of unstructured mesh for simulations of inviscid fiows has reached a fairly

mature state (Lohner and Parikh 1988; Jin and Tanner 1993; Muller 1996).

Generating computing meshes for some complex configurations such as ful l aircraft

can be complete in a matter of hours.

21

Chapter 2 Literature Review

In simulations of viscous flows with high Reynolds number, the gradients normal to
the wall are several orders of magnitude larger than those along the wall are. Thus,
highly stretched elements are required to resolve the rapid changes of the flow.
Generation of high quality unstructured meshes for viscous computations in complex
geometries remains a difficult task.

Despite the difficulties, some attempts have been made toward the generation of

highly stretched grids. Lohner and Cebral (2000) presented their non-isotropic mesh

generation method. In this method, an isotropic mesh (suitable for Euler solution) is

generated prior to a procedure of enrichment with points in order to achieve highly

stretched grids. Element reconnection is carried out with a constrained Delaunay

approach. The stretched tetrahedron-based mesh of a three-dimensional generic

hypersonic flyer is demonstrated in their report. This method is very efficient in most

cases because it does not require any surface recovery. However, a potential problem

for this method is that the quality of the final mesh highly depends on the Delaunay

procedure, which could fail in some extreme complex configurations.

Recently, there has been renewed interest in hybrid structured-unstructured grids and

mixed element unstructured grids (Sbardella et al. 1997; Sayma et al. 2000; Sbardella

et al. 1998). Such methods offer the advantage of reduced complexity of the grid and

possibly increased accuracy compared with equivalent pure triangular (2D) or

tetrahedral (3D) meshes. This is particularly true for viscous flow simulations since

with a hybrid or mix-element methods, hexahedral or prismatic elements could be

easily used to mesh the regions in/near the solid wall. The hybrid method combined

with an advancing layer method and the Delaunay recormection has been used

successfiilly in several cases (Haselbacher et al. 1999; Haselbacher and Blazek 2000;

Sayma et al. 2000). In spite of its great flexibility in the three-dimensional mesh

generation, the mixed-grid method shares the difficulty of generating high quality 3D

mixed-grid meshes in a generic 3D computing domain. Furthermore, due to the

difficulties to implement an efficient multigrid method and mesh adaptation

technique, the performance and accuracy of the flow solver using this kind of

discretisation could suffer.

22

Chapter 2 Literature Review

Holmes (Holmes 1994) proposed an "inflation" method for viscous unstructured
mesh generation. In this method, a few layers of structured-grids are used to "wrap"
the airfoil, and triangles are deployed in the rest of domain. This method has the
advantage of being easy to implement and high quality grids in the boundary layer.
However, the extension of this method to three dimensions is not easy and may lose
the some of the flexibility i f hexahedron is used in these layers (Sbardella and
Imregun 2000; Sayma et al. 2000). In two dimensions, the superior discretisation
properties of employing several layers of structured grids were investigated
numerically by Haselbacher (1999). Peiro and Sayma (1995) reported a similar mesh
generation scheme for 3D turbomachinery applications.

A brief survey of some of the fundamental algorithms in unstructured mesh

generation was presented by Owen (1998). Triangle, tetrahedral, quadrilateral and

hexahedral mesh generation methods currently in use in academia and industry are

discussed and categorised. His report also includes an informal survey of currently

available mesh generation software in public domain and a comparison of their main

features.

2.3 Solution Mesh Adaptation

The accuracy of numerical simulations is one of the main concerns in modem

computational fluid dynamics. There are various ways to achieve accurate results, one

can either employ a higher accurate scheme such as a high order upwind scheme,

better turbulence models, or enrich the computing grids, i.e. using finer mesh. In this

section, we will discuss the mesh enrichment approach on the unstructured mesh:

mesh adaptation.

In order to improve the accuracy of solution, an appropriate change of mesh

resolution in the region of high error may be needed. In the rest of the domain, where

the error is sufficiently small, such changes may not be necessary. This method is

often called mesh adaptation or refinement.

There are several ways to achieve adaptivity:

23

Chapter 2 Literature Review

• Increase the degree of polynomial approximation to improve the overall
solution quality;

• Relocate the grid points in the regions of rapid change of solution.

• Relocating grid points and enrich grid.

Obviously last one is the best way, because it provides the greatest way to control the

cell size to resolve flow feature such as shock wave, shear layer, wake, separation and

reattachment. In this method, the problem is firsfly solved on a coarse mesh to

roughly capture the basic feature of flows; the resulting solution is then analysed to

determine where more grid points are needed, and an improved mesh is generated.

The problem is solved again on the new mesh using the solution of the coarse mesh

as an initial guess. The process is repeated until the required accuracy is achieved.

Solution adaptive grids are increasingly being used in simulation of steady and

unsteady flows (Hawken 1991; Dawes 1993; Dawes 1994). The adaptation concept of

unstructured mesh applied to the Euler equations in complex geometry has gained

great success (Marvriplis 1990; Marvriplis and Jameson 1987), but solution adaptive

grids for the Navier-Stokes equations at high Reynolds numbers are less well

developed. The main reason is that the presence of different scales in viscous flows

makes the adaptation complicated (Vilsmeier and Hanel 1993). Despite this difficulty,

significant progress has been made in numerical computations of the Navier-Stokes

equations on fully unstructured adaptive meshes (Dawes 1993; Pelletier and Ilinca

1997; Holmes 1994; Ilinca et al. 1997; Roehl and Simon 1999).

The over-resolved problem described by Siden and Dawnes (1990) also has

significant impact on the usefulness of the solution adaptation method in viscous flow

simulations. In most current solution adaptation methods, the indicator used for

refinement is a scalar and hence not directional. It tends to refine the grid in boundary

layer regions without considering the local mesh topology and flow features: highly

stretched grid and strong ID flow. Siden et al. (1990) first proposed the idea of using

thin layers of structured-grids, consist of stretched elements. However, the mesh

24

Chapter 2 Literature Review

refinement producer used in his work still produced too many inefficient
near-equilateral elements in the boundary layer, shock, and wake regions. This
over-resolved problem remains a challenge in viscous flow simulations with a mesh
adaptation technique.

2.4 Multigrid Acceleration

Muhigrid has been demonstrated as an effective means to accelerate the solution for

both traditional structured-grid methods (Jameson 1994; Denton 1983; Swanson

2001) and unstructured-grid methods (Marvriplis and Jameson 1987; Carre 1997;

Mavriplis 1996; Mavriplis 1999). For structured-grid apphcations, multigrid has

become a routine practice (Steinthorsson et al. 1993; He 1993; Roberts et al. 1997).

But multigrid on unstructured grids, especially with mixed-elements is still at very

early stage of development. Depending on how the sequence of grids is constructed,

multigrid can be classified as two families: nested methods and non-nested methods.

Most non-nested methods start from generating several completely independent

meshes for a specified geometry. These meshes are essentially independent from each

other and the sequences of meshes do not always have common points. The

cormection between the various meshes is an inter-grid operator to interpolate flow

variables and to transfer residuals. This method has demonstrated efficiency and

robustness in some 2D inviscid flow cases (Marvriplis and Jameson 1987). In 3D

complex geometry cases, the generation of such sequence of unstructured meshes

becomes a very difficult task considering the current state of three-dimensional

unstructured mesh generation methods. Furthermore, the introduction of complex

bilinear interpolation, which is essential to transfer flow variables and residual

between various meshes of the sequence, means extra expensive computing

(Marvriplis 1992) and performance penalty. Peiro and Sayma (1995) reported their

3D multigrid implementation for unstructured meshes. In their method, a hybrid

approach is adopted in which the near wall mesh is generated by a hyperbolic type of

mesh generator. The main drawback of this method is that the quality of generated

elements in coarse mesh levels is very difficult to control.

25

Chapter 2 Literature Review

There are various possibilities for implementing a nested multigrid on unstructured
grids. An obvious choice is to couple multigrid method with an adaptive mesh
refinement technique and to use the sequence of meshes generated by the adaptive
mesh refinement procedure as difference mesh levels. This approach starts with a
relatively coarse mesh. The finer levels are generated by subdivision of coarser levels.
In this way, strictly nested levels are generated. This nested multigrid method coupled
with adaptive refinement approach has been adopted by several authors to use the
adapted meshes as the multigrid levels (MarvripHs and Jameson 1987; Marvriplis
1990; Connell and Holmes 1994). This method has the advantage of being easier to
generate the coarse levels. However, multigrid efficiency is limited by the efficiency
of solution on the fine mesh and the adaptive strategies are greatly restricted, as
pointed out by Mavriplis (1996).

Another nested multigrid approach starts with a fine mesh definition, and then

constructs the sequence of coarse mesh levels automatically by the cormection

relafion of mesh elements. This method is embodied in automated coarsening

approach. Many researchers (Lallemand et al. 1992; Venkatakrishnan and Mavriplis

1994; Diskin 1999) proposed to generate the coarse levels using neighbouring

relafions (volume-agglomeration) on a dual mesh. Marvriplis and Venkatakrishnan

(1995) have demonstrated the efficiency of a multigrid method based on this volume

agglomeration technique. The advantage of the method lies on reliability of

automated coarsening algorithm. However, there are some difficulties of these kinds

of method: firstly, the convergence is not good enough for low mach flows (Carre

1997). Secondly, this method carmot deal with stretched meshes with high aspect

rafio very well in solving viscous flow problems.

High aspect ratio grids are commonly encountered near wall regions in

high-Reynolds number flows, where the grid must be refined very fightly in the

direction normal to the wall to resolve the high velocity gradient. A second type of

problem in which highly stretched mesh may be found is in the mixing flow regions.

In both cases, the high aspect ratio grid causes a strong disparity in the wave

26

Chapter 2 Literature Review

propagation speeds in two coordinate directions resulting in serious convergence
deterioration.

For multigrid in traditional structured-grids, directional coarsening can remedy the

problem. The idea is to coarsen the grid only in the direction normal to the grid

stretching. Denton (1983) and He (1993) employed this idea to alleviate the stiffness

in unsteady viscous flow simulations. A similar idea can also be found in Giles and

Haimes' (1993) work.

On unstructured meshes, the directional coarsening method can also be implemented

using a graph algorithm. It starts by removing mesh points from an element

containing the points and anisotropy in the grid. The criterion to remove a mesh

points is based on the values of the stencil coefficients. After the points removing

procedure is completed, the rest of the mesh points are to form a coarser mesh level.

A major drawback of this method is that it may result in a coarse mesh of higher

complexity.

Marvriplis (Mavriplis 1999) proposed another directional multigrid to improve the

effectiveness of multigrid for viscous flows. In his implementation, the graph-based

coarsening algorithm is only employed in the boundary layer and wake regions. Once

these regions have been coarsened, a new unstructured mesh is generated for the rest

of domain with specified element size. This method has been demonstrated to be

successful in several two dimensional viscous flow cases. However, the convergence

rate of his method is still not ideal and remeshing the inviscid domain rather than

coarsening it increases the complexity of the method.

2.5 Parallel Computing

Although parallel processing has been used for many years in many systems, it is still

somewhat unfamiliar to most CFD researchers. The idea of parallel computing is

inifially developed by Massive Parallel Processors (MPP) vendors to provide high,

performance computing for energy applications, weather prediction, and earthquake

simulations. Because of high cost and low accessibility of these supercomputers, the

27

Chapter 2 Literature Review

parallel computing technique did not gain momentum until the later 1980s when high
performance microprocessors, high speed networks and standard tools for parallel
computing were widely used. The trend in parallel computing is moving away from
supercomputers to cheaper, general purpose cluster systems consist of loosely
coupled systems, such as PCs. This approach has a number of advantages, including
being able to scale to large system and cost/effectiveness. However, there are some
differences between this cluster system and traditional parallel computer:

1) On the traditional parallel computer, the parallel computing software package is

supplied by the system vendor. It requires very little modification of the CFD

code to ufilise parallel computing. On a cluster PC system, communication

software is required and some major changes have to be made in some CFD codes

to adopt parallel computing.

2) This kind of cluster system is usually intercormected through some kind of

network which is not designed for parallel computing. The latency is generally

very high and bandwidth is limited compared to supercomputers. Communication

costs become crucial to the computing performance of a cluster system.

3) On some shared memory parallel computers, mesh partitioning is not required.

But on a cluster system, since the memory is located on each node in the cluster

system, the computing mesh has to be divided into several parts for efficiency

reasons.

2.5.1 Parallelisation Tools

There are many software packages suitable for parallel computing for a cluster system

in public domain, including Chameleon (Gropp and Smith 1993), BSP (Bulk

Synchronous Parallel Model) (Oxford University Computing Laboratory 2000),

OPlus (Crumpton and Giles 1993), PVM (Dongarra, Geist et al. 1995), MPI (Gropp

and Lusk 1999).

PVM is a freely-available, portable, message-passing library generally implemented

on top of sockets. It is supported in a widely range of hardware and software

28

Chapter 2 Literature Review

platforms. These include single-processor and SMP Linux machines, as well as
clusters of Linux or Windows machines linked by networks. In fact, PVM will even
work across groups of machines in which a variety of different types of processors,
configurafions, and physical networks are used. Best of all, PVM is freely available
and is clearly the de-facto stemdard for message-passing cluster parallel computing.
PVM also provides facilities for parallel job control. It is important to note, however,
that PVM message-passing calls generally add significant overhead to standard socket
operations, which already had high latency. Furthermore, the message handling calls
do not constitute a particularly "friendly" programming model, so PVM is commonly
used as the "portable message library target" for high-level language parallel
compilers.

The MPI (Message Passing Interface) is developed with the intent to be a standard

message passing specification for Massive Parallel Processor (MPP) vendors. It

provides a set of message passing constructs and supports features of various MPP

and networked clusters.

Both PVM and MPI can be used for parallel computing either on a cluster system or

multiprocessor system. However, there are some fundamental differences between

them. The MPI is designed to deliver high performance on MMP systems. Thus, MPI

focuses on message passing and explicit resource management. It contains a larger set

of point to point and collective communication routines than PVM does. By contrast,

the PVM is built around the concept of the "virtual machine", which supports

dynamic resource management (add/remove hosts from virtual machine, spawn/kill

jobs). This virtual machine may consist of heterogeneous hosts. It means hosts may

be different architectures (PCs, workstations), running different operational systems

(windows, UNIX, Linux, etc), connected by different networks (Ethernet, ATM, etc)

and user's program may be developed using different programming language (C/C++,

FORTRAN). Generally speaking, MPI is faster within a large multiprocessor system,

even though some reports suggest PVM and MPI have very comparable performance

(Wiel et al. 1996). Furthermore, PVM is capable of running applications over

heterogeneous networks to provide fault tolerance, dynamic resource management

29

Chapter 2 Literature Review

and job control functions. A full comparison of features provided by PVM and MPI
can be found in ref (Geist et al. 1996).

2.5.2 Mesh Partitioning

In a cluster system, processors and memory are distributed across the system. Thus, a

computing problem has to be divided into several block/zones in order to distribute

the data to individual processors in the system. For a CFD application, the computing

grid needs to be partitioned to number of sub-grids and mapped to processors. There

are several popular algorithms for mesh partitioning, such as the coordinate bisection,

graph bisection and spectral bisection methods.

The coordinate bisection method is a very intuitive method, which comes

immediately into mind when considering a mesh partition problem. It takes advantage

of easy to compute and requires least memory. However, this method completely

ignores the communication between partitions in parallel computing. When a

computing grid is divided into several smaller sub-grids, it is inevitable that the

parallel flow solver needs to exchange information of the interface at each

synchronisation point to result in a physically relevant solution. In a cluster system,

this exchanging of information is done by a communication technique: message

passing. Because the sub-grids are located in processors which are interconnected by

some sort of network, the message passing is likely to incur some communication

overhead. In such a cluster system, overhead costs such as the message formation,

package sending/receiving, latency of communication are so high that it severely

restricts the parallel programs that can run efficiently. The overhead must be driven

down to more reasonable range for efficient computing. One optimisation technique

to reduce the impact of the high overhead is to reduce the total communication

volume during the parallel computing in a cluster system.

In response to the incentive to reduce the communication overhead in a cluster system

the number of edges cut during the partitioning of the mesh has to be minimized. A

fair amount of reseai-ch has been put into the general problem of partitioning data

assuming the data are representable as a graph. The resulting problem is called the

30

Chapter 2 Literature Review

graph partifioning problem. The spectral bisection method proposed by Simon (1991)
is based on the graph partition algorithm proposed by Pothen, Simon and Liou
(1990). Simon (1991) examined these three methods for parallel computing of CFD
problems and concluded that the spectral bisection method has significant
improvement over the other two in terms of resuhant partitions shape and edge cut
number. Barth (1995) and Venkatakrishnan (1991) also evaluated and reviewed these
partitioning methods and the conclusion is that the graph-based methods are more
computationally expensive and yield better partitions.

2.5.3 Parallel Computing With CFD

The concept of psirallel computing technique for CFD has been around for many

years. It has not been widely accepted in production engineering environments mainly

due to the complexity of parallel programming and prohibifive price of massive

parallel processor system. Due to increase in the capabilities of the networks,

performance of processors as costs of the computer and networking equipment

simultaneously drop, many researchers begin to parallelise their CFD solvers in order

to reduce the computing time (Crumpton and Gile 1997; Venkatakrishnan et al.

1991).

Mavriplis (2000) presented a parallelised unstructured flow solver on unstructured

meshes. In his work, a viscous flow solver is ported to parallel machines with

distributed memory using an explicit domain-decomposition and message passing

approach. The message passing in his work is via an MPI implementation and

openMP. A weighted partitioning strategy is described that incurs minimal additional

communication overhead. Several two- and three- dimensional high l i f t cases are

demonstrated on a 128 processor SGI Origin 2000 machine and a 512 processor Cray

T3E machine. Very good speedup (up to 300 on the 512 processor machine) has been

observed. The scalability of unstructured mesh method is demonstrated. However,

these computing are performed on MPP systems, which has very high bandwidth and

low latency compared to a cluster system consists of networked PCs.

31

Chapter 2 Literature Review

Hammond and Barth (1992) developed a data parallel mesh-vertex upwind
finite-volume scheme for solving the Euler equations on triangular unstructured
meshes. The main contribution of their work is the introduction of a novel
vertex-based partitioning scheme that minimises the computation and communication
costs associated with parallel computing on a massively parallel computer CM-2 with
8K processor.

Baggag et al. (1999) presented their work of a parallelisation of an object-oriented

unstructured aeronautics solver. They used the idea of the Object-Oriented

Programming (OOP) technique in computational fluid dynamics. The parallel

implementation is based on MPI. A compact Galerkin method combined with an

explicit time marching method is used in their solver for fime accurate computafions.

The main contribution of their work is the code structure, object model and data

structure in their parallelisation. Extensive benchmarks have been carried out on

IBM-SP2 and Origin2000 workstations. Significant speedup has been achieved in all

cases. However, all test cases presented in their report are carried out on 2D

unstructured meshes with relatively low computation and communication

requirements.

Gopalaaswamy et al. (1997) presented a paper on parallelisafion and dynamic load

balancing of NPARC codes. In their work, several two- and three- dimensional flow

cases are carried out to study the dynamic loading balance algorithm. To achieve

loading on each processor during execution, they decompose the computing domain

into more blocks than the number of machines available. In the initial phase, blocks

and interfaces are allocated to processors on the basis of block and interface sizes,

speed of individual processor and even network speed. In the dynamic load balancing

phase, the execution and communication cost of every processor are gathered and

analyzed to change the initial distribution of blocks. Good load balancing has been

proved to be important to overall performance. However, the communication

overhead caused by decomposing flow domains to more blocks than processor

numbers has been ignored by authors. This may seriously affect the overall

performance when communication volume becomes the bottleneck of performance.

32

Chapter 2 Literature Review

A fully distributed unstructured Navier-Stokes solver for large scale aeroelasticity
computations has been developed by Barakos et al. (2001). They presented the
development and validation of a parallel unsteady flow and aeroelasticity code for
large scale numerical models used in turbo machinery applications. MPI library is
used in the parallelisation of their code to exploit the Single Process Multiple Data
(SPMD) paradigm. METIS (Karypis and Kumar 1995) is used to decompose the
computing meshes. Five test cases have been carried out on CRAY T3E, SGI
Origin2000, clustered DEC alpha workstations, DELL PoweredgelSOO and
Networked LINUX PCs. In most of their test cases, the CRAY T3E is leading in the
speedup comparison (speedup is about 23 using 32 processors) and networked
LINUX PCs (speedup is about 3 at 4 processors) is the worst. These test cases also
reveal that the communication cost is vital to parallel computing performance.
Overall the parallel computing performance is very good. However, all test cases on
networked LINUX PCs have carried out on only 4 processors. It is hard to assess the
ful l strength of this kind of cluster system.

Mavriplis (2002) summarised his results obtained with the NSU3D unstructured

multigrid solver for the AIAA Drag Prediction Workshop. In his report, most these

cases were run in parallel on commodity cluster-type machines while the some were

run on an SGI Origin machine using 128 processors. He found that inexpensive

clusters of commodity computers are able to compute large numbers of cases using an

unstructured solver.

It should be noticed that most of the research reviewed here are carried out on MPP

machines, some with shared memory and attached processors. Therefore, many of

their conclusions may not be applicable to a cluster system with a moderate number

of nodes. The trend in parallel computing is moving away from supercomputers to

cheaper, general purpose cluster systems consist of loosely coupled systems, such as

PCs. The performance of parallel computing on middle-end cluster systems,

especially on PC cluster systems, has not been fully investigated.

33

Chapter 2 Literature Review

2.6 CFD on Wind Turbine Applications

Many countries in the world are strongly committed to increasing renewable energy

usage in order to help reduce greenhouse gas emissions and thereby contribute to

national targets for emissions reductions (Department of Trade and Industry 2002;

Danish Wind Industry Association 2001). Renewable forms of energy are those

continuously available sources which do not rely on exhaustible fossil fliels (e.g. coal,

oil and gas). Wind is an ideal form of renewable energy, which is highly available. In

the past, windmills were used to grind com and pump water. Today, wind turbines

use wind to generate electricity. Figure 2.3 illustrates a 2-blade wind structure. The

speed of turbines is controlled by a yaw (14 in Figure 2.3) motor which turns the

nacelle and rotor to face wind to gain maximum power.

• '
Cross section ot blade

Figure 2.3 A modern wind turbine used in commercial wind farms

34

Chapter 2 Literature Review

European countries such as Holland, Norway and France have been the world leaders
in the design and manufacture of wind turbines due to their historical experience of
several centuries, in building complex wind mill structures, which were used in water
pumping, grain grinding and for lumbering. In other part of world, the use of wind

wind turbines and improve the efficiency and reliability, better understanding of

flows around the wind turbine is required.

It is nearly impossible to conduct wind timnel tests because of the size of turbine

(typical radius of a single blade is about 10m). Schepers at al. (1997) reported their

early field test on a NREL Phase I I HAWT blade. Pressure distributions on the blade

surface on several spanwise positions are measured. This provides some validation

data for CFD codes, but not enough for fully understanding the flows because of

limited data available. Numerical simulation becomes a very important tool for

optimal designing of the shape of the blade and the control system.

Kang (2001) and Duque et al. (1999; 2000) reported their Navier-Stokes simulation

results of the NREL turbine. In their simulation, a multi-block structured-grid with

more than one million grid points is used around a single blade. The numerical results

show good agreement with experiment except near hub regions at low wind speed

conditions.

2.7 Summary Comments

Significant progress has been made in the area of spatial and temporal discretisation,

adaptive, multigrid and parallel algorithms. Unstructured grid technology is almost on

par with structured grid technology. The areas that require further research include

better and faster multigrid flow solvers that is sensitive to cell aspect ratio and grid

stretching, improved adaptive method for viscous flow simulations, better mesh

generation technique, and application of parallel computing technique to highly

available computing platforms.

I T

Chapter 2 Literature Review

1. Solution adapted grid method is increasingly used to compute complex steady
and unsteady flows. When adapting grids to flow features, a common problem
that may occur is that certain regions are over resolved at the expense of other
regions, especially in viscous flow simulations. This could serious affect the
overall convergence as well as the solution accuracy.

2. It is well known that the grid quality is very important in order to achieve an

accurate solution. Developing a general-purpose unstructured mesh generator

for viscous flow computation is proved to be a difficult task. However, many

unstructured mesh generators in public domain (Owen 1998) could produce

high quality inviscid grid. Thus, the task remaining is to find a way to

generate 2D/3D unstructured-grid for viscous computation utilising an

inviscid mesh generator available in the public domain. The strategy in the

current work is based on the "inflation" idea.

3. Al l efforts reviewed above provide encouraging evidence of the usefulness of

the multigrid method, particularly for the simulation of viscous flows with

high grid aspect ratio. In general, how to construct coarse mesh levels is the

key for a robust and efficient multigrid method.

4. The parallel computing technique could offer massive reduction of computing

time in the future. In all the efforts reviewed, significant development has

been made toward efficient parallel computing on super computers with

attached processors or high performance workstations. The objective of the

current research is to explore the possibility of clustering highly available

PCs. With slower network connection on most PC system, many conclusions

drawn on high performance computing with parallel computers may need to

be reconsidered, including loading balance, communication and partition

schemes.

5. The unstructured-grid could offer a better alternative to the structured-grid

method in renewable energy applications because of the flexibility in mesh

36

Chapter 2 Literature Review

generation: use a fine grid near the blade and a very coarse grid in far from
blade regions where the flow is largely uniform.

37

Chapter 3 Flow Models and Discretisation

Chapter 3

Flow Models and Discretisation

This chapter presents the governing equations of the fluid motion and numerical

discretisations for solving steady, compressible, inviscid/turbulent viscous flows on

2D/3D unstructured-grids.

The first part of the discussion is an introduction of the three dimensional

Euler/Navier-Stokes equations. To simplify the equations, a nondimensionalisation

procedure is described in some detail. Subsequently, turbulence modelling and a

coupled solution procedure for numerical simulations of turbulent flows are

presented.

In the next section, the spatial and time discretisations are discussed. The spatial

discretisation, including two- and three- dimensional finite volume schemes, a spatial

second order construction, and an upwind scheme, is described in detail. Next, the

temporal discretisation based on a multistage Runge-Kutta approach is presented.

This chapter is concluded with the presenting of physical and numerical boundary

conditions.

38

Chapter 3 Flow Models and Discretisation

3.1 Governing Equations
The governing equations for the three-dimensional compressible fluid motion are the

time-dependent compressible Navier-Stokes equations. The equations are expressed

as a system of conservation laws relating the rate of change of mass, momentum, and

energy in a control volume: Q. In an integral form, the equations are given as

d_
dt \\QdV + <^F(Q) • hdS = j^G(Q) hdS (3-1)

a ao da

Where V is the volume of Q, h is the outward pointing normal to the control volume

boundary 9Q . The vector of dependent variables Q, inviscid flux vector F and

viscous flux vector G are given as

' p pu pv pw

pu pu^ + p puv puw

pv F = puv / + J + p>w
pw puw pvv pv^ + p
E {E + p)u _{E + p)v (E + p)w

(3-2)

G = I + yy

UT,,+VT^+M>T^^-q^

(3-3)

In these equations, p is density, p is pressure, E is total energy per unit volume, u, v

and w are the Cartesian components of velocity in x, y and z directions, respectively.

T^j and q, are shear stress and heat conduction terms. Apart from basic assumptions

39

Chapter 3 Flow Models and Discretisation

of no chemical reaction, mass diffusion, or heat addition and the absence of body
force, we have to make further assumptions to close the equations, because the shear
stress and heat conduction terms are left undefined. To specify these terms, the fluid
is assumed to be Newtonian fluid, known as Stokes' hypothesis. For Newtonian fluid,
the shear stress is linearly related to the fluid strain rate and heat conduction is
linearly dependent on temperature gradients, written as,

^xx = | / " / (2 " . . - v ^ - w ,)

r , ^ = : | / / , (2 M . , - v ^ , - « J (3-4)

2 ,

2 r

dT
dx

57
dy

ciy=-K-^ (3-5)

dT

Where T is temperature, K is coefficient of thermal conductivity, /u is molecular

viscosity and Pr is the Prandtl number.

40

Chapter 3 Flow Models and Discretisation

In addition to the Stokes' hypothesis, the equations are closed with relations of state

for perfect gas

p = {r-\)

p = pRT (3-6)

Here R and y are gas constants.

When perfect gas is assumed, the molecular viscosity is only related to temperature.

The molecular viscosity is determined by Sutherland's law, as

C) (3-7)

Where C* is a constant related to the gas property, ju^^j- is the molecular viscosity at

the reference temperature T^^j .

Rotational Terms

The governing equations previously defined can also be derived for a moving control

volume in space, such as in turbomachinery applications. This can be done by adding

extra rotational terms to the original equations.

Figure 3.1 Rotating Cartesian coordinate

41

Chapter 3 Flow Models and Discretisation

For a Cartesian coordinate system rotating at a constant speed w around the x axis, as

shown in Figure 3.1, the Navier-Stokes equations can be expressed as,

dt
'\\QdV + • MS = • MS + \\\SdV
Q en en n

(3-8)

Where the Q is the state vector in a relative frame. The flux vectors F and G are

identical to the non-rotating equations except that all the variables are in a relative

frame. The source term S represents the centripetal and coriolis force. The vector of

the source terms takes into accounts for the rotation of the frame is given as,

S =

0

0

p[tix^y-2mv)
p[ti7^z + 2wv)

0

(3-9)

Here y and z denote the centroid of the element assuming the frame is rotating about

the X axis. The total energy becomes.

Where r = -Jy^ +z' is the distance from the x axis.

The perfect gas relation becomes,

p^{^-l) E-^p(u'+v'+w')+^pm'r'

(3-10)

(3-11)
p y - \ p 2^ ^ 2

The algorithm developed in this thesis can be used to solve the flow field associated

with a non-rotating frame and a rotating frame in its own Cartesian coordinate

system. The algorithm for a rotating frame should return to a non-rotating form when

the rotation speed is zero.

42

Chapter 3 Flow Models and Discretisation

3.2 Non-Dimensionalisation
Non-dimensionalisation of the above equations is useful because the resulting

equations are easy to understand. Although the selection of reference could be

different for internal and external flows, the number of reference variables is the

same. In the present study, all dependent variables and given conditions are non-

dimensionalised by a reference length (L ^ ^ j) , sound speed (a^^j), density (p ^ ^ j -) ,

molecular viscosity (/u^^j), temperature (T^ ĵ), and heat conduction coefficient (k^^j).

X, t p

<^refPrej <^refPref ^ ref f^rej

(3-12)

For shear stress and heat transfer terms, these terms are non-dimensionalised

according to their definifion:

r = q = f- (3-13)

In addition, the state constants and relations become,

r r

£ = - ^ + - , a (M ' + v ' + w ') (3-14)
r-\ 2

/ / = - ^ J 9 + -/7(w' + v ' + w ')
Y-\ 2

With this procedure, the form of the non-dimensional equations becomes identical to

the dimensional one except an extra term Re before the viscous term.

43

Chapter 3 Flow Models and Discretisafion

— \\\QdV + <HFndS = -^<HG-ndS (3-15)

3.3 Turbulence Modelling
One important phenomenon for complex viscous flows is turbulence, which is very

difficult to simulate due to the existence of a wide range of scales. There are many

types of methods to deal with turbulence, ranging from the simplest algebraic model

to the more accurate Large Eddy Simulation (LES) and Direct Numerical Simulation

(DNS). While the LES and DNS methods are more accurate than other turbulence

models, they require prohibitive amount of computing power. This is especially true

for CFD codes based on the unstructured-grid method. Therefore, the most widely

used way to deal with turbulence flow problems in industrial applications is still

turbulence modelling. For most of turbulence models, the Reynolds stresses are

assumed to be related to the mean strain rate by the eddy viscosity. Such models may

be classified as zero-equation model, one-equation model, and two-equation model,

depending on the number of transport equations needed to be solved to obtain the

eddy viscosity.

The closure of the Navier-Stokes equations requires the definition of turbulent

Reynolds stress. For eddy viscosity models, the stress tensor is modelled as

proportional to the mean strain-rate tensor.

r , , = 2 / v , (5 , - 5 „ „ J , / 3)

T^,=2pi,iS,-S„„5^l^-2pk5^l2> (3-17)

44

Chapter 3 Flow Models and Discretisation

" 2
du, ^ duj

Where,

= 1 while i = J
\ = 0 while i ^ j

Heat conduction terms

q, = (it, + <la Pr, Pr,
— (3-18)
dx

3.3.1 One-Equation Spalart-Allmaras Model

The Spalart-Allmaras model is an eddy viscosity model based on a transport equation

for the turbulent viscosity. It was inspired from an earlier model: Baldwin-Barth one

equation model (Balwin and Barth 1991). The formulation and coefficients are

defined based on dimensional analysis, Galilean invariance, and some selected

empirical results. The empirical results used in its development are two-dimensional

mixing layers, wakes, and flat-plate boundary layer flows.

The aim of this model is to improve the predictions obtained with algebraic mixing-

length models and to provide an alternative to two-equation models. Furthermore, this

model is easier to adapt to an unstructured-grid method compared to an zero equation

model such as Balwin-Lomax model (Balwin and Lomax 1991), because it requires

only the distance from the wall to work out the eddy viscosity at a grid point rather

than integration along lines normal to the wall (Balwin and Lomax 1991).

In the Spalart-Allmaras model (Spalart and Allmaras 1992), the eddy viscosity

function is defined in terms of a dependent variable, v , and a wall function, , as

following:

(3-19)

45

Chapter 3 Flow Models and Discretisation

In zones far from wall, the wall fiinction equals 1.

The convective transport equation of the eddy viscosity is modelled as

M + ̂ + ̂ + ̂ = Q , (l - ^) p S v +
dt dx dy oz

(J ox
p(Ui+v,)—-

OX dy
pip I +v,)

dz\ oz

civ dv 9v 5v
+

dx dx dy dy
(3-20)

Where the right-hand-side terms represent the turbulence eddy viscosity production,

conservative diffusion, near wall turbulence destruction, transition damping of

production, and transition source of turbulence.

The model constants for free-shear flows to control the production and diffusion of

turbulent eddy viscosity are

CM =0.1355 C , 2 =0.622 cr = 2/3 (3-21)

The additional constants and auxiliary functions for destruction of turbulent eddy

viscosity in the boundary layer are

C „ , = Q , / / c ^ + (l + Q ,) / c T r =
SK'd 2 J 2

C„„ = 0.3

C„,=2 (3-22)

The auxiliary functions for near wall regions are given as

S=S +
{Kd)

2 J v2

46

Chapter 3 Flow Models and Discretisation

X
/ > . 2 = 1 -

X
vl

C w = v . i (3-23)

The auxiliary functions to control the laminar region of the shear layers and transition

to turbulence are defined as:

ftrip\ -^IriplSihp "̂ ^P - c ,
CO trip

flripl ~ ^iripi ' ^irip^X)

g, . =min(0.1,At//(^,„,Ax,„^))

C,„^>=l-0 C„.,„, =2.0 C,„„3=1.2 C 'Ihp2 Iripi UriplA = 0.5 (3-24)

Where is the vorticity at the boundary trip point, AL'̂ is the norm of difference

between velocity at a field point and the velocity at the trip point, Ax,̂ p̂is the grid

spacing along the wall at the trip, and d is distance fi-om the wall.

Boundary conditions must be supplied for the turbulent model. Ideally, when the

mesh near the wall is fine enough {y'^ <3), the eddy viscosity on solid wall should be

set to zero. In most high Reynolds number flow cases, a wall fiinction has to be used

in near wall regions to provide enough resolution. In this case, the eddy viscosity on a

wall surface is given by the wall function relation, as we will discuss in the boundary

condition section. For the inlet far from wall and without incoming distortion, the

eddy viscosity should be set to zero too, but for numerical reasons, a very small value

of the dependent variable (P" <10"^) should be used as the inlet condition (Spalart

and AUmaras 1992), which implies a very small value for the eddy viscosity. For an

outlet, a simple extrapolation is used to transport information from the computational

domain to outside.

47

Chapter 3 Flow Models and Discretisation

3.3.2 Coupled Solution Method

The solution procedure for the turbulence transport equation is similar to that for

solving the Navier-Stokes equations, so it is convenient to couple the turbulence

transport equation with the main flow equations. There are advantages and

disadvantages of using this approach. There are two main reasons for a coupled

method.

• Coding is relatively easier with this coupled method, especially when more

than one turbulence models are adopted in a CFD code. Turbulence dependent

variables can be aligned with other state variables using a vector.

• Turbulence dependent variables can use the same second spatial order

method, upwind scheme and diffusion term treatment in a single vector.

This makes the code slightly more efficient than a decoupling method. Because the

turbulent model equations are tightly coupled with the main equations, the time

discretisation is an explicit multistage Runge-Kutta scheme, the same as that for the

main equations, and the same time step has been used. Theref&re, the turbulent model

equations are tightly coupled with the main equations.

After coupling the turbulence equations with the main equations, the governing

equations become:

— f f fe^'^ + -hdS^^ j^G(Q) • MS + \\\RdV (3-25)

The state variable vector Q, inviscid flux vector F and viscous vector G are

48

Chapter 3 Flow Models and Discretisation

p
pu
pv
pw
E

pV\

pVn

F =

pu pv pv
pu^ + p puv puw

puv pv^ +p pm>
puw pvv p^^ +p

{E + p)u i + {E + p)v (E + p)w

puV\ pvVl pwVX

|_ puVn pvVn pwVn

G =

T,

dV\
dx

dVn
dx

I +

xy

dy

dVn
dy Q.,

+

Q„

dVl
dz

dVn
dz

(3-26)

Where n is the number of turbulence transport equation numbers, and g„ and K„ are

constants and dependent variables relating to a specific turbulence model. R is the

source term vector.

49

Chapter 3 Flow Models and Discretisation

3.4 Spatial Discretisation
The discretisation of the governing equations follows an approach, which decouples

the spatial discretisation and temporal discretisation. Discretisation of the solution

domain produces a computational mesh on which the governing equations are solved.

In the current study, the spatial discretisation is carried out based on a Finite Volume

Method (FVM). The name of finite volume method comes from the technique that the

integral formulation of conservation laws. For the unstructured-grid method, it is

natural to discretise the computational domain using a finite volume scheme.

3.4.1 Two-Dimensional Finite Volume Method

In the current research, unstructured meshes in two dimensions consist of only

triangular elements (Figure 3.2), which are non-overlapping with each other and fully

cover a computational domain. As previous stated, the control volume is cell-centred

based, i.e. all the flow variables are stored in centre of the triangle, and flux

evaluation occurs on the three edges which define the triangle.

Figure 3.2 2D control volume: triangle

The numerical evaluation of the surface integrals in conservative equations is done

separately for the inviscid and viscous contributions. For a finite volume formulation,

the inviscid contribution can be approximated using midpoint integration of the flux

over each edge of the triangle that defines the control volume.

50

Chapter 3 Flow Models and Discretisation

\F - Ml = \F •dL^Y.^{Q\Q-,n:)-l, (3-27)
an an 1=1

Here / is the length of the edge, which two neighboured triangles are attached

together, is the numerical flux calculated from the states of the left

sideg"^ and the right side of the edge, which is determined by some kind of

interpolation from the left and right side cells of the interface.

3.4.2 Three-Dimensional Finite Volume Method

In three-dimensions, a computational domain is normally discretised by tetrahedral

control volumes (Figure 3.3), with four points forming the volume and every three

out of the points forming four faces. This kind of control volume has the ability of

rapidly increasing control volume size to cover the whole domain for accurate and

economical computations.

A

Figure 3.3 3D control volume: tetrahedron

When computing viscous flows on unstructured meshes, it is inevitable that highly

stretched grids are required in order to resolve boundary layer near solid wails. This is

because of gradients in the normal direction to the solid wall being several orders

higher compared with gradients along the wall direction. We find that using layers of

prismatic control volumes (Figure 3.4) in the viscous effect dominated regions, such

51

Chapter 3 Flow Models and Discretisation

as near a solid wall, wake, etc, can immensely improve accuracy of the solution and

effectively reduce the difficulties of viscous mesh generation. For a prismatic control

volume as shown in Figure 3.4, the bottom and top face consist of three points and

three side faces are formed by four points that are not necessarily coplanar.

Figure 3.4 3D control volume: prism

3.4.3 Fluxes Evaluation

The fluxes evaluation procedure on a finite volume method is simply summing up

contribution of the fluxes on each face of the control volume. The procedure can be

described as

'\F • fids = jjF -ds « 2 ^ 0 (2 % ^ - , « ,) • 5,
en an

(3-28)

Here s and fi are the area and out-pointing unit vector of the face, k is the number of

faces which define the control volume. is the numerical flux

calculated from the state variables of the left side 2 * and the right side Q' of the

face.

In early 1980s, researchers extended much of what was established for the traditional

structured method to unstructured meshes (Jameson and Mavriplis 1986; Jameson, et

52

Chapter 3 Flow Models and Discretisation

al. 1986; Jameson et al. 1981). That includes the using of central-difference
approximation of inviscid fluxes and dissipation terms (Jameson and Mavriplis 1986).
The use of an upwind scheme offers several advantages over a central-difference
formulation. An upwind scheme is a characteristic based method; it has natural
dissipation terms, while spatial dissipation terms have to be added to central-
difference schemes for stability reasons. For high Reynolds number flows, highly
stretched grids are required to resolve the high gradient in near wall regions. With a
central difference scheme, excessive dissipation may be introduced in the flow
direction (Kunz and Lakshminarayana 1992), and may seriously reduce the accuracy
and convergence rate. With an upwind scheme, the resolution of boundary layer
details typically requires only half as many points as with a central-difference code
(Zheng and He 2001). Furthermore, the poor performance of central difference
formulation is attributed to the artificial dissipation formulas commonly used to damp
odd-even oscillations and to provide non-linear stability (Anderson and Bonhaus
1994).

Upwind schemes are categorised as either FDS (Flux Difference Splitting) or FVS

(Flux Vector Splitting). For the current study, a flux difference splitting scheme is

used for computing the inviscid contribution to the fluxes.

Roe (Roe 1981) FDS scheme is the family of Flux Difference Splitting schemes that

use the approximate Riemann solution. His scheme is one of the most popular

methods among the FDS schemes because of its accuracy and efficiency.

For Roe's flux difference splitting scheme, the flux is given as a central difference

term in addition to dissipation terms,

^{QL ,QR) = ^) + ̂ (Qn)) - ^ 1 f A (3 - 2 9)

And the second term can be written as

(3-30) + +

53

Chapter 3 Flow Models and Discretisation

Al l the three terms can be written as

= U\
V a)

1
u
V

w
A 2 A? ^ 1 U + V + w

0
Aw

Av
Aw-«^Af/

wAu + vAv + wAw -UAU

AF;
Ap + paAf/

u + n^a

h + Ua

AF,

1 1'

Ap - paAU
u -ha

Ap - paAU
V - X

w -n^a
h -Ua\

(3-31)

Where the A () represents the jump between the left and the right states

A() = () « - () . (3-32)

And the (^) quantities are the Roe-averaged variables which can be work out as:

P = ylpLpR

(3-33)

54

Chapter 3 Flow Models and Discretisation

w =

h = -

Where a, w„ and u, are calculated directly from p, u , v and h, so

a =

U ^u-h+v-h+w-h.

AU = Au • h+ Av • /z„ + Aw-h, (3-34)

Roe FDS introduces expansion shock waves that are physically unacceptable. To

prevent the expansion shocks, an entropy fix is imposed. A smoothed value of | is

defined for the acoustic waves

- 2 a, 1
da, 4

(3-35)

With

da. = max (4Aa,,0)

This provides a parabolic curve where the wave speeds change signs.

55

Chapter 3 Flow Models and Discretisation

3.4.4 Higher-Order Scheme

In the current framework of a cell-centred finite volume scheme, the computational

domain has been spatially discretised into an amount of control volumes, triangles in

ID and tetrahedron or prism in 3D. The challenge of constructing an effective higher

order scheme is to determine an accurate estimation of the state variables at either

sides of a cell faces for flux evaluation.

First Order Scheme

A first spatial order scheme on unstructured meshes is described in this section to

introduce the concept of construction a second order scheme. Figure 3.5 shows a

typical two-dimensional layout of an unstructured mesh. For a first order accurate

approximation, the left and right side value and Q~ are simply set to equal the

cell-centred values of the left and right cells. This means that a constant distribution is

assumed in each cell. This scheme is highly dissipative because of the constant

solution assumption.

Nl

N2

Figure 3.5 Fluxes across a cell interface

56

Chapter 3 Flow Models and Discretisation

Second Order Construction

For a cell-centred finite volume setting, a second-order accuracy can be obtained by

expanding the cell-centred states to each cell face with a Taylor series (Frink et al.

1991), as following,

q\{x,y,z) = +Wq^ • Ar + O(Ar') (3-36)

Where q and q^ represents solution at the centre of an element.

In this formulation, the solution gradient in the cell centre V^^ is required. The

gradient can be achieved by using a midpoint integral of the surface around the cell

(Barth and Jesperson 1989; Wood and Kleb 1998), as follows,

S/q^=^j^qf,dS (3-37)
an

Where V is the volume, q is the solution on the cell surface and h denotes the surface

unit vector.

A new second order scheme (Barth and Jesperson 1989) for a cell-centred setting

proposed by Barth and Jesperson with a version of multidimensional linear

reconstruction approach, which forms the basis for the present scheme. This method

is based on the simple thinking that the reconstructed distribution in a control volume

should be bounded by the values of its neighbours. Frink (1991) took the inifiative to

further simplify the method so the solution gradients need not be evaluated explicitly.

His simplification exploits the geometrical invariant of triangular and tetrahedral

cells, which the distance of a cell-vertex to a cell-centroid is always two-thirds (for a

triangle) or three-fourths (for tetrahedron) of the length from cell-vertex to the

57

Chapter 3 Flow Models and Discretisation

opposing face. By using these invariants, the solution gradient for the cell CI (Figure

3.5) along the linear extending of from a cell-vertex thi-ough cell-centroid to the

opposing face can be written as.

1
3Ar

(3-38)

Here Ar is the distance from the centre of an interface to centre of the element.

In 3D, the formula for a tetrahedral cell becomes,

4Ar
(3-39)

Where subscripts nl, n2 and n3 denote the nodes composing the face of a cell, and A

is the opposing node. This resulting scheme is a second-order scheme and proven to

be two times faster than original scheme presented by Barth (Barth and Jesperson

1989;Frinket al. 1991).

Weighted Averaging

In the second order implementation described previously, the nodal quantities are

required to construct a second order scheme on a cell-centred finite volume setting.

For a typical cell-centred finite volume scheme, the flow variables are stored at the

geometrical centroid of each element. An averaging process is required to determine

the solution on the nodes. A widely used weighted averaging is to distribute the

solution from a cell centre to nodes according to their distance to the centroid of the

cell. The following formula gives a simple formulation to extrapolate node quantities

from a cell-centred solution,

9«
N

58

Chapter 3 Flow Models and Discretisation

(3-40)

Here, denotes the number of cells surrounding node n and r represents the distance

from this node to the centroid of a cell.

3.4.5 Discretisation of Viscous Fluxes

The discretisation of viscous fluxes requires the first derivatives at the centroid of

faces (3D) or the midpoint of edges (2D). The viscous fluxes are approximated at

centroids of faces by a linear reconstruction which provides a continuous

representation of solution variables across the face.

A widely used scheme is to apply the mid-point trapezoidal rule to evaluate the

surface integral over edges (2D) or faces (3D) composing the cell (Sbardella and

Imregun 2000; Barth and Jesperson 1989; Frink 1994). In 2D form (Figure 3.6), the

procedure can be described by the following formula.

Vq,=-\q-ndl
an

J 3

(3-41)

Where q represents any of the state variables and A is the area of the cell C.

Figure 3.6 Gradients valuation of the cell C using surrounding cells

59

Chapter 3 Flow Models and Discretisation

After the gradient at each cell centre is known, the gradient on the interface of two

cells can be obtained by averaging the gradients in these two cells. The main

drawback of this method is the additional dissipation introduced by the midpoint

integration of the edges that compose the cell.

Another version of an interface gradient evaluation scheme exploits a stencil

presented by Mitchell (1994), which is widely used by many other researchers (Frink

and Pirzadeh 1998; Frink 1996; Zheng and He 2001). The stencil utilises the solution

quantities on the nodes, which is composing of the interface, and cell-centred values

of two cells sharing the interface.

nl

n2

Figure 3.7 Evaluation of first derivatives on 2D triangular cells

In a two-dimensional setting, shown in Figure 3.7, the first derivatives for

q ^[p u V T] are derived from a Cramer's rule (Frink and Pirzadeh 1998)

solution to

•^c2 -^cl - y c l 9c2 - ^ c l

~ ^, ,1 y„2 - y " \ . 1 y . .1n2

(3.42)

60

Chapter 3 Flow Models and Discrefisation

n2

A

Figure 3.8 Evaluation of first derivatives on cells sharing a triangular interface

In a three-dimensional setting with two cells (tetrahedron or prism) sharing a

common triangle interface, as show in Figure 3.8, first derivatives for

q = [p u V w r] are derived as,

yc2 -ycx ^c2 - ^ c l

^ (^ « 2 + ^ « 3) - ^ „ i \iy„i+ym)-y,n \{^„2+z„,)-z„,

~iXn^+^n^)-Xn2 ^ i y M + V ' y n2 ^(^ nl + ^ ,,3) ' ^ n2

9c2 - ? c

9 .

9 z

^{^.,2 + " , , 3) - ^ « l

(3-43)

When two prismatic cells share a quadrangular interface (Figure 3.9), the scheme has

to be modified to result in accurate representation of gradients on the interface. In a

quadrangular interface setting, the flow states on the four nodes composing the

interface and cell centre values at either side of the interface are used to compute the

gradients, as following,

61

Chapter 3 Flow Models and Discretisation

X^2 yc2 ^c2 - 2 . 1 9. \^c2

-y,n = (3-44)

Xn2 ~ •^n4 -ynA Z„2 ~ 2(14 _ kn2

Figure 3.9 Evaluation of first derivatives on cells sharing a quadrangular

interface

3.5 Time Discretisation

The 2D/3D unstructured flow solvers used in the present study incorporate a standard

multi-stage Runge-Kutta scheme, as first introduced by Jameson et al (1985). Some

researchers (Mavriplis and Venkatakrishnan 1995) report implicit schemes for

solving two- and three- dimensional compressible Navier-Stokes equations on

unstructured meshes. However, the draw back of the implicit scheme is the amount of

memory required in three-dimensional cases.

For simplicity, the Navier-Stokes equations can be written in following form

dt
(3-45)

Where W represents the numerical flux vector consisting of the inviscid and viscous

fluxes. In the current research, three-stage and four-stage Runge-Kutta explicit

scheme can be applied to integrate the above set of equations in time. A A:-stage time

stepping scheme with time step would be

62

Chapter 3 Flow Models and Discretisation

Q^'^ =Q" +a^At-W(Q^'^) (3-46)
Q^'^ =Q" +a,At-W(Q^'^)

Q^'^ =Q" +a,At-W{Q^''-'^)

Many such schemes are possible and stable for range of time steps. Two widely used

schemes are:

K=3: fl, =0.3, ^ 2 =0 .5 , f l3 =1.0 (3-47)

K=4: a, = 0.083, = 0.2069, = 0.4265, a, = 1.0 (3-48)

In order to accelerate a solution to steady state, a local time stepping technique is

adopted:

At = CFL • 7 ^ -, c (3-49)

Where CFL (<2V2) is the Courant-Friedrichs-Levy number; Fis the volume of the

element; S^, and 5". are area of the element projected on y-z, x-z and x-y planes,

which are computed prior to the time integration process.

For turbulent flow simulations, the transport equations usually contain non-linear

production and destruction terms, which can be very large near the solid wall regions.

Such terms can severely reduce the convergence rate using a pure explicit scheme.

Kunz and Lakshiminarayana (1992) recommended a quarter of the stable mean flow

63

Chapter 3 Flow Models and Discretisation

timestep for turbulence transport equations in high Reynolds number flows to reduce
the restriction of the CFL number to the mean flows by the turbulence transport
equations.

3.6 Boundary Conditions

In numerical simulations, the flow domain has to be truncated for efficiency reasons

to a finite field which includes the flow phenomena of most interest. The truncated

domain edge is often referred as a boundary. On the boundary, appropriate boundary

conditions have to be applied to produce a physically relevant solufion. For the

physical problems presented in the current research, there are two different types of

flows: internal flows (or bounded flows) and external flows.

For an internal flow problem, the flow is often bounded by solid walls. No mass flux

through solid walls is assumed. In the current research, only stationary and adiabatic

walls (no heat flux across the wall) are considered. Other boundary conditions

involved in the current internal flow problems are inflow and outflow boundaries.

The number of physical boundary conditions to be imposed at these boundaries is

determined by characteristic properties of the flow.

For an external flow problem, a farfield boundary is always present. The farfield

boundary is often put far away from a wall or body, where the flow approaches some

known uniform conditions.

Al l boundary conditions are applied at each stage of the Runge-Kutta time

integration, prior to the calculation of fluxes and evaluation of residues. The

boundary conditions for internal/external aerodynamics flows often include inflow,

outflow, free stream, solid wall, and periodic conditions.

The cell-centred finite volume scheme requires an implementation of "ghost" cells for

the boundary condition treatment. A ghost cell is produced by constructing an image

cell across the boundary adjacent the interior cell when the boundary is NOT a block

64

Chapter 3 Flow Models and Discretisation

interface, as shown in Figure 3.10. The flow state variables and derivatives are stored
in the ghost cell for computing the flux across a boundary face.

Figure 3.10 Ghost cells for boundary condition treatment

When a boundary is a block interface, the corresponding geometry information to this

cell in another block is copied to the ghost cell in the pre-processing stage.

3.6.1 Inflow

Two types of inflow boundary conditions for internal flows are provided, fixed total

pressure and temperature and fixed inflow parameters. For inlet cells in which the

flow is supersonic, all the flow variables on the ghost cell are given by the incoming

flow. For the subsonic case, three boundary conditions must be specified in two-

dimensions. For most internal flows the three boundary conditions are:

• Total temperature

• Total pressure

• The flow angle or the velocity tangential to the boundary.

These three conditions leave one flow variable to be extrapolated by the inner flow

field. In the present study, pressure is extrapolated.

65

Chapter 3 Flow Models and Discretisation

3.6.2 Outflow

For exit cells in which the Mach number normal to the boundary is supersonic, all the

flow variables for the boundary "ghost" cells are extrapolated from the inner flow

field. For subsonic flows, only one flow parameter can be specified. A relatively

simple choice is static pressure. The other three variables: velocity, velocity tangent,

and density can be extrapolated from the inner flowfield.

3.6.3 Farfield

In external aerodynamics, the flow has relatively uniform free-stream conditions far

from the body. In numerical simulations, flow domains have to be truncated to a

finite distance from the body. The truncated faces are known as farfield boundaries.

Physical boundary conditions to be imposed on these boundaries are entropy and the

value of the Riemann variables (Hirsch 1990; Thomas and Salas 1986).

3.6.4 Solid wall boundary

In inviscid flow simulations, no the mass flux through the wall is specified. A simple

velocity reflection technique (Allmaras 1989) is used to determine the velocity on all

ghost cells.

For viscous flows, fluid in contact with a non-moving solid wall must not move

related to the wall; the so called no-slip condition. For a stationary wall, this gives

"H- - 0 ' = 0 and = 0.

For turbulent flow simulations with a wall function, shear stress and turbulence

viscosity on the solid wall are determined by the wall function. To ensure this

condition, the velocity on the ghost cell is approximated by,

{ML + /" r)

K--V: (3-50)

66

Chapter 3 Flow Models and Discretisation

Where g and c represent the ghost and interior element, r and n are tangential and
normal to the boundary direction, and >>„ is distance from the wall of the interior cell.

3.6.5 Wall function

In order to apply a turbulence model to wall-bounded flows, boundary conditions

appropriate to the solid wall for velocity of the flow and turbulence parameters are

required. For a typical turbulent flow simulation, applying a "no-slip" wall condition

normally requires a very fine mesh (y* < 5) near the wall boundary and integration

through the viscous sub layer. The wall function is introduced to reduce the need for

resolving the flow in the turbulent boundary layer with a very fine mesh. With this

method, the inner region of the boundary layer is modelled by an empirical function.

Thus, a coarse mesh (30 < < 150) can be used in this region. This approach has

the advantage of significantly reducing the computing time by eliminating the large

portion of cells normally required to resolve the boundary layer and improving the

overall convergence by removing the thin inner layers which add extra stiffness to the

solution.

The wall function procedure uses the law of the wall as the relation between the

velocity and surface shear stress. A universal law of the wall can be represented by

the Spalding formula (Hirsch 1990), which models the inner laminar sub layer, a

transition region and the logarithmic layer of the turbulent boundary layer.

2 6
(3-51)

K = QA\ B = 5.5

Where,

67

Chapter 3 Flow Models and Discretisation

Here , are the fluid density and laminar viscosity on the surface, respectively,

and the velocity magnitude at the adjacent cell located a normal distance

away; is the friction velocity.

A wall boundary condition for turbulent viscosity is computed from the relation

presented in Ref (Abdol-Hamid et al. 1995; Wang et al. 1999; Bardina et al. 1997;

Frink 1996) as

2
(3-53)

In solving of the turbulence transport equations, the boundary conditions of the

turbulence dependent variables are also required on the solid wall when the wall

function is used. The turbulence parameters are determined by the friction velocity.

For the one-equation Spalart-Allmaras model, the dependent variable can be given as

V , = Ky^u^ • Re (3-54)

The wall function sometimes does not give satisfactory solutions for separated flows

because the law of the wall does not hold in the regions where separation occurs, so

caution should be taken when dealing with separated flows. Furthermore, the

numerical solution is very sensitive to the points above the solid wall where the wall

function is used. This leads to our implementation of the wall function.

In a typical 3D tetrahedral control volume setting as shown in Figure 3.11, the wall

function is applied on the cells just of f the boundary. The velocity at the cell centre

and the distance to the wall are used to work out the friction velocity on the wall

according to equations (3-51) and (3-52). Shear stress on the wall is given as (Abdol-

Hamid etal. 1995),

= Re- pu] (3-55)

68

Chapter 3 Flow Models and Discretisation

The shear stress should be applied to the calculation of viscous fluxes across the

surface, and the turbulence viscosity on the surface is given in (3-54).

Figure 3.11 Wall function for tetrahedral elements near the solid wall

In a semi-structured 3D prismatic setting as shown in Figure 3.12, we exploit the

inherent structure present in the mesh produced by an "inflating" method (Chapter 4).

As shown in Figure 3.12, the nodes are aligned along the line normal to the boundary

surface. The surface centred friction velocity and shear stress are determined by a

two-step process. Our implementation is inspired by Frink's (1996) similar

implementation for tetrahedral volumes produced by an advanced layers method.

Figure 3.12 Wall function for prismatic cells near a solid wall

First, the friction velocity at nodes A, B and C (nodes on the surface of the wall) are

calculated based on the equation (3-51) and (3-52) using node quantities at A l , B l

69

Chapter 3 Flow Models and Discretisation

and C I , which are on the first layer off the wall. Next, friction velocity at the surface
ABC is computed by averaging the friction velocity on nodes A, B and C. Thus the
shear stress is calculated using equation (3-55). Then, the turbulence viscosity and
parameters on the surface are defined by equations (3-53) and (3-54).

The wall function implementation based on prismatic volumes with the layer

structure is generally more efficient and robust than the previous one on tetrahedral

elements. Because the wall function procedure involves a Newton iteration procedure

to compute the friction velocity as shown in equation (3-51) and (3-52), it is likely to

be very computational expensive. In a typical 3D surface mesh setting, there are two

times as many triangular surfaces as nodes. The wall function iteration is likely to be

nearly two times faster in the second implementation than in the first one. Secondly,

the distribution of the friction velocity on the wall in the prismatic implementation is

smoother because of the averaging process; a discontinuity is less likely to appear.

3.6.6 Periodic boundary

A periodic boundary is present in most turbomachinery applications. Strictly

speaking, the periodic boundary condition is not really a boundary condition. With a

mesh with a periodic condition, periodic nodes and edges are treated as inner nodes

and edges, the fluxes through the pair of edges are calculated only one time and given

to two periodic cells.

70

Chapter 4 Mesh Generation and Adaptation

Chapter 4

Mesh Generation and Adaptation

The primary objective of the present research is to develop efficient and accurate

numerical algorithms for solving the Euler/Navier-Stokes equations on unstructured-

grids. It is well known that quality of computational grids is very important to the

accuracy and efficiency of a CFD solution. However, the main focus of the present

research is not about developing a new unstructured mesh generator. The aim of the

mesh generation part of the work is focused on generating well-formed viscous grids

with current available isotropic mesh generators in the public domain and

manipulating the grids for viscous flow computations. In this chapter, the

unstructured mesh generation and adaptation technique for inviscid and viscous flow

computations are presented.

The first section of this chapter is about unstructured mesh generation for

aerodynamic computations. First, different approaches for the isotropic unstructured

mesh generation are introduced. Next, the viscous mesh generation method is

reviewed and the "inflating" strategy is presented. This section ends with the details

of generating 2D/3D unstructured meshes with this "inflating" method.

A mesh adaptation approach for unstructured meshes is developed in the second

section of this chapter. It begins with the definition of rules for the mesh refinement

and error estimation. Then, the mesh refinement and reconnection technique are

described in some detail. This chapter ends with the discussion of the mesh adaptation

techniques in viscous flow simulations.

71

Chapter 4 Mesh Generation and Adaptation

4.1 Unstructured Mesh Generation

There are various reasons that the unstructured-grid method becomes widely used in

industrial applications. The most important one is the geometry flexibility of this

method, i.e. the ability to generate high quality grids for virtually any geometric

configurations, at least in theory. It is well known that mesh quality greatly influences

the accuracy and convergence of a solution. A skewed and non-smooth mesh

generally results in slow convergence rate of the solution and less accurate results.

Generation of high quality unstructured grids for simulating flows in complex

geometry configurations becomes increasingly important.

In the current research, the unstructured mesh is based on triangles in two-

dimensional and tetrahedron or/and prismatic elements in three-dimensional. In the

following section, strategies for generating unstructured meshes for inviscid/viscous

flow simulations are outlined.

4.1.1 Isotropic Mesh Generation

In inviscid flow computations, isotropic unstructured meshes are required for

economical computing and accurate results. The reason is that in inviscid flows the

information propagates at almost the same rate in all directions. It is sensible to use a

grid that has the same resolution in all direction. Currently, methods for generating

isotropic unstructured meshes in 2D computational domains have reached a fairly

mature state. There are two major lines of methods for the 2D unstructured mesh

generation: the Advancing Front method (Merriam 1991) and the Delaunay method

(Bowyer 1981; Baker 1989). Both of them are widely used in unstructured mesh

generation community.

The Advancing Front method has become a routine practice for two- and three-

dimensional unstructured mesh generation. The process could be described as

elements creeping into a domain from its boundaries. In 2D, it starts with boundaries

of the domain as an initial front. Then triangles are generated from current front into

empty domain, and the front is updated. The operation is repeated until the whole

72

Chapter 4 Mesh Generation and Adaptation

domain is triangulated. In three dimensions, the front becomes a layer and this
method is also called the advancing layer method.

The Delaunay method adopts the empty circumcircle property of a computational

domain. It is generally more efficient than the advancing-front method (Liu and

Hwang 2001). However, the advancing-front method has the advantage of being more

robust because the boundary integrity is guaranteed.

In the present work, a two-dimensional unstructured mesh generator developed by the

author in Beijing, China, 1994-1995 (Zheng 1995) is used to discretise a 2D

computational domain. This 2D unstructured mesh generator is based on the

Advancing Front method described previously and able to produce high quality

triangles for virtually any 2D complex geometry configurations. It features a very

coarse background structured grid and a series of source points to control the size of

local elements.

The discussion of the method for 3D isotropic unstructured mesh generation is

beyond the present research. In the current work, the 3D computational meshes for

inviscid flow computations are generated by free software in public domain such as

GMSH (Geuzaine and Remade 1999) and GRUMMP (Ollivier-Gooch 1998; Freitag

and Ollivier-Gooch 1997; Ollivier-Gooch 2001).

For applications with viscous flows, the Advancing Front method described

previously is inadequate because the method tends to generate "good" equilateral

triangles even in a boundary layer, which is not desirable. Highly stretched grids are

required in viscous effects dominated regions, such as in a boundary layer or wake, to

resolve high gradients of the flows. A major bottleneck in the application of

simulations of 2D/3D viscous flows in complex configurations is still the generation

of highly stretched and body-fitted viscous grids.

4.1.2 Viscous Mesh Generation and Multiblock Method

The unstructured grid method has shown to be very successful in simulating of

inviscid flows both in 2D and 3D (Frink et al. 1991; Marvriplis and Jameson 1987).

73

Chapter 4 Mesh Generation and Adaptation

This is partially because the generation of high quality computing meshes for inviscid
flow simulations is relatively easy. For viscous flow simulations, highly stretched
elements are required near the wall regions, in which viscous effects dominate the
flow. The traditional unstructured mesh (consists of only triangles in 2D and
tetrahedron in 3D) method has been less successful. The first reason is the great
difficulty associated with generating a good viscous mesh, especially for complex 3D
geometries. This is generally caused by the difficulty to generate ideal stretched
elements near solid wall regions. A more important reason is that poorly stretched
triangular or tetrahedral elements usually lead to less accurate results and poor
convergence.

It seems sensible to use elements that are more suitable for viscous flow simulations,

like quadrangular (2D) and prismatic or hexahedral (3D) elements in regions that

viscous effects dominate the flow; and in the outer regions, i.e. far from solid wall

regions, triangles or tetrahedron could be used to cover the domain with great

flexibility. This leads to the development of the hybrid (or mixed-grids) method, in

which the computing mesh may compose of several types of elements. Some authors

(Sayma et al. 2000) presented their solution methods with a hybrid method. In spite of

its flexibility in three-dimensional mesh generation for some relatively simple

geometries, mixed-grid methods share the difficulty of generating a high quality 3D

mixed-grid mesh, and because of the complexity of the solution method and the

efficiency penalty by introducing different type of elements.

In most viscous flow problems, flow domains consist of two parts: viscous regions

(where viscous effects dominate the flow) and the rest of the domain, in which

viscous effects are less significant. The viscous regions most likely appear near to

solid walls, or in wake and mixing regions, where flows change rapidly in one

direction but slowly in the other directions. In these regions, highly stretched grids are

required to resolve high gradients of the flows. In the rest of the domain, such as far

from walls and farfield regions, flows change virtually at the same rate in all

directions. In these regions, isotropic grid elements are more desirable.

74

Chapter 4 Mesh Generation and Adaptation

Based on the evidence presented, it seems best to divide the flow domain into viscous
regions and other regions for the mesh generation. In the viscous regions, semi-
structured blocks, which consist of hexahedral or prismatic elements in 3D and
triangles or quadrangles in 2D, should be used to discretise the domain, while for the
remainder of the domain, triangular (2D) or tetrahedral (3D) elements should be used.
By doing this, ideally stretched elements can be easily generated according to the
local flow features in the viscous regions. In the rest of the domain, the use of
isotropic elements enables rapidly changing of mesh density without compromising
the grid resolution.

The use of this multiblock method in mesh generations has following advantages over

a hybrid method:

The mesh in the viscous regions is semi-structured or structured, which

enables the possibility of using high order schemes and convergence

acceleration techniques well developed in past years. Furthermore, it gives

more choice of turbulence models and viscous wall treatment, and possibly

higher numerical resolution in these regions.

Since the flow domain has been divided into several blocks with different

element types, different solvers based on these elements can be used. Thus,

the complexity of a cell-centred flow solver is lower than a hybrid solver, and

the performance is higher. However, the difficulty of coding is increased

because more than one flow solvers are required to march the flow in the

whole computational domain.

Using the semi-structured blocks enables flow solvers to change the

computing mesh dynamically, which is vital for a mesh adaptation or dynamic

mesh technique. With a hybrid method, the mesh adaptation by subdivision

becomes nearly impossible or too expensive to perform because the

reconstruction of the grid structures is too difficult due to the presence of

different types of elements. While in the present method, a mesh adaptation

technique by subdivision is relatively easier to be implemented

75

Chapter 4 Mesh Generation and Adaptation

• More importantly, using this semi-structured mesh enables the exploitation of
an efficient multigrid method on unstructured meshes, which will be discussed
in next chapter.

In the present research, a few viscous layers are generated in the viscous regions in

both 2D and 3D to resolve rapid changes of flows in these regions. Details of the

implementation of the algorithm are described in following sections.

2D Viscous Mesh Generation

In two dimensions, the process of generating a viscous mesh is very similar to

"inflating" a solid wall. The details of the implementation on a single airfoil could be

described as following:

1. Calculate the thickness of the viscous layer. Prior to the mesh generation, the

maximum boundary layer thickness can be estimated with a simple empirical

formula for each solid wall. Then the thickness of the viscous layer can be

given as 2 ~5 times the thickness of the boundary layer. This wil l be an

approximate thickness of the semi-structured layer.

2. Shift solid walls. As a typical single airfoil case, depicted in Figure 4.1

(suppose we are not interested in the wake), a new artificial "boundary",

whose distance fi-om the solid wall roughly equals the layer thickness

established in the first step, can be worked out and placed in the flow domain.

This process is very similar to inflating an object. This new artificial boundary

described by a series of connected points for each solid wall separates the

viscous layer and the rest of the regions.

3. Generate an isotropic mesh. After the walls are shifted, the outer region,

which is bounded by the artificial boundary or boundaries and other physical

boundaries, can be easily discretised with an isotropic unstructured mesh

generator.

76

Chapter 4 Mesh Generation and Adaptation

4. Generate viscous layers. A structured mesh can be generated in the viscous

layer using an algebraic method. In this process, the grid lines virtually

parallel to the wall should be carefully placed according to the flow problem.

Depending on the nature of the geometry and which part of the flowfield is

concerned, either an 'O', ' H ' or ' C type of structured-grid could be used. For

an isolated airfoil (Figure 4.1), when the wake is not a concern, an 'O' type of

structured-grid is the best choice, otherwise, a ' C mesh may be used to

resolve the wake and boundary layer flows.

5. Triangulate the viscous mesh. The structured mesh is triangulated by

subdividing each quadrangle to two triangles. This stage is necessary for the

present 2D cell-centred finite volume flow solver, which can only handle

triangles as control volume.

Figure 4.1 Mesh generation for an airfoil using an inflation method

Since the structured-grid generation and triangulation procedure for the viscous layer

are simple and straightforward, it may be best to integrate the generation of the semi-

structured grid and triangulation process into the flow solver. The flow solver needs

to take the actual profile of viscous walls and triangular elements in the outer regions

to generate a semi-structured mesh with a given spacing of the layers. The structured-

grid generation procedure is usually controlled by a few parameters, including a

spacing factor on the direction normal to the wall, the position of the first grid line.

77

Chapter 4 Mesh Generation and Adaptation

By doing so, a mesh adaptation procedure could always reuse this subroutine to

produce better structured layers according to the local flow state when the mesh in

this region needs to be refined.

Inflow

Inflated boundary

Figure 4.2 Shift an open wall

When a solid wall is not entirely closed, the artificial boundary can be worked out in

a similar fashion. Shifting of an open wall is illustrated in Figure 4.2. It should be

noted that the artificial "boundary" does not necessarily have same number of points

or same shape as the wall. This is because when the outer regions are meshed with

triangles, some points may be inserted into the inflated "boundary". In order to result

in a body-fitted and ideally stretched viscous grid in this region, the wall must be

remeshed to the same number of points and relative position as the artificial boundary.

78

Chapter 4 Mesh Generation and Adaptation

The sharp ended object

Inflated boundary

A. Inflating a sharp ended object when resolving wake is not required

Flow direction

B. Inflating a sharp end object when resolving wake is required

Figure 4.3 Inflating sharp ended objects

Special care must be taken when the trailing edge or leading edge of an airfoil or a

blade has a sharp end. When the trailing edge is round, the mesh in viscous regions

could be made very smooth with little effort. In the case of a sharp end, extra points

may need to be inserted or points relocated to ensure the artificial bluntness of the

79

Chapter 4 Mesh Generation and Adaptation

inflated "boundary" (Figure 4.3a). Alternatively, a ' C or ' H ' type of inflation should
be used to result in a body-fitted and ideally stretched viscous grid (Figure 4.3b).

3D Viscous Mesh Generation

In three dimensions, this "inflating" strategy becomes more important considering the

current status of the 3D viscous mesh generation. Furthermore, the difficulty of

creating the artificial boundary and dealing with comer points increases as well.

In three dimensions, there are two choices of the semi-structured mesh: either

prismatic or hexahedral based. Our preference is given to the prismatic based control

volume for following reasons:

• The use of prismatic elements offers geometric flexibility. When prismatic

elements are used, the surface of a solid wall is represented by a ful l triangular

mesh instead of structured grid. This is very important for complex

configurations where the solid wall is hard to be represented with structured-

grids. Furthermore, it has the advantage of generating a better surface mesh,

i.e. using a fine grid when necessary without changing the entire surface mesh.

• Multi-block boundary condition treatment consideration. When using

prismatic-based semi-structured block, the block boundary between a viscous

mesh and isotropic meshes in outer regions will always be triangular elements.

When hexahedron-based elements are used, the treatment of the block

boundary requires expensive bilinear interpolation.

Similar to the 2D method, the artificial boundary that separates the viscous zone and

outer zone have to be established by an algebraic algorithm. Next, the outer region is

discretised using tetrahedral elements. Then the triangulated boundaries (the artificial

boundary that separates the viscous and outer regions) with new sets of points are

mapped back to the solid wall. In this stage, the solid wall has exactly the same

number of mesh points and triangulation as the artificial boundary. In the flow solver

for prismatic elements, prismatic layers are generated based on these two sets of mesh

80

Chapter 4 Mesh Generation and Adaptation

points and the triangulation. Again, the layer number and relative position could be
adjusted in the flow solver according to the flow state and local flow features.

In the current work, when a 3D sharp ended object is present in the flow domain,

either a ' C or ' H ' type semi-structured grid is used to discretise the near wall and

wake regions to ensure the valid elements in these regions. Ahematively, small

changes to the sharp end part of the object may be needed to make the object

artificially "blunt".

4.2 Mesh Adaptation

There are several possible ways to achieve adaptivity on unstructured meshes. One

can either increase the degree of polynomial approximation to improve overall

solution quality, or move grid nodes in the regions where there is a rapid change of

solution. Alternatively, one can both move the grid nodes and enrich the grids. This

is the method used here, because it provides the most flexible way to control the

element size to resolve flow features such as shock waves, shear layers, wakes, flow

separation and reattachment.

There are various mesh refinement techniques that may be employed. New refined

points may be created and inserted into the mesh using a Delaunay point insertion.

Alternatively, original elements that contain refined nodes can be simply subdivided

into several elements, followed by a local smoothing or relaxation.

In the method adopted, the flow-field is firstly solved on a coarse mesh generated by

the Advancing-Front Method (Pirzadeh 1993; Zheng 1995) to roughly capture the

basic flow features. The resulting solution is then analysed to determine where to

insert more grid nodes, and a refined mesh is generated by subdividing elements and

relocating nodes. The problem is solved again on the new mesh using the solution of

the coarse mesh as an initial guess. The process is repeated until the required

accuracy in terms of a refinement criterion is achieved.

The advantages of this element subdivision method are higher efficiency and the

connectivity is guaranteed. This is especially important when highly stretched meshes

81

Chapter 4 Mesh Generation and Adaptation

are required in the viscous flow simulations. In viscous effect dominated regions
where high stretched meshes are required, the Delaunay construction is no longer
optimal and less reliable.

4.2.1 Rules to Refine Meshes

The refinement algorithm is a key factor for a successful mesh adaptation. It

determines the way that the mesh is modified for the grid and is based on a set of

refinement rules. The rules are:

1. Always refine the grid in the region with high gradient. High gradients always

mean high truncation errors.

2. Ensure the resulting refined grid is valid.

3. Ensure the resulting refined grid is in some sense a good grid. So after each

refinement, grid relaxation or smoothing can significant improve the mesh

quality (Bottasso et al. 1994).

Obviously, a successful adaptation highly depends on the adaptive criteria, i.e.

estimation of the errors. In following section, we wil l discuss the error estimation.

4.2.2 Error Estimation

The error estimation determines whether or not a current mesh cell should be further

refined. For a given mesh with flow variables associated with it, there are various

ways to define the numerical error in the flow field.

To capture different flow features, different criteria may be used to define the error.

For shock wave associated problems, the pressure difference of each edge is more

relevant than other variables. For viscous layers (attached or separated boundary

layers, wakes), vorticity and velocity gradients are dominant and thus the differences

of these variables are used. Whilst i f there is a strong shock-wave/boundary layer

interaction, it is more effective to resolve the boundary layers by using a

velocity/vorticity difference before using a pressure difference to capture shock

waves, because a typical time-scale for viscous diffusion is much longer than that for

82

Chapter 4 Mesh Generation and Adaptation

a pressure propagation. Thus, for complex flow problems, the error estimation of
combined pressure and velocity/vorticity differences has to be used to give an
effective and efficient mesh refinement.

In the present edge-based flow solver, the error estimation is carried out on each edge.

Then the error is normalised by the global maximum and minimum error as:

mm

E -E .
max mm

(4-1)

In the viscous flow simulations, multiple indicators are usually used for the error

estimation to capture the high velocity gradients. In this case, the final error is

estimated as:

E = f^a,E, (4-2)
1=1

Here N is the number of the error indicators, £, is the normalised error of the error

indicator and is the coefficient of this indicator.

(0 < « , <!) (4-3)

A tag is marked i f the error on the edge is higher than a predefined factor. The

predefined factor is largely based on the experience. In the present study, the factor is

from 0.1 to 0.2 for inviscid flow simulations and from 0.1 to 0.3 when multiple

indicators are used for the error estimation with viscous flow simulations. For

multiple mesh refinement, a sequence of factors should be given in ascending order to

avoid an overcrowded mesh.

4.2.3 Mesh Refinement and Reconnection

The refinement strategy is to adjust a mesh cell for which any of its edges has been

tagged to refine. In order to implement this technique, various allowable subdivision

types for triangular elements can be defined as following:

83

Chapter 4 Mesh Generation and Adaptation

Figure 4.4 Sketch of subdivision types for a triangle

After all points have been inserted into the mesh system, the mesh is smoothed to

improve the mesh quality. Smoothing is done by moving the point slightly to an

optimal position. The very commonly used Laplacian-type smoother is easy to

implement and fast to compute.

4.2.4 Mesh Adaptation in Viscous Flow Simulations

In the simulations of high Reynolds number flows, very thin boundary layers are

presented near solid walls, where the flow quantities are subject to strong local one-

dimensional gradients. Highly stretched cells in the boundary layers are normally

used to effectively capture these gradients. The mesh refinement approach, as

described above, has been shown to be less effective (Vilsmeier and Hanel 1993).

Because of the high gradients in these regions, large amount of refinement wil l occur.

This problem is well documented by several authors (Vilsmeier and Hanel 1993)

(Warren et al. 1991). Several solutions have been developed including limiting the

maximum amount of subdivision of an element in the most coarse mesh or minimum

size of the element. Most of these have been unable to preserve the highly stretched

body-fitted elements in the viscous regions, which is essential for economical and

accurate computing. Therefore, another approach has been developed to deal with

viscous flow problems.

In the present viscous mesh generation scheme, several layers of stretched triangular

cells are employed around solid walls and the rest of the domain is covered with

84

Chapter 4 Mesh Generation and Adaptation

normal triangular cells. In order to overcome the over-resolved problem by adaptive
mesh refinement in the near wall region described previously, a two-phase refinement
procedure is required to deal with the outer region and viscous regions separately and
different refinement rules are adopted in these regions. Since the subroutine for
generation of these layers in viscous dominated regions is integrated into the flow
solver, these regions can be easily remeshed without affecting the rest of the domain.
Details of the implementation are described in the next section.

4.2.5 Algorithm Description

In the simulation of inviscid flows, the refinement procedure in the current 2D edge-

based flow solver could be as following:

1. Clean all tags on the mesh system.

2. Estimate the error across each edge. The error is modelled by the gradients of

given variables across the edge.

3. Tag edges. When the error on an edge is higher than a predefined threshold,

the edge is marked to be refined.

4. Mark cells based on the tags on three edges that compose the triangle. I f any

of its three edges is marked to be refined, a cell is marked.

5. Insert nodes based on the tagged edges.

6. Reconstruct mesh topology.

7. Smooth new mesh when necessary.

8. Interpolate the solution from the original mesh to the refined mesh.

After all the new points are inserted and a new flow field solution obtained, the flow

solver is restarted from this new state.

In simulations of viscous flows, the procedure described previously could produce a

very large amount of undesirable elements in the viscous effect dominated regions,

85

Chapter 4 Mesh Generation and Adaptation

especially near walls. Since the over-resolved problem most likely occurs in the
regions where highly stretched elements are used, an alternative refinement procedure
and rule should be applied for these regions. In the present research, a two-phase
refinement procedure is implemented to overcome the problem.

The first phase is to refine the outer region, where the viscous effects are less

significant. The refinement procedure for inviscid flow simulations described

previously is capable of producing well-formed triangular elements in these regions.

The second phase is to refine viscous regions where highly stretched elements are

used. After point-insertion and reconnection of the outer part of the mesh, some nodes

have been inserted into the artificial boundary between the viscous layer and the outer

part. The artificial boundary is recormected using nodes already in the mesh and

newly inserted nodes. A new viscous grid is generated using the new boundary with

the method described in the mesh generation section. In this stage, an interpolation

procedure is performed on the solid wall to ensure a correct representation of the

original wall profile. Currently, no extra layer is inserted into the viscous layers

because the layers are already placed with consideration of the flow state and are

suitable for resolving the boundary layer.

86

Chapter 5 Multigrid Method

Chapter 5

Multigrid Method

In this chapter, a multigrid method to accelerate the solution of Euler/Navier-Stokes

equations on unstructured meshes is developed. The objective of this chapter is to

develop an efficient, robust and effective multigrid for simulating compressible

inviscid and viscous steady flows on unstructured meshes.

The discussion of the multigrid method begins with the introduction of different

multigrid approaches on unstructured meshes. Next, how to generate a sequence of

mesh levels is discussed. Two distinct multigrid methods are developed: a direct

connectivity based method and an aspect ratio sensifive approach. This is followed by

the inter-grid operators and presentation of the multigrid time-marching scheme.

87

Chapter 5 MultiRrid Method

5.1 Introduction

Multigrid has been demonstrated as an effective means to accelerate the solution both

for traditional structured methods and unstructured-grid methods. For traditional

structured applications, the multigrid method has become a routine practise. Multigrid

on unstructured grids, especially with mixed-elements is still at a very early stage of

development.

There are different approaches for adopting a multigrid technique on unstructured

meshes. The first approach begins with a coarse mesh definifion and generates finer

mesh levels by refinement. This approach is usually coupled with an adaptive mesh

refinement technique. The second approach uses completely independent coarse and

fine meshes. Since the various meshes of the sequence do not always have common

points, linear interpolation has to be performed to transfer flow variables between

them. Both the methods share a common difficulty in generating the coarse mesh in a

complex configuration. The third one is to coarsen a given mesh by using directly

neighbouring cormections of fine mesh elements. This method is able to generate

coarse mesh levels in virtually any complex configurations and has been proven to be

effective in inviscid flow calculations. However for the high Reynolds number

problems, this method is less effective due to the presence of high aspect-ratio cells

near solid wall regions.

A successful multigrid approach usually consists of three key components:

1. A nicely constructed sequence of meshes ranging from coarse levels to the

finest level.

2. A suitable inter-grid transfer operator to transfer solutions between coarse and

fine levels.

3. An effective iterative solver to damp high frequency error components in

every level of the mesh.

88

Chapter 5 Multigrid Method

The following sections are descriptions of the basic mulfigrid method for unstructured
meshes and details of generating multiple meshes, inter-grid transfer operators and
multigrid cycling.

5.2 Generation of a Sequence of Mesh Levels

For a structured grid, a sequence of coarse levels can be easily generated with its

inherent structure. For unstructured grids, it is not straightforward to generate a

coarse mesh because of the very nature of the unstructured-grid itself, i.e. lack of

simple structure and connectivity. One possible way is to use a volume agglomeration

method. The aim of the current research is to extend and enhance a volume

agglomeration method for 2D/3D inviscid and viscous flow calculations and to

improve the efficiency of this method for high Reynolds number flows.

Central to the design of a volume agglomeration method is to group together cells

that have neighbouring relations, to form a control volume of a coarse block, starting

from the base fine mesh. Repeating this process allows the obtaining of coarser

meshes until a sufficient number of levels are obtained. Two distinct approaches to

coarsening are adopted:

1) The first one would be directly based on the element connectivity. This is

relatively easy to implement, but is not very effective for highly stretched viscous

meshes. It can be called 'Direct Connected Multi-Grid' (DCMG).

2) The second approach, which we advocate, is to adaptively coarsen the mesh,

aimed at forming coarse mesh blocks with more uniform spacing in all

directions. Consequently, on a coarse mesh, error disturbances would propagate

at the same rate in all directions. This method can be called 'Aspect-ratio

Adaptive Multi-Grid' (AAMG).

89

Chapter 5 Multigrid Method

5.2.1 Direct Connected Multigrid

The Direct Connected Multigrid is essentially a volume agglomeration method based

on the connectivity of the mesh. To generate coarse levels automatically from an

unstructured mesh, it is possible to group together control volumes that have direct

neighbouring relations or nodes that are associated with contiguous volumes.

Repeafing this process allows a coarse mesh to be obtained. In this process, the size

of coarse mesh cells should increase, and the coarse mesh solution should accurately

approximate the fine mesh solution to obtain a good preconditioner.

The coarsening approach we present here is only a modified version of the volume

agglomeration method (Lallemand et al. 1992). The direct neighbour relafion means

that two cells have at least one shared node. The algorithm based on the direct-

connectivity relations is as following (Figure 5.1):

Consider successively every cell C for the fine mesh:

1. I f the cell C has already been included in a group (the cell in the new coarse

mesh) then consider the next cell.

2. Create a new group containing C and put into this group each cell neighbouring

C that is not already included in any existing group.

3. I f the new group contains only the cell C, merge the group with an existent

group, which contain a neighbour nearest to cell C.

4. Go to the next cell.

90

Chapter 5 MultiRrid Method

Figure 5.1 2D coarser level from fine mesh for far from wall regions

The algorithm above allows an automatically coarsening triangular based 2D meshes

and tetrahedron based 3D meshes. However, in order to produce optimal coarse

levels, the procedure should start from the smallest element in the mesh.

5.2.2 Aspect-Ratio Adaptive Multigrid

An aspect-ratio adaptive multigrid is an enhanced version of volume agglomeration

method aimed at viscous flow computations with highly stretched grids. I f the base

fine mesh only contains regular triangular/tetrahedral cells, the Aspect-ratio Adaptive

Multi-Grid will reduce to the Direct Connected multigrid method. The coarsening

algorithm based on the direct-connectivity relations is also described in Ref. (Zheng

and He 2001).

For high Reynolds number viscous flow computations using highly stretched meshes

with high grid aspect ratio near solid wall regions, the Aspect-ratio Adaptive Multi-

grid method is activated. In regions far from solid walls where isotropic unstructured

grids are used, the direct connected multigrid method outline previously is used to

build coarse levels by volume agglomerating. With this method, the size of the

elements in a coarse level increases almost at same rate at all directions. In viscous

flow computations, with an 'inflating' viscous mesh generation scheme described in

Chapter 4, semi-structured viscous layers are used in or near solid wall and wake

regions to resolve high gradients and rapid changes of the flow. In these regions,

where the highly stretched triangular/prismatic cells are used, coarser levels are built

by stacking viscous layers in the normal wall direction. By doing so, the grid aspect

91

Chapter 5 MultiRrid Method

ratio in coarse levels is reduced and the time step is increased. Thus, at a coarse mesh
level, the solution can effectively be marched with a larger time step.

In the present research, the Aspect-ratio Adaptive Multigrid exploits the structure of

viscous layers introduced in the process of the mesh generation (Chapter 4) both in

2D and 3D. Because the viscous layers generation is integrated within the flow

solver, coarser levels can be easily built up by stacking layers of highly stretched

grids in the viscous layer.

In the viscous layers near solid wall or wake regions, the grid aspect ratio of elements

in every layer are compared with a predefined grid aspect ratio value (30 in our case)

to determine how the coarser level should be built. I f the grid aspect ratio higher than

predefined value, four triangles (2D) in the two layers next to each other are to be

stacked to form an element in the coarser level, as shown in Figure 5.2a. When the

grid aspect ratio is smaller than the predefined value, as depicted in Figure 5.2b, two

layers and one of their neighbouring rows, which are not included in any coarse level,

are to form an element in the coarser level. This process is repeated until desired

coarse level meshes are constructed. In this process, the size of elements are always

increasing whilst the aspect ratios of the grid are decreasing, which allow a larger

timestep on coarser levels.

In three dimensions, a viscous layer consists of semi-structured prismatic grids. A

strategy similar to 2D is adopted. The aspect ratio of a prismatic element is defined

by the height of the element and the typical length of its bottom triangular surface:

usually the longest edge. Starting from the first layer next to a solid wall, two

neighbouring layers are combined to form an element in a coarser level. This process

is repeated this process until a sequence of coarse mesh levels is constructed.

However, no element combination along the wall is considered in the process. The

process is described in Figure 5.3.

92

Chapter 5 Multigrid Method

a. Coarse levels for cells with high aspect ratio in near wall regions

b. coarser levels for normal triangular cells in near wall regions

Figure 5.2 2D coarser meshes generation in visous layers

/

/

-A

/
/

Figure 5.3 3D coaser meshes generation in viscous layers

5.3 Intergrid Transfer

In order to transfer a solution from one grid to another, consideration needs to be

given to the design of the multigrid method. In the traditional multigrid approach,

linear or nonlinear interpolation is used to transfer flow variables and residuals

93

Chapter 5 Multigrid Method

between the various meshes of the sequence. In the approach adopted in the present
study, an efficient collecting/distributing process is adopted to transfer solutions.

In the Fine-to-Coarse stage, fluxes of a finer mesh are summed to obtain the fluxes of

the coarser meshes instead of using a first order upwind solver, which is considered

too expensive to perform on a highly polyhedral grid.

In the Coarse-to-Fine stage, the coarse mesh residual are directly distributed back to

the fine mesh cells, which has been shown to be effective on structured mesh solvers

for steady flows (Denton 1983), and unsteady flows (He 1993).

In this way, only fluxes on the basic fine mesh are evaluated by the upwind scheme,

and the fluxes of elements on a coarse mesh can be directly obtained from those on

the finer mesh of the sequence:

N

C'=E^1 (5.1)
where N is the number of cells in the finer mesh that contained in the element m of

the coarse mesh level. / and / +1 indicate the sequence of the meshes. The solution is

accelerated by distributing the residuals on cells of the coarse mesh to the finer mesh.

Consider a one-stage time integration of a cell on k levels of meshes:

(Q"''~Q")=—R'+--rR''' +. . . (/=1,2,..^) (5.2)

The left side is the effective change of flow variable in one step of time-marching.

A/ ' , A' and R' denote local time step, area, and fluxes of mesh level z, respectively.

This method is straightforward to implement because of the conservation relation for

both fluxes and areas. Another key feature of this method is its speed, because it does

not require calculating fluxes on coarse levels by integration. For instance, on a

typical three level multigrid mesh configuration (2D), the number of cells of the three

level meshes (fine, coarse and coarser mesh) are in the ratio of 12:4:1, the total

94

Chapter 5 Multigrid Method

computing time of the 3-level multigrid wil l increase by about 10% per step
compared to that for the baseline single grid.

5.4 Stability and Timestep of Multigrid Approach

The efficiency and robustness of the multigrid approach depends on accurate

estimation of the local timestep. For steady problems, maximum local time step is

essential for efficiency. Since the coarse meshes are very likely to be highly non

uniform polyhedral, it is very difficult to compute a stable local time step for a coarse

mesh by Fourier analysis. Hence, we prefer a simple estimation of the local timestep.

n n n

/ = i / = i 1=1

At = CFL-,—^- -, r (5.3)
[u + c)-Ax + [v + c)-Ay + [w + c)-Az

Here n is the number of edges or faces which form the polyhedral element and Aex,,

Aey^ and Aez, are the projected length/area of the edge/face in three coordinate

directions, respectively. At is the time step of the element, which volume is V.

95

Chapter 6 Parallel Computing

Chapter 6

Parallel Computing

In this chapter, we review the parallel computing technique in CFD with unstructured

meshes, covering the subjects of parallel computer, parallel programming models,

data distribution and mapping, and communication schemes.

Parallel computing for CFD involves software, hardware and algorithm design. It

promotes a view of parallel computing as an engineering discipline, in which

programs are developed in a methodical fashion and both cost and performance are

considered in a design. The discussion of parallel computing in this chapter is divided

into five parts. The first part is the introduction of the parallel computing environment

and programming model. Then, the multi-block method for unstructured meshes is

reviewed. Consequently, the mesh partitioning, data mapping method and related

software are discussed. Next, the issue of parallel computing performance on a PC

cluster system is discussed. The last section describes in detail the implementation of

the parallel computing technique in the present CFD code.

96

Chapter 6 Parallel Computing

6.1 Parallel Computing Environment
"A parallel computer is a set of processors that are able to work cooperatively to

solve a computational problem" (Foster 1998). By the configuration of their memory

system, the parallel computer can be classified as multiprocessor with uniform shared

memory system, cache-based processors with uniform shared memory system, cache-

based processors with non-uniform shared memory access system and cache-based

processors with distributed memory system (Mavriplis 2000). It is also possible for a

group of computers (for example, a group of PCs each running Linux or windows

system) to be interconnected by a network to form a parallel-processing cluster

system.

Parallel computing has not been widely accepted in the production engineering

environment mainly due to the complexity of parallel programming and low

accessibility of parallel computers. On a parallel computing system, a task has to be

partitioned and distributed appropriately among processors. In the mean time, the

communication cost should be minimised and loads among processors balanced.

More importantly, even with careful partitioning and mapping, the performance of an

algorithm may still be unsatisfactory, since conventional sequential algorithms may

be serial in nature and may not be implemented efficiently on parallel machines. In

order to achieve optimal performance, in addition to partitioning and mapping, a

carefiil performance study should be conducted for a given application and parallel

system to identify the strength and weakness of this system.

6.1.1 Parallel Programming Model

Although the concept of parallel processing has been used for many years in many

systems, it is still somewhat unfamiliar to most CFD researchers. Thus, before

discussing details of the implementation, it is important to become familiar with two

parallel architectures: SIMD and MIMD.

SIMD (Single Instruction stream, Multiple Data stream) refers to a parallel execution

model in which all processors execute the same operation at the same time, but each

processor is allowed to operate upon its own data. This model naturally fits the

97

Chapter 6 Parallel Computing

concept of performing the same operation on every element of a mesh on
multiprocessor machines. Because all operations are inherently synchronized,
interactions among SIMD processors tend to be easily and efficiently implemented.

MIMD (Multiple Instruction stream, Multiple Data stream) refers to a parallel

execution model in which each processor is essentially acting independently. This

model most naturally fits the concept of decomposing a program for parallel

execution on a functional basis. This is a more flexible model than SIMD execution,

and it is f i t for both multiprocessor systems and networked systems.

SIMD has the advantage of being easy to implement. However, when a parallel

execution requires several different programs working together, MIMD is the choice.

In the present study, when computing a 3D viscous flow problem, there are two types

of blocks, prismatic and tetrahedron, present in the viscous mesh. A prismatic block

requires a prism based flow solver and a tetrahedron block requires a tetrahedron

based flow solver to march the solution on given meshes. Our preference is given to a

MIMD implementation of parallel computing.

6.1.2 Cluster of PC Systems

In the University of Durham, there are numbers of workstations available for

computing. These workstations are operated by the IT department in the university.

Most of systems are running SUN OS and each of them has up to four processors.

These workstations are providing generic computing. Email and WWW services for

students in the university. They are inter-connected with high-speed connection

within the IT centre. Because these workstations are not fiilly accessible to the author

and jobs may be subject to over-crowded users, they are not suitable for any

dedicated parallel computing tasks.

In the thermo-fluid division in School of Engineering, University of Durham, there

are some desktop PCs and old workstations are available for cluster computing.

These PCs are running the Windows 95 operating system for a range of functions

including office applications. Email and WWW services. They are connected to a

lOM/s HUB, which is connected to the local network within School of Engineering. It

98

Chapter 6 Parallel Computing

is well known that the Windows 95 has limited network capability, although there are

some successful attempts made toward using PVM in Windows 9x systems (Fischer

1999). Extra software packages (Fischer 1998) are required for running parallel jobs

on a windows 95 system and it is not famous for its stability. Therefore, it is not

suitable for parallel computing tasks. The good thing is that the Linux system can be

easily installed on these PCs with ful l network functions and support of most parallel

computing software. A dedicated computing cluster system was built using these PCs

within School of Engineering as Figure 6.1.

a n o
Figure 6.1 Cluster of PCs in the University of Durham

Cluster computing offers great potential, but that potential may be very difficult to

achieve for most applications. However there is quite a lot of software support that

wi l l help to achieve good performance for programs that are well suited to this

environment, and there are networks designed specifically to widen the range of

programs that can achieve good performance. These include a software system widely

used to for parallel computing: PVM.

6.1.3 The Software Package: PVM

The development of PVM started in 1989 at Oak Ridge National Laboratory. Central

to the design of PVM is the notion of a "virtual machine" (VM), a set of

heterogeneous computers connected by a network that appears logically to a user as a

single computing resource.

PVM has some features suitable for the current implementation of parallel computing

on a PC cluster system.

• It is portable. In PVM, communication between hosts is done by message

passing. PVM supplies a range of message passing API which is available to

99

Chapter 6 Parallel ComputinR

most known platforms: Windows, Linux, UNIX and UNIX compatible
systems. Thus, programs developed on one platform with PVM can be easily
port to another platform without major modifications.

• Process control and dynamic resource management. In PVM, program not

only can add/delete hosts any time when necessary, but also can spawn/kill

tasks at any nodes within V M any time. This enables the current design of the

MIMD parallel computing model and gives the program maximum control of

the computing process with minimum user intervention. Furthermore, the

dynamic process control is also essential to dynamic load balancing for

achieving maximum speedup gains on a parallel system.

• Error tolerance. PVM can detect errors during the message transmission and

notify the user of the errors.

• It supports heterogeneous hosts. PVM support a range of hardware, such as

X86 PCs, PPCs, Workstations, multiprocessor systems. It also supports the

co-existence of a wide range of operating system in the V M : Win9X, WinNT,

Mac OS, Linux and UNIX. It is well known that some of these systems are

not binary compatible. PVM message passing library can translate the

message when the source and destination hosts are not compatible. This

enables the possibility of making use of all the old PCs and workstations

running different operation systems.

In the present study, PVM is used as the parallel computing platform on a PC cluster

system. Message passing between flow solvers running on hosts across the network is

via PVM message passing library. A control program is developed to dynamically

manage the virtual machine and computing processes.

6.2 Multi-Block Method and Parallel Computing

The multi-block concept has been widely and successfully used in structured-grid

flow solvers (Rizzi et al. 1992) to deal with the difficulties of grid generation in

complex configurations for many years. In this method, the problem to be solved over

100

Chapter 6 Parallel Computing

a given domain is divided into many sub-domains, called blocks. By doing this, a
more complex geometry may be divided into a sequence of simple geometries. Then,
a structured grid in each block can be easily generated. The blocks are interconnected
to each other through block boundaries. This method becomes very popular in
structured codes because of the capability of dealing with complex geometries.

The multi-block approach in unstructured meshes does not receive much attention,

partially because computational meshes for complex geometries can be relatively

easy to generate using an unstructured-grid method without the aid of the multi-block

approach. However, due to the increasing needs for generating well-formed and

body-fitted viscous grids for 3D turbulent flow simulations, the muhi-block method

becomes increasingly important for the unstructured-grid method. Initially, the multi-

block approach is employed in unstructured solvers to reduce the memory

requirement. Sheng etc (Sheng, Tylor et al. 1995) reported multi-block approach

both for structured code and unstructured codes (Sheng, Whitfield et al. 1999). They

found the multi-block technique can significantly reduce the memory requirement for

both structured and unstructured methods. Most importantly, the multi-block method

exposes opportunities for parallel execution.

Most computing problems have several parallel solutions. The best solution may

differ from that suggested by existing sequential algorithms. The design methodology

that we describe is intended to foster an exploratory approach for data parallelism for

CFD applications with unstructured grids. The multi-block method meets the need for

data parallelism: blocks are served as partitions for concurrent computing.

6.3 Partitioning Unstructured Meshes

Partitioning the computing grid is a fundamental component in parallel computing. In

a cluster system, the main memory of the system is distributed over the networked

hosts. Therefore, the program and its associated data, such as the computational grid

and solution, must be distributed between processors. This leads to the issue of how

to partition a large unstructured grid.

101

Chapter 6 Parallel Computing

One partitioning scheme is to ensure every element of the mesh is assigned uniquely
to a partition which is often associated with a processor and inter-partition boundaries
consist of faces from the original mesh. The nodes and faces on an inter-partition
boundeiry are duplicated. This method is often called a non-overlapped method.
Another approach called an overlapped method involves constructing a halo zone
between partitions, where grids are overlapped in these regions. Our choice is given
to the non-overlapped method because the numerical efficiency of this method is
higher than an overlapped method.

The first objective of a non-overlapped partitioning scheme is to ensure an even

distribution of computational workloads among the processors according to their

computing powers. Secondly, the amount of time spent on inter-processor

communication and on waiting for other processes to finish their computing is

minimised. The first requirement is termed load balancing. I f the workload is not well

balanced on a distributed system, some processors may have to wait at

synchronization points for other processors to finish their computing in order to

commence communication. Inter-processor communication is generated by the mesh

surface that straddles two adjacent mesh partitions. The second requirement comes

from the fact that the communication time cannot always be ignored especially on a

cluster system.

Partitioning can be done recursively starting with the problem of dividing one domain

to A'̂ sub-domains. The mesh could be partitioned by a variety of methods. An

obvious approach is to partition the domain according to the geometric feature of the

particular problem. For example, a single airfoil computation could be performed

using two domains, one on top the airfoil and one below it. This approach is popular

in simple geometries, because it is simple, robust and quick. However, this method is

unable to produce well-balanced partitions and optimistic partitioning, i.e. minimised

communication volume. Our preference is given to a graph based method, such as

METIS.

102

Chapter 6 Parallel Computing

6.3.1 Software Package: METIS

METIS (Karypis and Kumar 1998) is a software package for partitioning large

irregular graphs and partitioning large meshes. It is capable of using multi-constraint

partitioning graphs and providing high quality partitions with the option of

minimizing the total communication volume and minimizing the maximum

cormectivity of sub-domains.

The algorithms in METIS can be used to compute a balanced A:-way partitioning that

minimizes either the number of edge-cuts or the total communication volume. The

communication volume definition in METIS is different from the communication

cost in our parallel computing. In the present implementation, communication occurs

where the two adjacent elements are separated into two blocks. Therefore, the edge-

cut is more appropriate to define the total communication volume. The objective of

partitioning is down to minimise the edge-cut while balancing the load in each

partition.

METIS provides two programs PMETIS and KMETIS for partitioning a graph into k

parts. Both programs provide high quality partitions. However, depending on the

application, KMETIS is preferred when partitioning the graph into more than eight

partitions, and PMETIS is preferred when partitioning a graph into a smaller number

of partitions. METIS also provides a library interface that can be used in a user's

partitioning program to partition a graph. In the current implementation, the METIS

library that can be used be partition graphs into unequal-size partitions is linked to the

main control program that is responsible for mesh partitioning.

6.3.2 Mesh to Graph Conversion and Mapping

As we discussed previously, METIS is a software package capable of partitioning a

graph into partitions. In the present cell-centred finite volume setting, all the fluxes

are computed along faces and accumulated to cell centres during the residual

evaluation. To ensure the interface of two adjacent cells will not be broken, the

triangle or tetrahedron based unstructured mesh has to be converted to its compatible

graph for partitioning.

103

Chapter 6 Parallel Computing

A mesh can be transformed to its compatible graph by connecting all adjacent

element centroids. Figure 6.2 demonstrates a 2D unstructured mesh and its

compatible graph. In three dimensions, the connection is similar to 2D, except each

element has up to four edges connected to its adjacent elements. The graph is often

referred to as a dual of the original mesh. In this procedure, the connection topology

and element-cell mapping must be stored for reconstructing meshes from a

partitioned graph.

Figure 6.2 A 2D unstructured mesh and its compatible graph

After a mesh is successfully transformed to its compatible graph, the METIS

subroutine is used to partition the graph to a number of sub-graphs. It should be

noticed that in the current setting, all the weightings on every nodes are set to be 1

because of the fact that the amount of communication at every edge is the same.

When the partitioning of the graph is done, the partition information based on the

graph is mapped back to the mesh based on the connection topology and element-cell

mapping. Thus, the original mesh is divided into several unstructured-grid blocks for

parallel computing. Each block has a completely valid unstructured mesh, which is a

subset of the original mesh. In this process, block boundaries between two adjacent

blocks is constructed by duplicating nodes and faces shared by blocks according to

the partitioning information. Natural boundaries are divided when necessary and

assigned to blocks accordingly.

104

Chapter 6 Parallel Computing

6.4 Performance of Parallel Computing

The nature of the parallel computational problem, and to a lesser extent, the

programming model, dictates the degree of communication that is required. Thus,

unlike its counterpart serial computing, the performance of the parallel computing is

not only evaluated based on the computer power, but also the costs of the

communication between distributed processors over the network. In order to obtain

optimal computing efficiency, reducing both computation and communication costs

should be considered.

For a given CFD problem, the total computational costs are normally bounded by the

size of the computing mesh and numerical algorithm adopted. Additional

computation overhead introduced by parallel computing, such as packing/unpacking

communication data and computing block boundary multiple times, can be reduced

by optimal program design and communication pattern.

The communication costs are usually decided by two factors, bandwidth and latency

of a communication system. Latency of a communication system is the minimum

time taken to transmit one message, including any send and receive software

overhead. Latency is very important in parallel computing because it determines the

minimum useful gain size, the minimum run time for a segment of code to yield

speed-up through parallel execution. Basically, i f a segment of code runs for less time

than it takes to transmit its result value (i.e., latency), executing that code segment

serially on the processor that needed the result value would be faster than parallel

execution; serial execution would avoid the communication overhead. The bandwidth

of a communication system is the maximum amount of data that can be transmitted in

a unit of time. Bandwidth for serial connections is often measured in bits/second

(b/s), which generally corresponds to 1/8 of the number of Bytes/second (B/s). For

example, a lOM Ethernet transfers about 1.25 MByte/s, whereas an up-to-date PC

with Intel Pentium IV processor with RDRAM has up to 4GB memory bandwidth.

High bandwidth allows large amounts of data to be transmitted efficiently between

processors.

105

Chapter 6 Parallel Computing

6.4.1 Load Balancing

Apart from the numerical algorithmic efficiency, one also needs to consider the

performance of the overall computation, such as processor speed and communication

speed between processors. For the traditional computing, i.e. serial computing,

computer central processor speed is always the bottleneck. For a cluster system, the

bottlenecks could arise because the computational loads of processors are not even or

the communication costs are too high.

In a cluster system, the computing time on each sub-domain is decided by dividing

the amount of computation with the processor's power of the node. Considering the

overall computing performance, the computing time is only affected by the slowest

domain. Obtaining maximum efficiency leads to the amount of computation (load) of

a partition balanced by the power of the processor, with which the partition is

associated.

For a parallel computing problem, the amount of computation of a partition is a

function of the total number of elements in this partition. Therefore, to balance the

load, the number of elements in a partition should be.

N Total (6-1)

/ = 1

here P,^ is the computing power of the processor, N is the total number of processors

and Mj„,^, is the number of elements in the global computational mesh.

In some cases, load balancing not only means balancing of computational loads, but

also communication costs. The execution time of a partition is denoted as:

Here T^^^p is the computing time for the flux evaluation, boundary condition

treatment and time integration and is the waiting time at each synchronization

106

Chapter 6 Parallel ComputinR

point when the computational load is not well balanced. The third term in the right
hand side of the equation is the communication time, which represents the
performance penalty introduced by partitioning. It is a linear function of the
communication volume, which is modelled by the number of duplicated faces or
edge-cut in a partition. For a typical CFD problem on a cluster system, the
communication volume for a block at each time step can be expressed as:

Ko..=Z(^E,) (6-3)

Where N^^ is number of neighbouring partitions of the block and £^ is the number

of duplicated faces with the current neighbouring partition. /? is a constant depending

on the computing problem and message pattern. From the equations (6-2) and (6-3), it

is clear that load balancing also requires the number of edge-cuts in each partition to

be balanced to obtain maximum efficiency. However, it is often very hard to achieve

the minimum edge cut globally while edge cut numbers in every partition are equal.

The efficiency (or speedup) of a parallel computing can be modelled as:

= y- (6-4)
exe

here T̂ ^̂ is parallel execution time and is serial computing time.

In a small cluster, the communication costs ai'e relatively small compared to

execution time for a typical CFD problem because relatively fewer edges have been

cut and each partition generally has few neighbours. The communication volume and

number of edge-cuts and neighbours increase when the computing domain is

partitioned to more sub-domains. At this stage, while the execution time in each

partition is decreased, the speedup of the parallel computing is increased. In the mean

time, the communication time is increased, due to the more edge-cut and each

partition has more neighbours. When the commimication time exceeds the computing

time in the slowest partition, the speedup wil l decrease even when the number of

107

Chapter 6 Parallel Computing

processors and partition is increased. The maximum efficiency is reached when the
communication time equals to the computing time.

6.4.2 Fast Communication

When computing on traditional parallel computers, such as a multiprocessor system,

load balancing is very important, because the communication costs are relatively low

due to the high bandwidth and low latency of the system. On a PC cluster system, it is

often very important to optimise the communication because of the high latency and

limited bandwidth of the system, which means that the communication would take

more time.

In the present parallel implementation on cell-centred finite volume based

unstructured-grid solvers, flow variables of the elements that lie on both sides of a

block boundary are required to be updated at each synchronisation point. As

described in chapter 3, ghost elements are employed as the receiving buffer to store

the flow data from the other side of the boundary. In addition, the flow data on the

nodes that lie on the block boundary have to be updated to keep the interface

consistence across the flow field. The exchanging of data between different zones on

every synchronization point is done by message passing over the network.

The message is a package of data that consist of message type, destination, message

length and actual message data. Depending on cases, the length of the message can

vary from a few bytes to several Megabytes. The transmission time could be ranging

from several hundreds of microseconds to several seconds on a typical Ethernet

compared to be normally several microseconds for random memory access on a

shared memory parallel system. Therefore, minimization of communication for

parallel computing on a distributed system is vital for performance.

6.5 Parallel Implementation on Distributed Systems

The implementation of distributed-memory explicit message passing parallel

computing on unstructured-grid flow solvers has been discussed extensively in

references (Venkatakrishnan, Simon et al. 1991; Mavriplis 2000) In this section, we

108

Chapter 6 Parallel Computing

focus on issues of the present multi-block parallel implementation, including the data

structure, block interface treatment and message passing pattern.

6.5.1 Data Structure and Interface Treatment

A very important issue in the parallel computing is the interface treatment, i.e. the

block boundary treatment, which is vital to accuracy and stability of a solution.

A partition or block interface is where two blocks are next to each other. Figure 6.3

depicts block interfaces between three 2D unstructured meshes. It is clear that faces

on an interface are shared by two blocks, and a point may be shared by more than two

blocks depending on its location. After partitioning, these points and faces are

duplicated and distributed to corresponding blocks, which are often associated with

processors across the network. This information must be stored to be available to

relevant flow solvers. In the present edge-based data structure implementation, a set

of interface arrays is declared to store this information. An interface node array is

allocated to store IDs of nodes on interfaces in this partition, corresponding node IDs

in the other block, ID of the partition, and how many times this point has been

duplicated. An interface edge array is used to store the current face IDs in this block,

corresponding face IDs in the other block, and the ID of the other block.

BlockA

Block B

Block C

Interface Nodes

Interior edges
Block Interfaces

Figure 6.3 Block interface

109

Chapter 6 Parallel Computing

Block 1

P2

PI

B'

Block 2

A'

P2

Figure 6.4 Interface treatment

In parallelised flow solvers, these block boundaries are treated as internal faces, i.e.

using the same way to evaluate fluxes across these faces. At the pre-processing stage,

the contribution (used for the weighted averaging procedure) of each block to

boundary nodes is calculated and sent to corresponding blocks. At each

synchronization point, there are two phases. First, the flow variables of the nodes that

lie on a block boundary are updated by sending and receiving messages. As shown in

Figure 6.4, flow variables of nodes PI and P2 are updated by message passing at this

stage. Then, the flow variables near the boundary face are evaluated using formulae

described in 3.4.5 and sent to the other block. In Figure 6.4, the flow variables near

P1-P2 in element A is used to update the values of A' in block 2.

A synchronization point is placed immediately after the boundary condition

treatment, so that the information of either side of the block could be updated with the

aid of PVM message passing API.

6.5.2 Message Passing Pattern

Message passing is a programming model for interactions between processors within

a parallel system. In general, a message is constructed by a program on one processor

and is sent through an interconnection network to another processor, which then must

accept and act upon the message contents. Thus, message passing can yield high

efficiency mziking it a very effective way to transmit a large block of data from one

110

Chapter 6 Parallel Computing

processor to another. However, the overhead in handling each message including
latency could be high, which could lead to a major dropping in performance. In order
to minimize the need for expensive message passing operations, data structures within
a parallel program must be spread across the processors so that most data referenced
by each processor is in its local memory. This task is known as mesh partitioning in
CFD terms.

The actual cost of transmission of a message can often be modelled by a linear
relationship,

Tc=T[+T^+aM + T', (6-5)

where T[and are the communication latency of the sending/receiving system,

is the cost for preparing the message (including copying, packing and unpacking)

that is linearly related to the length of the message, a is the rate of bandwidth for

data transfer between two processors and Mis the message length.

In a parallel system, the total cost of N message transmission on every

synchronization points wil l be A'̂ • . Because and a can be considered as

constants and is only related to the message length, one can either reduce the total

message numbers or the message length to reduce the total communication cost. For a

given partitioned mesh, the total communication volume is constant. Reducing the

number of messages to be transmitted becomes an obvious choice to reduce the

overall communication cost.

In the present 3D flow solvers, a 3D block (sub-grid) may consist of a number of

triangular or rectangular faces. Each element of these boundaries contains three

(triangle) or four (rectangle) nodes, two neighbouring element IDs (one in the current

block and one in the other block) and the neighbouring block ID. At each

synchronization point, the flow variables of the boundary elements in the current

block should be sent to its neighbouring blocks to overwrite values in ghost elements.

For a typical 3D block, it may consist of several thousands of such boundary faces.

I l l

Chapter 6 Parallel Computing

That means equal amount of messages are required to be sent at each synchronization
point. As we mentioned previously, the latency of a PC cluster system is very high,
one can expect a very low efficiency outcome with such a scheme. To reduce the
number of messages to be transmitted, all the boundary faces sharing the same
neighbouring block are collected and compiled to several sending buffers and
receiving buffers prior to any communication. Each sending buffer contains the
destination block ID and IDs of the elements in the current block to be sent. Each
receiving buffer contains the block ID that the incoming message is expecting and the
IDs of ghost elements that the message data should be unpacked for.

At each synchronization point, the flow variables of these in the send buffer are sent

to their destination process according to their neighbouring block ID. When a

message is received, the destination ID is checked and unpacked according to the

receiving buffer. In this manner, each block only sends and receives the number of

messages equal to the number of their neighbours. Thus, the overhead due to latency

of the network is reduced.

6.5.3 Parallel Programming in a Cluster System

In parallel computing of a CFD problem on a cluster system, the partitioned sub-

domains (blocks) are distributed across processors in the cluster system. During the

parallel execution, inter-communication between blocks to determine block boundary

conditions at each time integration step is required. In a system with shared memory,

one can simply "copy" the memory from a block boundary array to its corresponding

zone boundary array. This procedure is very simple and efficient because of the high

bandwidth and low latency of the system memory. Unfortunately, this method cannot

apply to a cluster system with distributed memory. For a cluster system, the

communication is implemented using the PVM message passing library and the inter-

processor communication pattern is pre-determined at run time.

MIMD is a flexible programming model. It allows different programs working

together. In the present parallel implementation, a master/slave programming model

112

Chapter 6 Parallel Computine

is adopted. The master process is a control process with a range of the

responsibilities, including:

1. Pre-processing. The master process reads the computing mesh and

configurations for parallel computing, adds computing nodes that are not

currently in V M .

2. Partitioning the computing mesh. After reading the computing grid and

partitioning instructions, the master process coverts the mesh to its compatible

graph, partitions the graph and then maps the partitioned graphs to the

computing meshes.

3. Initialising computing processes across the network and detecting faulty

nodes. After computing processes are spawned, partitioned computing

meshes, initial and boundary conditions are sent to corresponding processes in

the network by the PVM message passing library.

4. Sending the initial data to computing processes and receiving the final resuh

from them. When the solution is converged, computing processes are

terminated by the control process.

There are two types of flow solvers serving as slave computing process: TetraSD and

Prism3D. The TetraBD is a tetrahedron based flow solver and the PrismBD is

prismatic element based. Each of the solvers can be run in the parallel mode or single

process mode. After a flow solver is launched, it wil l try to get its V M parent process

id. I f the parent id is - 1 , it indicates no V M parent is present and it turns into the

single process mode. In single process mode, it will turn off any parallel subroutines.

When in parallel mode, it will receive the partitioned computing mesh from the

control process and send/receive any messages at each synchronization point. The

following flow chart (Figure 6.5) represents a simple parallel computing job with one

tetrahedron block and one prismatic block, in which the dash lines represent

communication among processors.

113

Chapter 6 Parallel Computing

Master 3 D

Tetra3D

Initialising

Receiving the mesh
and configurations

I T
Pre-processing and

validating block-boundary

Start computing

3 1
Boundary conditions &
block interface treatment

3 i :
Flux evaluation

Time marching

Send residual

End?

Send final results

Read V M and partition
configuration

Add hosts to VM, partition the mesh

Spawn computing processes

Send computing meshes and
computing configuration

Start parallel computing

PrismSD

Initialising

> Receiving the mesh
and configurations

I T
Pre-processing and

validating block-boundary

•11-
Start computing

->
1

Boundary conditions & Block
interface treatment

Wait for messages
I T

<1

Flux evaluation

n

Receive residual

Time marching

Send residual

Send stop to computing
processes

n
End?

^ Receive and output final results ^ Send final results

F,Nn

Stop

Figure 6.5 Flow chart of parallel computing

114

Chapter 7 2D Validation and Discussion

Chapter 7

2D Validation and Discussion

In this chapter, Euler/Navier-Stokes algorithms based on unstructured-grids

developed in the previous chapters are examined on a range of 2D flow cases. These

cases are served to validate the solution algorithms for inviscid, laminar and turbulent

flows, and to assess accuracy and efficiency of these methods.

The basic algorithms developed in Chapter 3, including the upwind scheme, explicit

multi-stage Runge-Kutta method, spatial second order scheme and cell-centred finite

volume method, are examined and validated on several selected inviscid flow cases.

The results are compared to analytical and experimental data to assess overall

accuracy of the algorithm. Several laminar and turbulent flow cases are presented to

validate the viscous term treatment and to confirm the correct implementation of the

turbulent model. The inflation mesh generation technique developed in Chapter 4 is

demonstrated in several turbulent flow cases.

The adaptive mesh refinement technique is demonstrated in both inviscid and viscous

turbulent flow cases to assess accuracy of this method. The efficiency of the multigrid

method developed in Chapter 5 is examined in both inviscid and turbulent flow

simulations. The results of turbulent flow simulations also serve to demonstrate the

effectiveness of the present aspect-ratio adaptive multigrid method.

115

Chapter 7 2D Validation and Discussion

7.1 Results for Euler Algorithm

In this section, the Euler equations are solved on a cell-centred finite volume setting

using an upwind scheme on several inviscid flow test cases. The first case is subsonic

flow in a 2D channel with a bump. This case is designed to demonstrate the overall

accuracy of the second spatial order scheme. The second test case is the simulation of

transonic flow over a NACA 0012 airfoil to examine the efficiency and accuracy of

the mesh adaptation technique. The third case is transonic flow around a RAE 2822

airfoil. This case is to demonstrate the effectiveness of the multigrid in inviscid flow

simulations.

Al l numerical results presented in this section are obtained using the spatial second

order scheme as described in Chapter 3. Roe upwind scheme (3.4.3) is used to

evaluate fluxes across internal edges. The solutions are advanced to steady states by

using a four-stage explicit Runge-Kutta time integration with local time stepping.

7.1.1 Subsonic flow in a 2D Channel

The first test case is a 10% thick circular arc bump in a channel. The flow approaches

at a zero incident with an inlet Mach number ofM^„,^, =0.5 . This case has been

widely used by many researchers due to simplicity of the geometry (Allmaras 1989).

Figure 7.1 Unstructured-grid in a 2D channel

Figure 7.1 shows the computational unstructured-grid used in this case, which is

generated by the mesh generator developed by the author (Zheng 1995). The mesh

contains 699 points and 1,285 triangles. The flowfield is completely subsonic with

stagnation points at the leading and trailing edge of the bump as shown by Mach

116

Chapter 7 2D Validation and Discussion

number contours (Figure 7.2). Figure 7.3 is the distributions of Mach number and

pressure (non-dimensionlised) on the upper and lower walls (Figure 7.3).

..-0.606916-

Figure 7.2 Mach number contours

MACH
PRESS

Figure 7.3 Mach number and Pressure distributions on the wall

In this case, the overall quality of the solution is indicated by symmetry distribution

of the flowfield about the bump. Reasonably good symmetry of Mach number

distribution is observed in Figure 7.2 and 7.3, except from the bump trailing edge to

exit plane due to the propagation of the numerical dissipation. It is also noticed that

the simple reflected exit boundary condition treatment (3.8) also contributes to the

non-symmetric distribution near the exit plane.

117

Chapter 7 2D Validation and Discussion

7.1.2 Transonic Flow over a NACA 0012 Airfoil

The second test case is the transonic flow over a NACA 0012 airfoil. This case is

designed to examine the shock wave capturing ability of the present 2D unstructured

flow solver and to assess the accuracy of the solution with the mesh adaptation

technique.

The flow over the NACA 0012 airfoil approaches at a free stream Mach number of

0.8 with an incidence angle of 1.25°. The far field boundary is approximately circular

and placed at a distance of five chords away from the airfoil to minimise the

disturbance. Figure 7.4 shows the initial coarse unstructured-grid, which contains 581

nodes and 1,097 triangles.

5

4

3

2

1

>. 0

-1

-2

-3

-4

-5

!\ l \ / W ! \ / i •.
/ \

-3

• / \ i - i ^ -Jv--'' . \ i ^ i / • ^ / \ i /' " \ \ / \ j / \ / \
0 1

X

Figure 7.4 The initial computational mesh around NACA 0012

The computing begins on the coarse mesh (Figure 7.4). The mesh adaptation is

enabled and the refinement criterion is set to static pressure because of the inviscid

nature of the flow. The Direct Connected Multigrid (DCMG) is used to accelerate the

solution. After three times of successive mesh adaptations, the solution reaches a

118

Chapter 7 2D Validation and Discussion

steady state. The sequence of the meshes used in the different phases of the

computation is plotted in Figure 7.5. The mesh near the airfoil is refined repeatedly

due to the high pressure gradients in this region. High density of the mesh on the

upper surface regions indicates the presence of a strong discontinuity. Most of the

triangles are well formed due to the mesh relaxation procedure after each refinement.

(a) Initial mesh around the airfoil (b) Refined mesh 1

(c) Refined mesh 2 (d) Final mesh

Figure 7.5 Sequence of the unstructured meshes

Figure 7.6 is the plot of Mach number contours of the flowfield. Both the strong

shock on the upper surface and the weak shock on the lower surface are well

resolved. This is due to the mesh refinement in these regions, as depicted in Figure

119

Chapter 7 2D Validation and Discussion

7.5. It is often very important to investigate the changes of entropy (e = I n - ^) of

a solufion to determine the accuracy of a scheme. For convenience, the entropy

function (S = - ^) is used to model the entropy increase (— 1). Figure 7.7 shows

the entropy increase contours. As we know, entropy increase should be zero for an

inviscid flow upstream of the shock wave. As can be seen in Figure 7.7, the computed

values near the leading edge are below 0.5%, which is a good indication of local

accuracy of this solution. Adaptive mesh refinement is evident in the region of the

leading edge, and in the vicinity of both the upper shock and the lower weak shock

waves. The distribution of the surface pressure coefficient (— — ^) shows very
iPv^

good agreement with the structured grid calculation of Ref (Anderson et al. 1986) in

Figure 7.8.

1.3052
0.630852

Figure 7.6 Mach number contours

120

Chapter 7 2D Validation and Discussion

0W699S5

0100738

Figure 7.7 Entropy increase contours

The convergence history of the entire calculation is shown in Figure 7.9. After each

adaptive refinement, flow variables are interpolated to the new mesh and a series of

multigrid levels is built up based on this new mesh. With 3 levels of multiple grids

(DCMG) and 3 stages of adaptive mesh refinement, the solution procedure converges

very rapidly. This case takes about 3 minutes on a Pentium I I 450 PC. It is evident

that the present multigrid is effective for the inviscid flow simulation.

- 1 . 1 0 5

- 0 . 6 0 5

- 0 . 1 0 5

Q.
o 0 . 3 9 5

0 . 8 9 5

1 .395

C a l c u l a t i o n
R e f e r e n c e

Figure 7.8 Pressure coefficient distribution on the airfoil

121

Chapter 7 2D Validation and Discussion

s r - 1

5-2
•o

I
K -3

4
X L

1

0 100 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0

Time step

Figure 7.9 Convergence history

7.1.3 Transonic Flow over R A E 2822 Airfoil

The final test case for the Euler algorithm is transonic flows over a RAE 2822 airfoil,

which is developed by Cook et al (Cook et al. 1979). A range of experiments has

been carried out at the Royal Aircraft Establishment, UK. In the present study, a

transonic flow case corresponding to the experiment case 10 is simulated.

In this case, the flow approaches the airfoil at M„ = 0.75 with an incidence of

a = 3.19°. In the experiment, a strong shock wave located at about 53% chord of the

upper surface is observed. The main objective of this case study is to assess the

effectiveness of the multigrid method for inviscid flow simulations.

The computational mesh (Figure 7.10) for this case consists of 5,217 points and

10,320 triangles. It is generated by the 2D mesh generator in the GRUMMP (Ollivier

Gooch 1998). The mesh adaptation function is disabled in this case because the main

objective of this case is to examine the effectiveness of the present multigrid method.

Three levels of multigrid, as plotted in Figure 7.11, are used to accelerate the inviscid

solution. These coarse meshes are generated with the DCMG method based on the

connectivity of triangles.

122

Chapter 7 2D Validation and Discussion

(a) Full field view of mesh

(b) Unstructured-grid near the airfoil

Figure 7.10 Computational mesh around R A E 2822 airfoil

123

Chapter 7 2D Validation and Discussion

I \

(A) First level of coarse meshes

-1

(B) Second level of coarse meshes (C) Third level of coarse meshes

Figure 7.11 Sequence of coarser levels

Two computations with the same flow conditions are performed: a single grid and a

mulfigrid. The unstructured mesh used in both computations is plotted in Figure 7.10.

The final flowfield for both computations are identical. Figure 7.12 is the plot of

Mach number contours. The incoming flow is accelerated to supersonic on the upper

surface of the airfoil and a strong shock is formed at around 70% of the chord. Figure

7.13 shows the comparison of the pressure distribution on the airfoil with

experimental data (Cook et al. 1979). The pressure coefficient shown in the plot is

defined as C„ With this definition, could exceed 1.0 in the leading

124

Chapter 7 2D Validation and Discussion

edge area. The pressure on the upper surface is in reasonable agree with experimental

data before the shock wave, but it is clear that the inviscid solver fails to predict the

location of the shock wave correctly. This highlights the importance of viscous

effects in transonic flow simulations. Figure 7.14 is the comparison of the

convergence histories of the single grid and muUigrid computations. With three levels

of coarse meshes, the multigrid converges within 1000 steps and it takes a much

longer time, around 8500 steps, for the single grid to reach a steady solufion.

0.694414 0.694414

Figure 7.12 Mach number contours

Q.
U

-1 .0

-0 .5

0.0

0.5

1.0

1.5

2.0

6 5 0 ^ 0
0 ooo

O O O O O Q O

Oo

2°oooooo

o Experiment
Inviscid calculation

— 1 ' 1 ' 1 ' 1 ' 1 • 1 —
0.0 0.2 0 .4 0.6 0.8 1.0

X/L

Figure 7.13 Comparison of the surface pressure distribution

125

Chapter 7 2D Validation and Discussion

g- i
•a I-

— F<es iaua i
N O N - M u l t l g r i d
3 - l e v e l - M i l t i g r i d

i A - n •• • •

; |
; 1

A , . A J ; 1
0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0 6 0 0 0 7 0 0 0 8 0 0 0 9 0 0 0

Time step

Figure 7.14 Comparison of Convergence histories

Although both computations fail to predict the location of the shock wave as

expected, very good acceleration is observed in the multigrid computation. With three

levels of coarse meshes, the solution converges in 20 minutes on a PII 450 PC. It is

evident that the direct connectivity based multigrid can deliver up to 7 times of

speedup in inviscid computations.

7.2 Laminar Flows over a Flat Plate
In this section, the simulation of the flat plate boundary layer is carried out to

demonstrate the accuracy of the viscous term treatment and to examine the influence

of the mesh with a high aspect ratio on the present 2D unstructured solver. The

computations are carried out on a triangular based unstructured mesh (Figure 7.15a)

for M„ = 0.2 at various Reynolds numbers. The accuracy is assessed by comparing

the flat plate flow solution with the Blasuis similarity solution, which can be regarded

as the exact solution for incompressible laminar boundary layers on a flat plate.

126

Chapter 7 2D Validation and Discussion

(a) Full field view of the unstructured-grid

0.02

0.01

oh
- I L _ _ J l _

-0.2 -0.19 -0.18

(b) Unstructured-grid near the wall

Figure 7.15 Computational grid for the flow over a flat plate

The unstructured mesh (Figure 7.15) used in the various laminar flow simulations is

generated by subdividing a 61x31 H-topology structured-grid. The mesh is uniform in

streamwise spacing and highly stretched near the solid wall (Figure 7.15b). The

maximum aspect ratio near the solid wall is around 30. In all flat plate boundary

layer calculations, the Mach number is kept at 0.2 to minimise the compressibility

effect.

The first computation is performed at a Reynolds number of 5 x l 0 \ Figure 7.16a

shows the comparison of the boundary layer velocity profile, where T] is

(7-1)

127

Chapter 7 2D Validation and Discussion

and ŵ , is the velocity of farfield. With 12 grid lines (excluding the first grid line
which lies on the wall), the velocity profile is well modelled against the Blasius exact
solution. Figure 7.16b is the comparison of the skin friction coefficient Cj ,

^ *Re, (7-2)

with from the Blasius analytical solution,

(7-3,

and the Icoal Reynolds number based on x is obtained from the reference Reynolds

number.

Re^=M*Re (7.4)

In the skin friction coefficient plot (Figure 7.5b), some disagreements are shown near

the leading edge of the plate and the trailing edge. The disagreement at the leading

edge suggests some numerical errors or compressible effects, while at the trailing

edge, the simple boundary condition treatment is likely to be the reason. This issue

can be addressed by adding a buffer zone at the trailing edge to smooth the pressure

changes from the inner boundary layer to a free flow condition.

To further investigate the accuracy of the present solution method, numerical

simulations are carried out at different Reynolds numbers. Figure 7.17a at

Re = 1x10'' and Figure 7.17b at Re = 4x10 ' ' , respectively. By using various

Reynolds numbers, various boundary layer thicknesses can be obtained on one

unstructured-grid. The velocity profile agrees well with the Blasius solution when the

Reynolds number is doubled from 5 x l O \ When the Reynolds number increases to

4x10' ' , some disagreement can be observed in Figure 7.17b, which suggests too few

grid lines in the boundary layer. It is noted the upwind procedure requires only 9

128

Chapter 7 2D Validation and Discussion

points to resolve the boundary layer well (Figure 7.17a), whilst our experience

suggests typically 20 points or more would be needed for central difference schemes

with the artificial viscosity.

0.6 H

o Unstructured-grid solution
Blasius solution

(a) Velocity profile at 50% of the plate (Re= 5x10')

o

0.1

0.01

10

o Unstructured-grid solution
Blasius analytical solution

100 1000

Re

(b) Local wall friction coefficient

Figure 7.16 Laminar flow over a flat plate

10000

129

Chapter 7 2D Validation and Discussion

i .oH

o Unstructured Solution
Blasius Exact Solution

(a)Re=lxlO'

o Unstaictured-grid solution
Blasius Exact Solution

(b)Re=4xlO'

Figure 7.17 Velocity profiles at various Reynolds numbers

130

Chapter 7 2D Validation and Discussion

7.3 Results for Turbulent flows
In this section, turbulent flows are simulated to validate the correct implementation of

the turbulence model and to assess the accuracy and efficiency of the present 2D

unstructured flow solver. These include low speed flow over a flat plate, transonic

flows around the RAE 2822 airfoil and low speed flows in a linear turbine cascade.

7.3.1 Turbulent Flows over a Flat Plate

The flat plate boundary layer solution serves to confirm the correct implementation of

the Spalart-AUmaras turbulence model. Numerical results are compared with an

empirical formula: the law of the wall.

In this case, the undisturbed incoming flow is approaching the flat plate at = 0.2

and Re^ =2x10*. Because natural transition cannot be predicted by the present

model, a trip point is placed at 10% of the plate length to produce transition to

turbulent flow. This is done by the transition terms in the turbulence model (3.24).

The computation is carried out on the same unstructured mesh used in the previous

laminar flow computation. At the farfield, the turbulence dependent variable v is set

to 0.001 for numerical reasons. A no-slip condition is applied on the solid wall.

35

30

25

20

15

10

5

Defect Layer experimental data
The law of the wall (log layer & viscous layer)

o Turbulence solution (S-A model)

10 100
- I -n -r |

1000

Figure 7.18 Velocity profile against the law of wall

131

Chapter 7 2D Validation and Discussion

Figure 7.18 shows the resuh in terms of the velocity profile using the Spalart-

Allmaras one-equation model at 50% length of the flat plate. The calculated velocity

profile agrees well with the law of the wall. Figure 7.19 is the convergence history of

the computation. The residual goes down rapidly before 1000 time step, but slows

down after 1000 time step. This indicates that the explicit single grid solver is

effective in damping the high order frequency errors and less effective against the low

order frequency ones.

0)
a:

— I — ' — I — ' — I — ' — I — ' — I — ' — I — • — I — ' — r — ' — 1 — ' — I
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time

Figure 7.19 Convergence history

In this simplified boundary layer problem, the 2D unstructured-grid based flow solver

accurately predicts the velocity profile. This indicates the correct implementafion of

viscous terms and the turbulence model. The convergence history reveals the need for

more effective convergence acceleration means for viscous flow computations.

7.3.2 Turbulent Flow over RAE2822 Airfoil

The second test case is the turbulent flow around the RAE 2822 airfoil at = 0.75,

Re„ = 6.2x 10*, and a = 3.19°. This corresponds to the condition of test case 10 in

Ref. (Cook et al. 1979). The similar inviscid computation can be found in 7.1.3, in

which the shock wave position has not been predicted correctly. Here the same case is

132

Chapter 7 2D Validation and Discussion

computed including viscous effects to examine the capacity of the present flow solver

to simulate the boundary-layer and shock wave interaction problem as well as to

assess the accuracy of the adaptive mesh refinement technique and effectiveness of

the present multigrid method in viscous flow simulations.

(a) Initial mesh

(b) Final mesh

Figure 7.20 Unstructured-grid around the R A E 2822 airfoil

133

Chapter 7 2D Validation and Discussion

With the mesh adaptation technique, a relatively coarse unstructured grid generated

with the Advance Front method is used as an initial mesh, plotted in Figure 7.20a. It

consists of 2,329 nodes and 4,491 triangles. The solution is obtained on a fine mesh

(Figure 7.20b) with 5,846 nodes and 11,457 triangles after four successive adaptive

mesh refinements. It is clear that most element subdividing occurs in the wake region

and near the airfoil. The high density of the grid on the upper surface indicates the

capture of a strong discontinuity. Figure 7.21 shows a close view of the

computational grid near the airfoil. The computational grid in the leading edge region

is well formed as shown in Figure 7.21. The mesh near the solid surface is highly

stretched (the maximum aspect ratio is about 25) to resolve the boundary layer. The

typical of the first point of f the wall is 20 and a wall function is employed.

(a) Around the airfoil

(b) Near the leading edge

Figure 7.21 Computational grid near the airfoil

134

Chapter 7 2D Validation and Discussion

Figure 7.22 shows the computed result in terms of Mach number contours,

demonstrating that the shock wave is well resolved. Figure 7.23 is the plot of eddy

viscosity contours near the airfoil. The comparison of the computed surface pressure

and experimental data is shown in Figure 7.24. The shock wave location and pressure

distribution near the leading edge obtained using the Spalart-Allmaras model agrees

well with the experimental results. However, it seems the pressure coefficient is

over-estimated after the Shockwave. This indicates the separation induced by the

shock wave is not well predicted.

0.91406

n.664773

0.664773

Figure 7.22 Mach number contours

Figure 7.23 Eddy viscosity contours

135

Chapter 7 2D Validation and Discussion

o

-1.5^

-1.0

-0.5

0.0

0.5

1.0-

1.5-

2.0

o Experimental data
Turbulence computation
Inviscid calculation

I ' 1 I I ' 1 1 1 1 1—
0.0 0.2 0.4 0.6 0.8 1.0

x/c

Figure 7.24 Comparison of surface pressure distribution

The effectiveness of the aspect-ratio adaptive multigrid for the high Reynolds number

flows is evaluated in this case. The mesh used here is the final refined mesh of the

last simulation, and the maximum aspect ratio is about 25. The solutions are obtained

in three different ways: Single grid (SG), the Direct Connected Multi-Grid (DCMG)

and the Aspect-ratio Adaptive Multi-grid (AAMG). Figure 7.25 shows the meshes of

the sequence of AAMG. A four-stage Runge-Kutta scheme is used in all calculations

with a fixed CFL number around 1.2. Figure 7.26 shows the convergence histories for

the three calculations. It can be seen that the solver with the aspect-ratio adaptive

multigrid gives about 6 times speedup compared to the single grid solver and two

times speedup compared to the direct connected multigrid solver. The direct

connected multigrid can give about 3 times speedup. It should be noted that DCMG

and AAMG methods increase by about 12% the computing time per step compared to

the single grid because of extra calculation of the fluxes and residuals on coarse

levels.

136

Chapter 7 2D Validation and Discussion

(a) Fine mesh

, 1
I 1

0

(b) The first coarse level

137

Chapter 7 2D Validation and Discussion

(c) The second coarse level

. r V 'I

I 7

(d) The third coarse level

Figure 7.25 Multigrid meshes used in AAMG near the airfoil

138

Chapter 7 2D Validation and Discussion

0.5-|

0.0-

-0.5-

-1.0

To -1-5

I -2.0

-2.5

-3.0

-3.5

-4.0-

•Single grid
DCMG Multigrid

•AAMG Multigrid

2000 4000 6000 8000 10000
i

12000

Time Step

Figure 7.26 Convergence histories

7.3.3 Turbulent Flows in a Turbine Cascade

The simulations of turbulent flows in a turbine cascade have been selected as a test

case for the performance and accuracy of the present 2D code when large scale

separation is present. He (1998) conducted exhaustive studies using both numerical

and experimental methods of this case. In this case, flows in a low-pressure turbine

cascade with inlet flow angles of 20° and 40° are simulated at Re = 2.2x10'. In

both cases, a large turbulent separation bubble appears on the pressure surface near

the leading edge, and a small laminar separation bubble with transition and

reattachment appears on the suction side, as observed in the corresponding

experiment (He 1998). In the present calculations, the flow is assumed to be fully

turbulent from the leading edge, and no attempt is made to resolve the small laminar

bubble on the suction surface.

139

Chapter 7 2D Validation and Discussion

Initial mesh

Inner layer

Figure 7.27 Computational meshes around a turbine blade

The initial mesh used in both calculations is generated by the Advancing Front

method, as plotted in Figure 7.27. The initial mesh consists of 4,347 nodes and 8,295

triangles. The solution for the case with an 40° incoming flow angle is obtained on a

mesh with 8,500 nodes and 16,441 triangles after three successive adaptive mesh

refinements. The velocity criteria are used to decide whether to subdivide elements

because strong viscous effects are likely to dominate the flow. Figure 7.27 illustrates

the initial mesh (upper part on the left), the final mesh (bottom part on the left) and

the local refinements near the blade and the wake region.

Figure 7.28 Mach number contours

140

Chapter 7 2D Validation and Discussion

Figure 7.29 Flow vectors near the separation

2.0

1.5

1.0 H

0.5

c.oH

-0.5

o Experimental data
Current Calculation

—1 ' 1 ' 1 ' 1 r - — I , r -
0.0 0.2 0.4 0.6 0.8 1.0

X/C

Figure 7.30 Pressure coefficient comparison

Figure 7.28 shows the computed resuh in terms of Mach number contours in the

whole flowfield. Figure 7.29 illustrates the flow vectors in the separation region. The

calculated separation bubble starts from about 10% chord and reattaches at about 25-

30% of the chord. This agrees with the experiment very well. The comparison of the

pressure coefficient { — — —) , which is total pressure at the inlet, p2 is the static
Po-Pi

141

Chapter 7 2D Validation and Discussion

pressure at the outlet) distribution with experiment (He 1998) is plotted in Figure

7.30. Figure 7.31 is the convergence history for the turbulence calculation with three

adaptive mesh refinements and three levels of multiple grids (AAMG).

2 i

1

5 0

"in
« .1 or

-2

-3

-4

• ^ B i ' lit
f
t
I'.
^

- ^ ^ ^ ^

-

i 1 !
. . , , 1 , , , . 1 , , ,

1000 2000 3000 4000
Time Step

5000 6000

Figure 7.31 Convergence history

An examination of two different multigrid methods, AAMG and DCMG was carried

out on the turbine cascade with an incoming flow angle of 40° when high grid aspect

ratio is present. The computational mesh used in this case is the final mesh of the

previous computation, which consists of 11,309 nodes and 22,038 triangles. Figure

7.32 shows the meshes near the leading and trailing edge, the mesh near the blade is

highly stretched to resolve the boundary layer. The maximum aspect ratio of the grid

is about 60.

The calculations using two distinct multigrid methods: AAMG and DCMG are

performed with the same CFL number, boundary conditions and initial condition.

Figure 7.32 shows the convergence histories of the solutions with AAMG and DCMG

method. The AAMG solver converges rapidly in 4,100 steps. The DCMG solver

converges 2.5 times slower than AAMG solver and also indicates some oscillatory

142

Chapter 7 2D Validation and Discussion

behaviour. It is evident that in the high aspect ratio case the Aspect-ratio Adaptive

Multi-Grid method is more effective.

Figure 7.32 Close view of the mesh near the leading and trailing edge

1 n

- H

=^ 2 •g
w

DC

-4 4

AAMG
DCMG

2000 4000 6000 8000
1

10000 "12000

Time Step

Figure 7.33 Convergence histories

It has been proven that the present 2D flow solver is capable of capturing the small

separation bubble and flow reattachment present this case. In the following test case,

the incoming flow angle is decreased to 20° to examine the effectiveness of the

143

Chapter 7 2D Validation and Discussion

present multigrid and mesh adaptation techniques in the presence of massive

separation of the flow field.

When the incoming flow angle decreased to 20° in the same cascade, a massive

separation occurs in the pressure side of the blade, as described by He (1998). The

initial computational grid is the same as the 40° flow angle case. After 3 times of

mesh adaptations, the flowfield reach a steady state. Figure 7.34 shows the closeup

view of the final mesh. It is clear that the mesh is adaptively refined in the separation

region (Figure. 7.34a) and the wake region due to high gradients of velocity.

(a) Computational mesh in the seperation region

(b) computational grid near the trailing edge

Figure 7.34 Close view the final mesh

144

Chapter 7 2D Validation and Discussion

The result in terms o f Mach number is plotted in Figure 7.35. It is clear that the wake

is resolved by the mesh adaptation. Flow vectors and eddy viscosity contours are

presented in Figure 7.36. The f l ow separates near the leading edge and reattaches at

about 38% o f the chord. This agrees well wi th the experiment.

Figure 7.35 Mach number contours

Figure 7.36 Flow vectors and eddy viscosity in the separation region

Figure 7.37 shows the comparison o f the pressure distribution wi th the experimental

data; it shows a good overall agreement. Figure 7.38 is the convergence history for

the turbulence simulation with three adaptive mesh refinements and three multiple

145

Chapter 7 2D Validation and Discussion

grids (A A M G) . In this case, the convergence is clearly affected by the separation and

reattachment o f the f low.

1.0

o

Present Calcu ation
o Experimental data

-0.5 H , . , , 1 , P

0.0 0.2 0.4 0.6 0.8 1.0

x/c

Figure 7.37 Blade pressure distribution

ra 3 •o

l .

%

-

, , , ,

0 1000 2000 3000 4000 5000 6000 7000 8000

Time Step

Figure 7.38 Convergence history

7.4 Concluding Remarks

A 2D f low solver based on a cell-centred finite volume scheme using unstructured-

grids has been developed for solving Euler/Navier-stokes equations and has been

146

Chapter 7 2D Validation and Discussion

presented. Several inviscid/viscous f low simulations were performed on the 2D
unstructured grid based f low solver. The accuracy and the efficiency o f this method
were investigated. The fol lowing conclusions have been drawn:

The spatial and temporal discretisation scheme used in the present 2D f low

solver has shown to be accurate and efficient in solving both inviscid and

viscous steady f l o w problems. The Roe upwind scheme is accurate in

simulating Shockwave and boundary layer interaction problems. The

turbulence model used in the present solver is accurate in simulating boundary

layer problems.

The inflation method for solving viscous f low problems, such as turbulent

flows around the RAE 2822 airfoil and in the turbine cascade, has been shown

to be effective and efficient in solving viscous problems. The diff icul ty in

generating the highly stretched grids near the solid wall is reduced by using

this method.

Adaptive mesh refinement exhibits great potential to improve the accuracy o f

the solution as is shown in simulations o f inviscid f l ow around the N A C A

0012 airfoil , turbulent flows around the RAE 2822 airfoil and turbulent flows

in the turbine cascade. This method is able to concentrate the computing

resource where it is most needed. The over-resolved problems can be

countered by a carefully designed error indicator and the two-phase

refinement procedure.

The multigrid method developed in the present research has been shown to be

efficient in simulations o f both inviscid and viscous flows. The Adaptive

Aspect-ratio Mult i -Grid method is particularly effective in solving viscous

f l ow problems. In inviscid f low problems, the method becomes a semi-

coarsening method. Reasonably good speed-ups compared to a single grid

solution are observed.

147

Chapter 8 3D Validation and Discussion

Chapter 8

3D Validation and Discussion

Several test cases are presented in this chapter to validate the Euler/Navier-Stokes

algorithms on 3D unstructured-grids as described in previous chapters. Two

distinctive 3D cases are the f low around a transonic airfoil (the ONERA M 6 wing)

and that around a low speed wind turbine blade (the NREL Phase I I Wind turbine).

Accuracy and speed of the 3D f low solvers are studied on various configurations. The

accuracy is achieved with the high order spatial discretisation method and an upwind

scheme. Mult igr id schemes and parallel computing techniques are used to accelerate

solutions to steady state and to reduce overall computing time. Furthermore, an

alternative discretisation scheme is applied to viscous f low simulation o f boundary

layer problems to improve the overall accuracy and efficiency of the solutions.

Applications of two distinct three dimensional f l ow solvers (a prismatic mesh based

and a tetrahedron mesh based) developed in the current research are presented in this

section. Both are completely standalone CFD codes capable o f solving various f low

problems. Furthermore, both o f them are capable of serving as a slave computing

process in the parallel computing mode. As described in previous chapters, the

prismatic based solver is aimed at viscous effect dominated regions for efficiently

resolving the boundary layer characteristics o f the f low, and the tetrahedron based

solver is targeted at the outer regions where the viscous effect is relatively small or no

boundary layer characteristic is present.

148

Chapter 8 3D Validation and Discussion

Results o f parallel computing on a small Linux clustered PC system are also
presented in this chapter. The capability o f the cluster is assessed by the speedup on
computing a 3D inviscid f low problem wi th different partition schemes.

8.1 Inviscid Flows around ONERA M6 Wing
The first 3D case considered in this section is the simulation o f the transonic flow

past an ONERA M 6 wing. The configuration has been widely used as a benchmark to

validate three dimensional solution algorithms and to evaluate the performance o f

solution methods. The wing has a symmetrical airfoil section, a leading edge sweep

angle o f 30 degrees, and an aspect ratio o f 3.8. The root chord o f the airfoil is 0.67m

and the semi-span of the wing is 1.0m with a rounded tip. The geometry o f the M6

wing is provided by NPARC Alliance Validation Archive (NASA 1999).

The test case presented here has an incoming flow at M „ = 0.8395 and a flow angle

of 3.06°, which corresponds to the test 2308 fi*om the report by Schmitt and Charpin

in the A G A R D Report AR-138 (Schmitt and Charpin 1979). A t this condition, two

strong Shockwaves are developed on the upper wing surface. Correctly resolving the

locations o f these two Shockwaves is the key indicator o f solution accuracy. This

computation is used to validate the basic 3D algorithm as well as to examine the

performance o f the multigrid method for inviscid computations.

The computing mesh (Figure 8.1) for the inviscid computation is generated by GMSH

developed by Geuzaine and Remade (1999) in a semi-sphere domain with a radius o f

5 times o f the main chord o f the wing. The 3D unstructured mesh consists o f 29,432

nodes, 168,432 tetrahedral elements with 8,642 triangular cells on the wing surface.

The overview o f the surface mesh on the wing and the symmetric plane is plotted in

Figure 8.1a, where the centre o f the symmetric plane located at the trailing edge o f

the root o f the wing. The farfield, which is almost a half sphere, is plotted in Figure

8.1b. Figure 8.1c is the close view of the surface meshes o f the wing.

The inviscid computation is performed using the tetrahedral based flow solver with

an explicit 4-stage Runge-Kutta time stepping method and the multigrid technique.

149

Chapter 8 3D Validation and Discussion

Three levels o f multigrid are employed in the calculation: the original mesh and two
coarse levels generated by the D C M G method described in Chapter 5. The computed
result is presented in terms of Mach number contours on the wing surface in Figure
8.2. Two shock waves and their crossing are clearly visible on the wing surface. To
investigate the Shockwave position, comparisons of pressure distributions

(c = ^ " ~f) at sections located at 20%, 44%, 90% and 95% of the span are plotted

in Figure 8.3. It should be noted that the current computation is performed without

viscous effects. The Shockwave positions are generally well predicted, better than one

would expect f rom an inviscid solution. This might be due to numerical viscosity and

dissipation introduced by the coarse mesh on the wing surface (Figure 8.1c).

To assess the performance o f the direct connectivity based multigrid method, a single

grid computation is performed on the same grid with the same CFL number starting

f rom free stream conditions. The convergence histories for the single grid and the

previous multigrid solution are plotted in Figure 8.4. A 4-5 times improvement in

convergence rate is observed. This indicates the effectiveness o f the direct

connectivity based multigrid. The speedup is slightly lower than that o f this method

used in two dimensional computations.

8.2 Parallel Computing Performance

As one o f main interests in this work is to explore the parallel computing on a cluster

system, some corresponding investigations are carried out.

8.2.1 The Cluster System

The parallel computing platform used for the 3D computation is based on a PC

clustered system, which consists o f 4 Intel Pentium I I PCs (which could be directly

accessed by the author during the time of the work) running Linux systems. Table 8.1

shows the specifications o f these PCs and network hardware.

150

Chapter 8 3D Validation and Discussion

Table 8.1 Specification of the PC cluster system

PCOl PC02 PC03 PC04

CPU Pentium 11

450MHZ

Pentium 11

500 M H Z

Pentium

I I 500

M H Z

Pentium I I I

600 M H Z

Memory 128M 128M 128M 512M

Operation

System

Linux (Kerne 2.2,1586)

Network

Hardware

1OM Ethernet adaptor, Netgear 1OM hub

8.2.2 Test Case and Computational Mesh

The inviscid f low around M6 Wing case is selected as a test case for parallel

computing performance, since the f low feature has been studied in the previous case

and the size o f computing mesh is suitable for parallel computing on these 4 PCs with

relatively small amounts o f memory.

The computing mesh used is the same inviscid mesh as shown in Figure 8.1. It

consists o f 168,432 tetrahedral elements and 29,432 nodes. METIS (Karypis and

Kumar 1998) partitioning library is used for domain decomposition. The calculations

performed on the clustered system are identical to the one performed on PCOl except

that the computational mesh is pre-partitioned to 2, 3 and 4 sub-grids, which are

almost equal in size (the difference o f the element number is no more than 1). Figure

8.6, 8.7 and 8.8 are the partitioning results for the two-, three- and four-zone runs.

The minimum edge method cut is used as the partition criterion.

151

Chapter 8 3D Validation and Discussion

8.2.3 Timing and Results

Performance tests have been conducted on the cluster PC system described

previously. A l l the tests cases presented here are about solving the inviscid f l ow over

the M6 wing with same boundary and initial conditions. To assess the speedup, all the

runs execute 1000 timesteps and the running times are recorded by the internal timer

of a PC. Then the overall rurming time is averaged to each step and listed below.

Table 8.2 Summary of the single processor run

Host Tetra Node Boundary Computing time (sec) Time/step
(sec)

PCOl 168,432 29,432 0 6.50 6.50

Speedup: 1.0 Communication: 0

Table 8.3 Summary of the two-zone run

Host Tetra Node Boundary Computing time (sec) Time/step

(sec)

PCOl 84216 14943 6226 3.25

3.80 PC02 84216 15201 6226 3.25 3.80

Speedup: 1.71 Communication: 0.55 sec/step

Table 8.4 Summary of the three-zone run

Host Tetra Node Boundary Computing time (sec) Time/step

(sec)

PCOl 56138 9909 2094 2.17

2.66 PC02 56138 10253 1138 2.17 2.66

PC03 56138 10484 1172 1.95

2.66

Speedup: 2.44 Communication: 0.49 sec/step

152

Chapter 8 3D Validation and Discussion

Table 8.5 Summary of the four-zone run

Host Tetra Node Boundary Computing time (sec) Time/Step

(sec)

PCOl 42108 7674 1716 1.62

2.02 PC02 42108 7727 1186 1.62 2.02

PC03 42108 7881 1618 1.46

2.02

PC04 42108 7911 1986 1.23

2.02

Speedup: 3.21 Communication costs: 0.40 sec/step

The final speedup performance has been plotted along with the ideal speedup on this

cluster system in Figure 8.9. The ideal speedup is defined by the number o f

processors used in a parallel computing job. Reasonably good speedup of the PC

cluster system has been achieved.

8.3 Turbulent Flows over a Flat Plate

To examine and validate the implementation o f the present turbulence model and the

viscous term treatment, turbulent flows over a flat plate are simulated with the present

prism mesh and tetrahedron mesh based flow solvers.

Both the tetrahedron and prism based mesh for the flat plate boundary layer flow has

been generated by subdividing a 61x41x3 H-topology structured grid. The

structured mesh is highly stretched near the solid wall and has uniform spacing in the

other two directions. Each hexahedron in the structured-grid is divided into 6

tetrahedral elements in the tetrahedron based mesh and 2 prismatic elements in the

prism based mesh. This results in 7,503 points and 14,400 tetrahedral elements for the

tetrahedron mesh (Figure 8.10) and 9,600 prismatic elements for the prism mesh. The

maximum aspect ratio near the wall is about 30. The computational domain is f rom

x=-0.1 to x=1.0 in the streamwise direction, and z=0.0 to 0.02 in the wall normal

direction, and fi-om y=0.0 to y=0.02 in the spanwise direction. The free stream Mach

153

Chapter 8 3D Validation and Discussion

number is maintained at M „ = 0.2 to minimise the compressible effect and the
Reynolds number is Re^ =3x10^ for the tetrahedron f low solver and Re^ = 2 x 1 0 *
for the prism f low solver, respectively.

Both computations are carried out at CFL=1.2 with 2 levels o f multigrid. Results

using the Spalart-Allmaras one-equation turbulence model with the tetrahedral and

prismatic f l ow solvers are shown in Figure 8.11 and Figure 8.12. In both cases, the

velocity profiles agree well wi th the law of the wall . The residual history for both

computations is plotted in Figure 8.13. Both solutions converge rapidly wi th

multigrid acceleration. From the convergence rate point o f view, it is evident that the

prismamtic solver wi th the aspect ratio adaptive multigrid delivers better performance

than the direct connectivity based method for viscous f l ow simulations wi th stretched

grid near solid wall surfaces. Furthermore, the computing time of the tetrahedron

based solver is far greater than that o f the prism based solver, because there are

28,800 elements wi th the tetrahedral discretisation and 9,600 with the prismatic

discretisation. It is clear that the prismatic discretisation is more effective in resolving

this boundary layer f l ow problem.

8.4 Turbulent Flows over ONERA M6 Wing

In this section, numerical results o f the turbulent flows over the ONERA M 6 wing are

presented to validate the present 3D Navier-Stokes algorithms. This case is the same

as the case in section 8.1, except that the f low is turbulent. The Reynolds number is

1.172 X 1 0 ' . When viscous effects are taken into account, the locations o f Shockwaves

on the upper surface o f the wing should move forward compared to the inviscid

solution due to the presence o f boundary layer. The correct prediction o f positions

and amplitudes o f the shock waves is the key indicator o f the accuracy o f this

computation.

The viscous mesh generation follows the method described in Chapter 4. The wing

surface profile (Figure 8.14) is inflated by 15% o f the main chord. To resolve the

wake and avoid the sharp end o f the trailing edge of the wing, a ' C style inflation

154

Chapter 8 3D Validation and Discussion

scheme is adopted. Due to the fact that the wing is symmetric, the unstructured grid
generation is carried out on half o f the domain to reduce the memory overhead o f the
mesh generator. After generating the tetrahedral grid in the outer region, a new
interface grid (Figure 8.15) is extracted f rom the tetrahedral grid. This surface grid is
then mapped onto the surface of the wing. The resultant surface grid on the wing is
plotted in Figure 8.16. The mapped surface grid and interface grid are used as the
baseline grid for the generation of the prismatic grid. Figure 8.17 is the 3D view o f
the surface mesh on the wing surface and the symmetric plane. The outer region mesh
consists o f 43,230 nodes, 234,372 tetrahedral elements. There are 16 layers o f
prismatic elements around the wing and the wake region. Figure 8.18 shows a closeup
view o f the surface mesh near the wing root regions (The outer regions are plotted
wi th an offset f rom the inner layers).

The computations are carried out on the cluster system described previously. The

computing domain is decomposed to four sub-blocks as shown in Figure 8.18, 2

tetrahedral and 2 prismatic blocks. It is clear that the load on each processor is not

balanced because o f the presence o f 2 different types o f blocks. Two tetrahedral based

and two prismatic based solution processes are used in the parallel computing.

Figure 8.19 is the pressure contours on the upper wing surface, in which two strong

Shockwaves can be observed. Comparisons o f pressure distributions with

experimental data (Schmitt and Charpin 1979; N A S A 1999) are presented for

locations at 20%, 44%, 65%, 80%), 90% and 95% o f the span in Figure 8.20. A t 20%

span, the position o f the first Shockwave is well resolved, but the solution has failed

to predict the position o f the second one. It should be noted that in the viscous

computation, a finer unstructured grid is employed, thus leads to a sharper shock

wave than the previous inviscid solution. At 44% o f the span, reasonably good

agreement is displayed by the prediction o f both shock waves and the overall good

match o f the pressure coefficient on both surfaces o f the wing. A t 65%) and 80%) of

the span, the second Shockwave is well resolved, but the first Shockwave, which is

present near the leading edge, is smeared. This may be caused by insufficient grid

resolution in this region. A t 90% and 95%o of span, good overall agreement is

155

Chapter 8 3D Validation and Discussion

observed. The strong Shockwave is well predicted. Generally speaking, the first
Shockwave is smeared due to the limitation o f the current mesh generation package.
However, some minor disagreement at the bottom wing surface is shown at 90% of
span. Very good agreement o f pressure distribution is observed for the bottom wing
surface except at 90% of the span and the second Shockwave is wel l modelled. This
indicates high accuracy o f both prism and tetrahedron based flow solvers.

In order to evaluate the ability o f the multigrid method to solve turbulent flows, a

multigrid simulation is carried out with the same CFL number and initial conditions.

Three mesh levels are employed in the multigrid calculation: the original mesh and

two coarse meshes generated by our A A M G method. In the regions with semi-

structured mesh (consisting o f prismatic elements), coarser levels are built by

stacking certain numbers o f layers in the finer mesh level depending on the maximum

aspect ratio of that layer. In this case, each of the two coarser levels consists o f 2 and

4 layers o f the original fine grid. In the fiall unstructured-mesh regions (consisting o f

tetrahedron elements), a semi-coarsening procedure is used to generate a coarser

level.

The efficiency o f the A A M G multigrid method is assessed by the convergence

comparison with a single grid computation. Figure 8.21 is the comparison o f

convergence history. It is evident that the present multigrid scheme achieves about 5

times speedup compared with the single grid solution. This speedup is less than the

same method in 2D unstructured-grid cases (around 7 for viscous flows). The main

reason behind this could be the actual 3D flow effects and the assumption that the

flow is strongly I D in the near solid wall regions. In the present 3D A A M G method,

the method of stacking finer layers results in fast information propagation in the

direction normal to the wal l , but is less effective when the flow along the wall

changes rapidly, as in this case when Shockwaves are present on the wing surface.

156

Chapter 8 3D Validation and Discussion

8.5 Inviscid/Turbulent Flows over a Wind Turbine
Blade

This test case concerns a wind turbine tested at the National Wind Technology Centre

of the National Renewable Energy Laboratory (NREL), Colorado, USA. It is a 10.06

m diameter, three-bladed, downwind, free-yaw turbine (Figure 8.22).

This case is chosen because the complex nature of the flow around the blade provides

us a good chance to demonstrate the state-of-the-art unstructured flow solver for

rotary aerodynamics.

8.5.1 Geometry of the wind turbine blade

The wind turbine blade is non-twisted and non-tapered. The blades consist o f an S809

airfoil , developed by Air fo i l s Inc. for N R E L (Duque et al. 2000; Duque et al. 1999).

The size o f blade span is 4.52 m and the root is at radius 0.51 m. The blade pitch

angle is 12 degrees. For the present test cases, where there is no twist, the pitch angle

corresponds to the local blade angle, i.e. the angle between the chordline o f the blade

element and the rotor plane, and is positive when it points opposite to the wind

direction. Figure 8.23 shows the definition o f the pitch angle o f the non-twisted blade.

8.5.2 Test cases and flow conditions

There are three test cases available in the public domain (FLOWNET 2001), for

which experimental data is available. They correspond to different incoming flow

speeds, as shown in Table 8.6. In all cases the incoming flow is assumed to be fu l ly

axial.

157

Chapter 8 3D Validation and Discussion

Table 8.6 Definitions of the test cases

Test Case 1 Test Case 2 Test Case 3

Incoming f low speed 7 m/s 13 m/s 19 m/s

Rotational speed 71.68 rpm 71.19 rpm 71.54 rpm

Static temperature 283.1 K 292.1 K 291.1 K

Static pressure 81055 Pa 80138 Pa 80138 Pa

Re (based on diameter) 3.99x10' 7.237x10' 1.06x10'

For all these test cases, the pressure distributions are available at spanwise positions

o f 30%, 47%, 63% and 80%.

Table 8.7 Angle of attack at different spanwise positions

Spanwise Test Case 1 Test Case 2 Test Case 3

Position 7 m/s 13 m/s 19 m/s

30% 19.87° 37.3° 47.4°

47% 9.64° 24.58° 35.18°

63% 4.49° 16.97° 26.84°

80% 1.2° 11.55° 20.38°

The simulations have been carried out at slightly different f l ow conditions to the

original test cases to avoid the calculation o f the virtually incompressible f low with a

compressible flow solver. The incoming flow speed has to be increased to Mach

number 0.1 to maintain good convergence o f the solver.

According to the velocity triangle in Figure 8.24, to keep the same flow angle with

original test cases, the rotation speed has to be increased by the scale o f the increase

of the absolute velocity. Table 8.7 shows calculated flow angles at four spanwise

locations where experimental data are available. The Reynolds numbers are kept the

same with those of the test cases to maintain solution similarities wi th the actual

flows. The definitions o f the flow conditions for the numerical simulations are given

in Table 8.8.

158

Chapter 8 3D Validation and Discussion

Table 8.8 Flow conditions of simulations

Test Case 1 Test Case 2 Test case 3

Incoming flow speed 33.721 m/s 34.24 m/s 34.20 m/s

Rotational speed 345.307 rpm 187.574 rpm 128.772 rpm

Static temperature 283.1 K 292.1 K 291.1 K

Static pressure 81055 Pa 80138 Pa 80138 Pa

Re (based on diameter) 3.99x10' 7.237x10' 1.06x10'

8.5.3 Computational Mesh Generation

There are only three non-twisted blades in the wind turbine, as plotted in Figure 8.22.

Thus, the blade-blade interaction is unlikely to be very strong except near the shaft

regions and computational costs can be reduced by using a small part o f the flow

domain. In this case, a computational domain less than 1/5 o f the whole domain is

adopted. The inlet and outlet plane are placed at 2 chords away f rom the blade and the

top surface is placed at 5 chords away f rom the blade tip. The flows on these

"periodic" and far field boundaries are assumed to be undisturbed.

The computational mesh for the inviscid simulation is generated by GMSH (Geuzaine

and Remade 1999) using an advancing layer method. The mesh consists o f 82,176

tetrahedral elements and 40,212 nodes. There are 32,760 triangle elements and 16,470

nodes on the surface o f the turbine blade. Figure 8.25 shows the computational mesh

on the wind turbine and the surface grid o f the computational domain.

The mesh for the viscous simulation is generated fol lowing the way described in

Chapter 4. First, the surface triangulation is achieved by dividing a structured surface

mesh. Then, a similar surface mesh is generated at l/10*chord away f rom the surface

with the same connectivity o f the surface mesh by moving the surface mesh normal to

the surface. Next, this new blade surface triangulation along with the surface

triangulation o f the other boundaries o f the domain is used for the volume mesh

generation with GMSH. The resultant volume mesh o f the outer domain consists o f

236,558 tetrahedral elements and 150,636 nodes. Around the turbine blade, there are

159

Chapter 8 3D Validation and Discussion

24 prismatic element layers, which are built f rom a surface mesh o f 129,280 triangles
and 82,480 nodes. The maximum mesh aspect ratio near the blade is about 60.

8.5.4 Numerical Results and Discussions

Numerical simulations o f flows around the wind turbine blade are performed on the

PC cluster system described previously. The computing mesh is partitioned equally to

4 domains with minimum communication restraint in each case using the METIS

graph partition library.

Inviscid simulations are carried out for all three flow conditions listed in the Table

8.8. Farefield boundary conditions are applied to the inlet/outlet and the top surface.

A slip wall condition is applied to the hub surface. Since the computational mesh

contains only tetrahedral elements, four tetrahedral slave computing processes are

employed in all three inviscid computations.

In Figure 8.26 predicted pressure coefficient f rom the test case 1 (7m/s) is plotted

along wi th the experimental data f rom Flownet (Flownet 2001). Excellent agreement

with experimental data at all four spanwise locations is observed. At 7m/s, the flow

angle is relatively small (Table 8.2) f rom the hub to tip. Therefore, the flow is largely

attached. The agreement demonstrated that the tetrahedron flow solver is accurate.

Figure 8.27 shows the comparison of predicted pressure coefficient for the test case 2

(13OTA) and the experimental data. Good agreement is displayed for 63%) and 80%)

spanwise positions. At 30%) span position, the predicted pressure distribution is

inaccurate on the suction surface, because the flow is separated in these regions when

the wind speed is increased to 13m/s (34.24 m/s in the simulation) and the present

inviscid solution is incapable o f predicting separation.

When the incoming flow speed increased to 19 m/s (test case 3), massive separation

appears near the hub regions where the flow angle is very high (Table 8.7). The

present inviscid solution failed to predict the pressure correctly in these regions, as

shovm in Figure 8.28. Good agreement is observed at spanwise positions o f 44%),

63%) and 80%), where the flow is largely attached.

160

Chapter 8 3D Validation and Discussion

In Figure 8.29, the computational grid and flow vector & streamlines on the pressure
surface at 22%-28% span at 7m/s of the blade are plotted. It should be noted that the
large separation on the surface is non-physical phenomena because the inviscid
solution is incapable of predicting separation. However, the real flow in this region
should show similar pattern, such as strong radial flow and large separation.

Further efforts were made to use the Navier-Stokes solver to compute the turbulent

flows for this wind turbine case. However, it appears that the present 3D viscous flow

solver has some convergence problems for low Mach flow conditions. Because for

low Mach number flows, the stiffness of the governing equations is very high and the

numerical methods developed for compressible flows could break down or not

function properly (Wesseling 1999). The reason behind this break down is that the

solution of the Navier-Stokes equations contains pressure fluctuations of the order of

Mach number while the continuous pressure scales with the square of Mach number

(Guillard and Viozat 1999). The use of preconditioning (Godfrey and Leer 1993;

Wesseling 1999) should help in addressing this problem.

8.6 Concluding and Remarks

A cell-centred finite volume scheme has been presented for the solution of the

Euler/Navier-Stokes equations on 3D unstructured meshes. An upwind scheme

has been adopted in both prismatic mesh and tetrahedron mesh based flow

solvers to compute the inviscid flux contributions. The flow solvers employ an

efficient and accurate wall function procedure and use a face stencil to construct

interface gradients. A parallel computing technique is adopted to reduce

computing times in 3D. The flow solvers exploited a multi-block scheme.

The accuracy of the present 3D spatial discretisation is displayed by a number of

test cases. The simulations of inviscid flows around the M6 wing and a wind

turbine blade show good agreement with experimental results. Excellent

agreements with experimental data have been observed in the turbulent flow

simulations over a flat plate and the M6 wing. This indicates that the present 3D

flow solvers are accurate in simulating turbulent flows. However, the present 3D

161

Chapter 8 3D Validation and Discussion

flow solver is not functioned properly for simulations of low Mach number flows
as shown in the wind turbine flow case. A preconditioning method is needed to
remove the convergence difficulty associated with high stiffness.

The proposed "inflation" unstructured mesh generation method is tested for 3D

cases. In the viscous flow around the M6 wing, a "C" type inflation scheme is

used to generate highly stretched elements in viscous effects dominated regions.

In the outer domain, tetrahedral elements can be easily generated using an

isotropic unstructured mesh generator. This method shows good potential in

reducing the difficulty of generating stretched viscous mesh near solid walls and

improving overall solution accuracy. Furthermore, this mesh generation scheme

enables the exploitation of an efficient and robust multigrid method.

The proposed multigrid method is effective both for inviscid and turbulent flow

simulations as shown in the cases of inviscid and viscous flow around the M6

wing. This indicates that computational methods employed in the current

research are computationally efficient. However, the efficiency of the aspect-

ratio adaptive multigrid in 3D viscous flow computations is less satisfactory than

in 2D. This is mainly due to the 2D nature of the method. An aspect-ratio

adaptive multigrid capable of building coarser levels both normal to the wall and

along the wall direction is urgently needed.

The parallel computing on the PC cluster system is successfiil. In all tests

conducted on the M6 wing, very good speedup is observed. This indicates that

the present implementation of parallel computing with PVM message passing is

efficient on a low bandwidth and high latency cluster system. This cluster system

is also used in simulating turbulent flows around the M6 wing and flows over the

wind turbine blade. The conclusion is that clustering currently available desktop

PCs or workstafions to build a middle level parallel system is possible. However,

due to lack of resource (only 4 PCs are available) the full strength of this

clustering idea has not been investigated.

162

Chapter 8 3D Validation and Discussion

(a) Overview of the surface mesh on wing and the symmetric plane

(b) Surface mesh of the farfield

(c) Surface grid on the wing surface
Figure 8.1 Computational grid

163

Chapter 8 3D Validation and Discussion

Figure 8.2 Mach number contours

20% of span
Calculation

O Experimental data
44% of span

Calculation
c Experimental data

oe o.a
0.0 0.2 0.4 0,6 0,8

9 0 % of span
Calculation

o Experimental data

DO 0 2 04 06 oa

1.2-

J
0 8 - !
0 4 -

O 0 0 - i
-0,4- I
-oe-

95% of span
Calculation

o Experimental data

0 0 0,2 0 4 0 6 0 8 10

Figure 8.3 Surface pressure distributions

Single Grid
Mulllgrid(3 level)

5000 10000
Time Step

Figure 8.4 Convergence histories

164

Chapter 8 3D Validation and Discussion

Figure 8.5 A Linux PC cluster system

(a) Full flow field view

(b) The wing surface and the symmetric plane
Figure 8.6 Two zones of the computational grid

165

Chapter 8 3D Validation and Discussion

(a) Full flow field view

(b) The wing surface and the symmetric plane
Figure 8.7 Three zones of the computational grid

166

Chapter 8 3D Validation and Discussion

(a) Full flow field view

(b) The wing surface and the symmetric plane
Figure 8.8 Four zones of the computational grid

4.0

3.5

3.0 H

K
2.0

1.5 H

1.0

• Speed up of our system
Therotical Speedup

2 3

Number of processors

Figure 8.9 Observed speedup

167

Chapter 8 3D Validation and Discussion

Figure 8.10 Tetrahedral grid for the flat plate

35-,

30 H

25-^

20-^

15

10

5-^

O Re =1x10
X

A Re =2x10'
X

Law of the wall

10
- n - r r i

100 1000
1-rrr,

10000

Figure 8.11 Velocity profile on the tetrahedron mesh

168

Chapter 8 3D Validation and Discussion

Re =1x10
The law of the wall

Re =2x10'

1000
r-TTTTl 1 I

10000 100000

Figure 8.12 Velocity profile on the prismatic mesh

0.0

-0.5

-1.0

-1.5

? -2.0 ^

ra -2.5
T 3
w -3.0-^
<0

-3.5 H
-4.0

-4.5-

-5.0-

prismatic grid
tetrahedral grid

5000
1

10000

Time

— I
15000

Figure 8.13 Convergence history

169

Chapter 8 3D Validation and Discussion

Figure 8.14 Surface profile of the M6 wing

Figure 8.15 New interface grid

170

Chapter 8 3D Validation and Discussion

Figure 8.16 Mesh on the wing surface

Figure 8.17 3D view of the surface mesh

171

Chapter 8 3D Validation and Discussion

Figure 8.18 Four zones of the computational grid

Figure 8.19 Mach number contours on the wing surface

172

Chapter 8 3D Validation and Discussion

20% span
Current computation

o Experimental data

0.0 0.2 0 4 0.6 0.8 1.0

X

4 4 % s p a n
Current computation

0 Exper imenta l tJata

oo 0.2 0.4 OS 0-8 1.0

X

66% span
Current computation

o Experimental data

0.0 0.2 0.4 0.6 0.8

X
0.0 0.2

80% span
Current computation

o Experimental data

— 1 ' 1 ' 1 • 1 —
0.4 0.6 0.8 1 0

90% span
Current computation

o Experiment data

0.0 0.2 0-4 0.6 0.9 1.0

X

95% span
Current computation

o Experimental data

0.0 0.2 0.4 0.6

X

Figure 8.20 Pressure distributions

173

Chapter 8 3D Validation and Discussion

2-1

0 - H
o
d . -2
ro

1 -3

-4-1

-5

-6-

o Multigrid solver
Single grid solution

1x10' 2x10*

Time step

3x10*

Figure 8.21 Convergence comparison of single grid and multigrid solutions

Figure 8.22 N R E L wind turbine

174

Chapter 8 3D Validation and Discussion

rotor shall direcliou

rolalional
direction

roior plaiic

wind speed

Figure 8.23 Pitch angle of the non-twisted blade

a>*r

Absolute

Figure 8.24 Velocity triangle

175

Chapter 8 3D Validation and Discussion

KKWWl/

mm

(a) near the tip region (b) near the hub region

(b) farfield
Figure 8.25 Computational grid for single passage

176

Chapter 8 3D Validation and Discussion

3 0 % span
-—' Invtsdd Caculation

Experimetaldata

• 0 0 2 0 4 0 6

4 7 % span
— Inviscid caculation

Ejtperimenlal data

00 0.2 0 4 0 6 08 1 0

6 3 % span
Invisdd caculaSon

o Experimental data

0,0 0,2 06 OS

80% span
o Invtscid caculation

Experimental data

00 0 2 0 4 06 08 10

Figure 8.26 Pressure distributions on tbie wind turbine (7 m/s)

30% Span
o Experimental data

— ~ Invisdd computation

0.0 02 0 4 0,6 0.8

47% Span
o Experimental data

— — Inviscid computation

00 0 3 0.4 0.6 0 8 1 0

6 3 % Span
O Experimental data

Inviscid computation

0.0 0.2 0.4 06

80% Span
o Experimental data

Invisdd computation

0,0 02 06 OB

Figure 8.27 Pressure distributions on the wind turbine (13 m/s)

177

Chapter 8 3D Validation and Discussion

30% span
o Experimental data

Invisdd computation

4 7 % span
o Experimental data

Inviscid computation

0.0 0.2

6 3 % span
o Experimental data

Invisdd computation

8 0 % span
o Experimental data

— — tnviscid computation

Figure 8.28 Pressure distributions on the wind turbine (19 m/s)

(a) Computational grid (b) Flow vector & stream line

Figure 8.29 3D plot of the flow at 22%-28% of the span (7 m/s)

178

Chapter 9 Conclusions and Recommendations

Chapter 9

Conclusions and Recommendations

In this chapter, conclusions and findings are drawn from the development of efficient

and accurate solution algorithms for Euler/Navier-Stokes equations on 2D/3D

unstructured meshes. This thesis has presented four contributions all aimed at

improve the accuracy and efficiency of the unstructured-grid method. These

contributions are the 2D/3D spatial discretisation and inflation mesh generation

scheme developed in Chapter 3 and 4, the solution mesh adaptation scheme discussed

in Chapter 4, the aspect-ratio related Multigrid approach described in Chapter 5 and

the parallel computing technique on a cluster system discussed in Chapter 6. This

chapter ends with recommendations and suggestions for fiirther research.

179

Chapter 9 Conclusions and Recommendations

9.1 Conclusions and Highlights
The primary aim of the present work is to develop efficient and accurate solution

algorithms for the Euler/Navier-Stokes equations on 2D/3D unstructured meshes. In

respect to the overall objective, 2D/3D flow solvers based on unstructured-grids are

developed for aerodynamics applications. Extensive studies have been carried out to

validate the algorithms and assess the accuracy and efficiency of the solution methods.

The following conclusions are drawn from the present research:

1. The 2D and 3D inviscid/viscous flow solvers based on unstructured-grids for

steady compressible flows are capable of solving the Euler/Navier-Stokes

equations for 2D and 3D aerodynamics applications. The spatial discretisation

with a cell-centred finite volume scheme on 2D and 3D unstructured meshes

is accurate in simulating inviscid and viscous turbulence flows. The

multistage time integration scheme along with a local time stepping technique

is effective in marching flows to a steady state solution.

2. The "inflation" mesh generation technique coupled with traditional isotropic

mesh generators to generate 2D/3D computational meshes is effective for all

the present viscous computations. This method also improves standard

unstructured-grid schemes in terms of accuracy, speed and storage. Accuracy

and efficiency are improved by using prismatic elements in the regions where

highly stretched cells are necessary to resolve the disparity in directional

gradients. Furthermore, this inflation method enables an efficient and robust

multigrid method and a solution mesh adaptation procedure to overcome the

over-resolved problems.

3. The mesh adaptation technique developed for the present 2D flow solver can

effectively improve the accuracy of solution with reasonable costs. The

method is based on an adaptive mesh refinement procedure. Various strategies

are used to capture shockwave / boundary layer problems. By utilising the

structure of the viscous grids, the meshes can be better refined near solid wall

180

Chapter 9 Conclusions and Recommendations

regions. Thus the over-resolving problem is overcome with a two-phase
refinement procedure in the viscous flow simulafions.

4. The multigrid method developed in the present research is effective in

accelerating the solution of the Euler/Navier-Stokes equations. The Aspect-

ratio Adaptive multigrid is particularly effective when a high aspect ratio grid

is used in viscous turbulence flow simulations.

5. The cluster system developed in the present research can be used for middle

level high performance computing. The mesh partitioning and communication

scheme developed is suitable for parallel computing on a PC cluster system.

9.2 Suggestion for Further Research

In the light of above conclusions it is felt that this exercise has established good

confidence in the solving of aerodynamic problems with unstructured meshes. The

unstructured-grid method has displayed an excellent ability to simulate complex flow

problems in various geometric configurations. It has been foreseen that this method

would play a more important role in solving flow problems over complex geometries

with the aid of solution mesh adaptation and parallel computing techniques in the

fiiture. However, there are still major challenges with this kind of method and a

number of possible improvements are suggested below.

9.3.1 Mesh Generation

The present "inflation" method has been very successful in 2D viscous flow

simulations. With this method, highly stretched elements can be easily generated

without the sacrificing flexibility of the unstructured-grid. However, dealing with

comer points and sharp-ended objects remains a challenge in 3D. A more

sophisticated and robust method is needed to generate more effective artificial

boundaries that separate inner viscous layers and outer regions before this method

can be used in more complex geometries.

181

Chapter 9 Conclusions and Recommendations

9.3.2 Time Marching Solution

The explicit time marching scheme adopted in the present work represents a

straightforward way of integrating the Euler/Navier-Stokes equations. It is ideal for

damping high-frequency errors. However, it has been proved to be inefficient for low-

frequency error damping. This leads to slow convergence in simulations of unsteady

flows and viscous turbulent flows. An efficient implicit method might be beneficial

for solving steady and unsteady viscous flow problems on unstructured-grids.

However, this is not easy and there are several difficult issues in developing an

implicit method on unstructured-grids: multigrid, parallel scalability, high Reynolds

number flows.

9.3.3 Solution Mesh Adaptation

Solution mesh adaptation holds the key for the success of the unstructured-grid

method. The adaptive mesh refinement method developed in this project has been

proved to be capable of capturing complex phenomena such as shock waves,

boundary layers, separation and wakes. However, the present remeshing scheme is

based on "refining" a grid when the local error is high. A "coarsening" procedure is

necessary when high grid density is no longer required in some previously refined

regions in solving unsteady flow problems. Furthermore, given the state of the current

viscous mesh generation, the idea of solution mesh adaptation for simulating 3D

viscous flows becomes more important in improving the quality of grids and thus the

accuracy of solutions.

9.3.4 Multigrid Techniques

The new multigrid method developed in the presented work has displayed excellent

convergence rate for both 2D inviscid and viscous flow simulations. The Direct

Connectivity based Multigrid shows moderate convergence rate in simulating 3D

inviscid flows. However, the performance of the new multigrid method for 3D

viscous flow simulations is less than satisfactory. A more general aspect-ratio

sensitive multigrid, i.e. not only stacking layers of prismatic elements in the wall

182

Chapter 9 Conclusions and Recommendations

normal direction but also grouping elements in the other two directions when
necessary, should greatly improve the efficiency of this method.

9.3.5 Navier-Stokes Solvers

A preconditioning method is need for the present flow solvers in order to solve low

Mach number viscous flows. The convergence problem revealed in the 3D viscous

flow simulation around the NERL Phase I I wind turbine blade highlights the urgency.

Turbulence modelling represents an important issue for solving complex aerodynamic

problems. In this work, the one-equation model of Spalart and Allmaras model has

been used. When dealing with more complex problems, extension to more

sophisticated models might be required. However, more complex turbulence models

may also increase the numerical stiffness of the solution.

9.3.6 Parallel Computing Suggestions

New trends in software and hardware technology are likely to make computing using

clusters more promising. Clustered super-computers are seen everywhere. Further

testing of the cluster system with more PCs is required to assess the strength of this

kind of systems. The graph-partitioning scheme with METIS is well suitable for small

and middle size applications. However, it is noticed that the increasing requirement of

partitioning memory with METIS becomes higher as the number of points in the

mesh increases. Therefore, a new efficient partition scheme is needed to partition a

large 3D unstructured mesh domain. Furthermore, the present partitioning scheme is

not optimised when both prismatic and tetrahedral blocks are present for viscous

computations. A more sophisticated partitioning scheme is needed to produce more

effective partitions. In the present parallelisation of 3D flow solvers, the error

tolerance is not implemented. This means when one node in the cluster fails, the job

has to be restarted manually from the last saved point. An error tolerant

implementation is needed to automatically start the job on other nodes when one fails,

in order to improve the overall reliability and operafional effectiveness of the parallel

computing.

183

References

Abdol-Hamid, K. S., B. Lakshmanan, et al. (1995). 'Application of Navier-Stokes
code PAB3D k-e turbulence model to attached and separated flows'. NASA
Tecnical paper 3480

Addison-Wesley Inc. (1998). "Designing and Building Parallel Programs".
http://www. aw. com/, http://www. anl. %ov/.

Aftosmis, M. , D. Gaitonde, et al. (1994). 'On the Accuracy, Atability and
Monotonicity of Various Reconstruction for Unstrcutured Meshes'. AIAA
paper 94-0415

Allmaras, S. R. 'A Coupled Euler/Navier-Stokes Algorithm for 2-D Unsteady
Transonic Shock/Boundary-Layer Interaction' (MASSACHUSETTS
INSTITUTE OF TECHNOLOGY, Ph. D Thesis, 1989)

Amaladas, J. R. and H. Kamath (1998). Accuracy assessment of upwind algorithms
for steady-state computations. Computers & Fluids 27(8), pp. 941-962.

Anderson, W. K. and D. L. Bonhaus (1994). An implicit upwind algorithm for
computing turbulence flows on unstructured grids. Computers & Fluids 21(1),
pp. 1-21.

Anderson, W. K., J. L. Thomas, et al. (1986). Comparison of finite volume flux
vector splittings for the Euler equations. AIAA Journal 24(9), pp. 1453-1460.

Baggag, A., H. Atkins, et al. (1999). 'Parallelization of an Object-Oriented
Unstructured Aeroacoustics Solver'. NASA Report NASA/CR-1999-209098,
ICASERep. No. 99-11

Baker, T. J. (1989). Automatic Mesh Generation for Complex Three-Dimensional
Regions Using a Constrianed Delaunay Triangulation. Engineering with
Computers 5, pp. 161-175.

Balwin, B. S. and T. J. Barth (1991). 'A one-equation turbulence transport model for
High Reynolds number wall bound flows'. NASA Technical Memorandum
102847

184

Balwin, B. S. and H. J. Lomax (1991). 'Thin layer approximation and algebraic model
for searated turbulence flows'. AIAA paper 78-257

Barakos, G., M. Vahdati, et al. (2001). A fully distributed unstructured Navier-Stokes
solver for large scale aeroelasticity computations. The Aeronautical Journal
August(8), pp. 419-426.

Bardina, J. E., P. G. Huang, et al. (1997). 'Tubulence modeling validation, test, and
development'. NASA Technical Memorandum NASA Technical
Memorandum 110446

Barth, T. J. (1991). 'Numerical aspects of computing viscous high Reynolds flows on
unstructured meshes'. AIAA paper AIAA-91-0721

Barth, T. J. (1995). 'Aspect of Unstructured Grids and Finite Volume Solver for the
Euler and Navier-Stokes Equations', von Karman Institute for Fluid Dynamics
Lecture Series 1995-02

Barth, T. J. (1995). 'An unstructured mesh Newton solver for compressible fluid flow
and it's parallel implementation'. AIAA paper AIAA-95-0221

Barth, T. J. and D. C. Jesperson (1989). 'The design and application of upwind
schemes on unstructured mesh'. AIAA paper AIAA 89-0366

Bottasso, C. L., H. L. D. Cougny, et al. (1994). 'Compressible Aerodynamics Using a
Parallel Adaptive Time-Discontinuous Galerkin Least-Square Finite Element
Method'. AIAA paper 94-1888

Bowyer, A. (1981). Computing DirichletTessellations. Computer Journal 24(2), pp.
162-166.

Carre, G. (1997). An implicit multigrid method by agglomeration applied to
turbulence flows. Computers & Fluids 26(3), pp. 299-320.

Connel, S. D. and M. E. Braaten (1994). 'Semi-structured mesh generation for 3-d
Navier-Stokes calculations'. GE Research and Development Center Tech Rep.
94CRD154

Connell, S. D. and D. G. Holmes (1994). A 3d unstructured adaptive multigrid
scheme for the Euler equations. AIAA Journal 32(2).

Cook, P., M . McDonald, et al. (1979). 'Airfoil RAE 2822 - pressure distributions and
boundary layer wake measurement'. AGARD AR-138

Crumpton, P. I . and M . B. G. Gile (1997). 'Aircraft computations using multigrid and
an unstructured parallel library'. AIAA paper 95-0210

Crumpton, P. I . and M . B. Giles (1993). 'OPlus programmer's manual'. Oxford
University Computing Laboratory

Danish Wind Industry Association (2001). "Wind energy and wind turbines:
Danish wind industry Association". http://www.windpower.org/core.htm.

Dawes, W. N . (1992). 'The Extension of a Solution Adaptive Three-Dimensional
Navier-Stokes Solver Toward Arbitrary Complexity', ASME paper 92-GT-
363

185

Dawes, W. N. (1993). The Extension of a Solution Adaptive Three-Dimensional
Navier-Stokes Solver Toward Arbitrary Complexity. ASME Journal of
Turbomachinery 115(4).

Dawes, W. N. (1994). The Solution Adaptive Numerical Simulation of the Three-
Dimensional Viscous Flows in the Serpentine Coolant Passage of a Radial in
flow Turbine Blade. ASME Journal of Turbomachinerv 116(1).

Denton, J. D. (1983). An Improved Time-Marching Method for Turbomachinery
Flow Calculations. ASME Journal of Engineering for Gas Turbines and
Power 105, pp. 514-524.

Department of Trade and Industry, United Kindom (2002). "dti: Energy -
Renewable".
http://wwM>2.dti.sov- uk/energy/renewables/policy/overview.shtml.

Desideri, J. A. and A. Dervieux (1988). 'Compressible flow solvers using
unstructured grids', von Karman Institute for Fluid Dynamics V K I lecture
Series 1988-05

Diskin, B. (1999). 'Solving Upwind-biased Discretizations I I : Multigrid Solver Using
Semicoarsening'. NASA Langley Research Center NASA/CR-1999-209355

Duque, E. P. N. , C. P. V. Dame, et al. (1999). Navier-Stokes simulations of the NREL
combined experimental Phase I I rotor. In European Wind Energy Conference,
Nice, France.

Duque, E. P. N . , W. Johnson, et al. (2000). 'Numerical Predictions of Wind Turbine
Power and Aerodynamic Loads for NREL Phase I I Combined Experiment
Rotor'. AIAA paper 2000-0038

Fischer M. (1998). "WINRSHD - A Remote Execution Facility to Harness and
Control Remote Windows". http-J/www.winrshd.com/.

Fischer M. (1999). "PVM as Message Passing Environment PVM 3.4.4 for
Win32". http://M>ww. markus-fischer. de/getpvmwin32. htm.

FLOWNET (2001). "Flownet test case database: N R E L wind turbine".
http://dataserv. inria. fr/flo\vnet/public/index.php3.

Freitag, L. A. and C. F. Ollivier-Gooch (1997). Tetrahedral Mesh Improvement Using
Swapping and Smoothing. International Journal for Numerical Methods in
Engineering 40(1), pp. 3979-4002.

Frink, N. T. (1992). Upwind scheme for solving Euler equations on unstructured
tetrahedral meshes. AIAA Journal 30(1), pp. 70-71.

Frink, N . T. (1994). 'Recent progress toward a three-dimensional unstructured
Navier-Stokes flow solver'. AIAA paper 94-0061

Frink, N . T. (1996). 'Assessment of an unstructured-grid method for predicting 3-D
trubulent flows'. AIAA paper 96-0292

Frink, N. T., P. Arikh, et al. (1991). 'A fast upwind solver for the Euler equations on
three-dimensional unstructred meshes'. AIAA paper 91-0102

186

Frink, N . T. and S. Z. Pirzadeh (1998). 'Tetrahedral Finite-Volume Solution to the
Navier-Stokes Equations on Complex Configurations'. NASA NASA/TM-
1998-208961

Geist, G. A., J. A. Kohl, et al. (1996). PVM and MPI: A Comparison of Features.
Calculateurs Paralleles 8(2).

Geuzaine, C. and Remade, J. (1999). "Gmsh: a three-dimensional finite element
mesh generator with built-in pre- and post-processing facilities".
http ://wM>w. ge uz. ors/gmsh/.

Giles, M. and R. Haimes (1993). Validafion of a Numerical Method for Unsteady
Flow Calculations. ASME Journal of Turbomachinery 115.

Godfrey, A. G. and B. V. Leer (1993). 'Preconditioning for the Navier-Stokes
equations with finite chemistry'. AIAA paper 93-0535

Gopakaswamy, N. , H. U. Akay, et al. (1997). Parallization and dynamic load
balancing of NPARC codes. AIAA Journal 35(12).

Gropp, W., Lusk E. (1999). "MPICH-A Portable Implementation of MPI".
http://www-unix. mcs. anl.sov/mpi/mpich/.

Gropp, W. and B. Smith (1993). User manual for Chameleon parallel programming
tools, Argonne National Laboratory.

Guillard, H. and C. Viozat (1999). On the behaviour of upwind schemes in the low
Mach number limit. Computer & Fluids 28, pp. 63-86.

Hammond, S. W. and T. J. Barth (1992). Efficient Massively Parallel Euler Solver for
Two-Dimensional Unstrucrured Grids. AIAA Journal 30(4), pp. 947-952.

Haselbacher, A. and J, Blazek (2000). Accurate and Efficient Discretization of
Navier-Stokes Equations on Mixed Grids. AIAA Journal 38(11), pp. 2094-
2102.

Haselbacher, A., J. J. McGuirk, et al. (1999). Finite Volume Discrefization Aspects
for Viscous Flows on Mixed Unstructured Grids. AIAA Journal 37(2), pp.
177-184.

Hawken, D. F. (1991), Review of some adaptive node-move techniques in finite
element and finite difference solutions of partial differential equations. J.
Comp. Phys. 95, pp. 254-302.

He, L. (1993). New two-grid acceleration method for unsteady Navier-Stokes
calculations,. Journal of Propulsion and Power 9(2), pp. 272-280.

He, L. (1998). Unsteady Flow in Oscillating Turbine Cascades: Part 1 - Linear
Cascade Experiment. ASME Journal of Turbomachinery 120(4), pp. 262-268.

He, L. (1998). Unsteady Flow in Oscillating Turbine Cascades: Part 2 -

Computational Study. ASME Journal of Turbomachinery 120, pp. 269-275.

Hirsch, C. (1990). Numerical Computation of Internal and External Flows, John
Wiley & Sons Ltd. Baffins Lane, Chichester, West Sussex P019 lUD.
England.

187

Holmes, D. G. (1994). 'Numerical methods for flow calculation in turbomachines'.
von Karman Institute for Fluid Dynamics Lecture Series 1994-06

Holmes, D. G. (1994). 'Unstructured grids and mesh adaptivity for inviscid and
viscous flows'. V K I Lecture Series 1994-06

Ilinca, F., D. Pelletier, et al. (1997). An adaptive finite element scheme for turbulent
free shear flows. IJCFD 8, pp. 171-188.

Jameson, A. (1994). 'Analysis and design of numerical schemes for gas dynamics 1 :
Artificial diffusion, upwind biasing, limiters and their effect on accuracy and
multigrid convergence'. NASA Center for AeroSpace Information (CASI)
NASA-CR-196477

Jameson, A., T. J. Baker, et al. (1986). 'Calculation of inviscid transonic flow over a
complete aircraft'. AIAA paper AIAA-86-0103

Jameson, A. and D. J. Mavriplis (1986). Finite volume solution of two-dimensional
Euler equations on a regular triangular mesh. AIAA Journal 24.

Jameson, A., W. Schmidt, et al. (1981). 'Numerical Solutions of Euler Equations by
Finite Volume Methods Using Runge-Kutta Time-stepping Schemes'. AIAA
paper 81-1259

Jameson, A., W. Schmidt, et al. (1985). 'Numerical Solutions of the Euler
Equationsby Finite Volume Methods Using Runge-Kutta Time-Stepping
Schemes'. AIAA paper 81-1259

Jin, H. and R. Tanner (1993). Generation of unstructured tetrahedral meshes by the
advancing front technique. International Journal for Numerical Methods in
Engineering 36, pp. 1805-1823.

Kang, S. and C. Hirsch (2001). Numercial Investigation of The 3D Flow Around
NREL Untwisted Wind Turbine Blades. In Turbomachinery Fluid Dynamics
and Thermodynamics, Firenze Italy,

Karypis, G. and V. Kumar (1995). 'A fast and high quality multilevel scheme for
partitioning irregular graphs'. Computer Science Department, University of
Minneasota MN55455 Technical Report TR 95-035

Karypis, G. and V. Kumar (1998). METIS: A Software Package for Partitioning
Unstructured Graphs, Paxtiiotning Meshes, and Computing Fill-Reduce
Orderings of Sparse Matrices. University of Minnesota, Department of
Computer Science / Army HPC Research Center, Minneapolis, MN 55455.

Knight, D. (1993). 'A fully implicit Navier-Stokes algorithm using unstructuted grid
and flux diference spilitting'. AIAA paper 93-0875

Kunz, R. F. and B. Lakshminarayana (1992). Explicit Navier-Stokes Computafion of
Cascade Flows Using the k-e Turbulence Model. AIAA Journal 30(1).

Kunz, R. F. and B. Lakshminarayana (1992). Explicit Navier-Stokes Computation of
Cascade Flows Using the k-s Turbulence Model. AIAA Journal 30(1), pp. 13-
22.

188

Ladkany, S. G. (1998). 'Proposed Wind Turbine Aeroelasticity Studies Using
Helicopter Systems Analysis'. NASA Center for AeroSpace Information
(CASI)

Lallemand, M.-H., H. Steve, et al. (1992). Unstructured Multigridding by Volume
Agglomeration: current status. Computers & Fluids 21(3), pp. 397-433.

Leer, B. V. (1979). Toward the ultimate conservative difference scheme V, A second
order squel to Godunov's method. Journal of Comput. Phys. 32, pp. 101-136.

Liu, C. Y. and C. J. Hwang (2001). New Strategy for Unstructured Mesh Generation.
AIAA Journal 39(6), pp. 1078-1085.

Lo, S. H. (1985). A New Mesh Generation Scheme for Arbitrary Planar Domains.
International Journal for Numerical Methods in Engineering 21(8), pp. 1403-
1426.

Lohner, R. and J. Cebral (2000). Generation of non-isotropic unstructured grids via
directional enrichment. International Journal for Numerical Methods in
Engineering 49, pp. 219-232.

Lohner, R. and P. Parikh (1988). Three-dimensional grid generation by the advancing
front method. International Journal for Numerical Methods in Fluids 8, pp.
1135-1149.

Marvriplis, D. J. (1990). Accurate Multigrid Solution of Euler Equations on
Unstructured and Adaptive Meshes. AIAA Journal 28(2), pp. 213-221.

Marvriplis, D. J. (1991). Algebraic turbulence modelling for unstructured and
adaptive meshes. AIAA Journal 29, pp. 2086-2093.

Marvriplis, D. J. (1992). Three-dimensional multigrid for Euler equations. AIAA
Journal 30(2), pp. 1753-1761.

Marvriplis, D. J. and A. Jameson (1987). 'Multigrid Solution of Euler Equations on
Unstructured and Adaptive Meshes'. ICASE Report 87-53

Mavriplis, D. J. (1996). 'Multigrid Solution Strategies for Adaptive Meshing
Problems'. NASA 19480

Mavriplis, D. J. (1999). Directional Agglomeration Multigrid Techniques for High-
Reynolds-Number Viscous Flows. AIAA Journal 37(10), pp. 1222-1230.

Mavriplis, D. J. (2000). 'Parallel performance investigations of an unstructured mesh
Navier-Stokes solver'. NASA Langley Research Center ICASE Report 2000-
13; NASA/CR-2000-210088

Mavriplis, D. J. (2000). Viscous Flow Analysis Using a Parallel Unstrictured
Multigrid Solver. AIAA Journal 38(11), pp. 2067-2076.

Mavriplis, D. J. (2002). 'Transonic Drag Prediction using an Unstructured Multigrid
Solver'. NASA Center for AeroSpace Information (CASI) NASA/CR-2002-
211455

Mavriplis, D. J. and V. Venkatakrishnan (1995). Agglomeration multigrid for tow
dimentional viscous flows. Journal of Comput. Phys. 24, pp. 553-570.

189

Merriam, M. L. (1991). 'An Efficient Advancing Front Algorithm for Delaunay
triangulation'. AIAA Paper 91-0792

Mitchell, C. R. (1994). 'Improved Reconstruction Schemes for the Navir-Stokes
Equations on Unstructured Meshes'. AIAA paper 94-0642

Muller, J.-D. 'On triangles and flow' (University of Michigan, PhD thesis, 1996)

NASA (1999). "NPARC Alliance Validation Archive: ONERA M6 Wing Study
#1".
Http://wM>w. src. nasa.gov/wM>w/wind/valid/m6wing/m6wing01/m6wing01.html.

OUivier-Gooch C. (1998). "GRUMMP— Generation and Refinement of
Unstructured, Mixed-Element Meshes in Parallel".
http://tetra. mech. ubc. ca/GR UMMP/index. html.

OUivier-Gooch, C. (2001). Coarsening Unstructured Meshes by Edge Contraction.
Int. J. Numer. Mech. Engng.

Oxford university computing laboratory (2000). "BSP:A New Industry Standard
for Scalable Computing on Clusters, SMFs and MPPs".
http://web, comlab. ox. ac. uk/oucl/work/bill. mccoU/oparl. html.

Owen, S. (1998). "A Survey of Unstructured Mesh Generation Technology".
http://wM'w. andrew. emu, edu/user/sowen/survey/index. html.

Peiro, J. and A. I . Sayma (1995). A 3-D unstructured muhigrid Navier-Stokes solver.
In ICFD Conference on Numerical Methods for Fluid Dynamics, Oxford
University Press.

Pelletier, D. and F. Ilinca (1997). Adaptive remeshing for the k-e model of
turbulence. AIAA Journal 35(4).

Pirzadeh, S. (1993). Structured Background Grids for Generation of Unstructured
Grids by Advancing-Front Method. AIAA Journal 31(2). pp. 257-265.

Pothen, A., G. Intemann, et al. (1993). 'Wing Pylon Fillet Design Using Unstructured
Mesh Euler Solver'. AIAA paper 93-3500

Pothen, A., H. D. Simon, et al. (1990). Partitioning sparse matrices with eigenvectors
of graphs. SIAM J. Mat. Anal. Appl. 11(3), pp. 430-452.

PVM (1995). "PVM: Parallel Virtual Machine".
http://www, asm, ornl. sov/pvm/pvm_home. html.

Rizzi, A., P. Eliasson, et al. (1992). The engineering of multiblock/multigrid software
for Navier-Stokes flows on structured meshes. Computers Fluids 22(2/3), pp.
341-367.

Roberts, T. W., D. Sidikover, et al. (1997). 'Textbook Mulfigrid Efficiency for the
steady Euler equations'. AIAA paper 97-1949

Roe, P. L. (1981). Approximate Riemann, parameter vectors and difference schemes.
Journal of Comp. Phvs. 43, pp. 357-372.

190

Roehl, C. and H. Simon (1999). Numerical simulation of compressible flows with
adaptive unstructured grids. In Proceedings of the 3rd ASME/JSME joint
fluids engineering conference, San Francisco, California, USA.

Sayma, A. I . , M . Vahdati, et al. (2000). Modeling of Three-Dimensional Viscous
Compressible Turbomachinery Flows Using Unstructured Hybrid Grids.
AIAA Journal 38(6), pp. 945-954.

Sbardella, L. and M. Imregun (2000). An Efficient Discretisation of Viscous Fluxes
on Unstructured mixed-elements Grids. Communications in Numerical
Methods in Engineeering 16, pp. 839-849.

Sbardella, L. and M . Imregun (2000). An efficient discretization of viscous fluxes on
unstructured mixed-element grid. Communications in Numerical Methods in
Engineeering 16, pp. 839-849.

Sbardella, L., A. I . Sayma, et al. (1997). Semi-unstructured mesh generator for flow
calculations in Axis turbomachinery blading. In 8th International Symposium
on Unsteady Aerodynamics and Aeroelasticity of Turbomachines, Stockolm.

Sbardella, L., A. I . Sayma, et al. (1998). Semi-structured Meshes for Axial
Turbomachinery Blades. International Journal for Numerical Methods in
Fluids 32, pp. 569-584.

Schepers, J. G., A. J. Brand, et al. (1997). 'Final report of lEA Annex XIV: Field rotor
aeronautics'. ECN-C-97-027

Schmitt, V. and F. Charpin (1979). 'Pressure Distributions on the ONEAR M6-wing
at Transonic Mach Number'. AGARD Advisory Report 138

Sheng, C , L. K. Tylor, et al. (1995). 'Multiblock Multigrid Solution of Three-
Dimensional Compressible Turbulent Flows About Appended Submarine
Configuration'. AIAA paper 95-0203

Sheng, C, D. L. Whitfield, et al. (1999). Multiblock Approach for Calculating
Incompressible Fluid Flows on Unstructured Grids. AIAA Journal 37(2), pp.
169-176.

Siden, G. L. D., W. N . Dawes, et al. (1990). Numerical simulation of two-
dimensional viscous compressible flow in blade cascades using a solution-
adaptive unstructured mesh. ASME Journal of Turbomachinery 112.

Simon, H. D. (1991). 'Partitioning of unstructured problems for parallel processing'.
NASA Ames Research Center, Numerical Aerodynamic Simulations System
Division

Spalart, P. R. and S. R. AUmaras (1992). 'A one-equation turbulence model for
aerodynamic flows'. AIAA paper 92-0439

Spalart, P. R. and S. R. Allmaras (1992). 'A one-equation turbulence model for
aeronautic flows'. AIAA paper 92-0439

Steinthorsson, E., M . S. Liou, et al. (1993). 'Development of an explicit
Multiblock/Multigrid flow solver for viscous flows in complex geometries'.
AIAA paper 93-2380

191

Swanson, R. C. (2001). Towards Optimal Multigrid Efficiency for the Navier-Stokes
Equations. In 15th AIAA Computational Fluid Dynamics Conference,
Anaheim, California, AIAA 2001-2574.

Thomas, J. L. and M. D. Salas (1986). Far-field Boundary Condifions for Transonic
Lifting Solutions to Euler Equations. AIAA Journal 24(2), pp. 1074-1080.

Venkatakrishnan, V. and T. J. Barth (1989). 'Application of direct solvers to
unstructured meshes for the Euler and Navier-Stokes equations using upwind
schemes'. AIAA paper 89-0364

Venkatakrishnan, V. and D. Mavriplis (1994). 'Agglomeration Multigrid for 3D Euler
Equations'. AIAA paper 94-0069

Venkatakrishnan, V., H. D. Simon, et al. (1991). 'A MIMD implementation of a
parallel Euler solver for unstructured grids'. NASA AMES Research Center
Tech. Report RNR-91-024

Venkatakrishnan, V., H. D. Simon, et al. (1991). 'A MIMD Implementation of
Parrallel Euler Solver for Unstructured Grids'. NASA Ames R. C. Tech.
Report RNR-91-024

Vilsmeier, R. and D. Hanel (1993). Adaptive methods on unstructured grids for Euler
and Navier-Stokes equations, Computers Fluids. Computers & Fluids 22(4/5),
pp. 485-499.

Wang, Q., S. J. Massey, et al. (1999). 'Solving Navier-Stokes Equations with
Advanced turbulence models on three-dimensional unstructured grids'. AIAA
paper 99-0156

Warren, G. P., W. K. Anderson, et al. (1991). 'Grid Convergence for Adaptive
Methods'. AIAA paper 91-1592CP

Waston, D. F. (1981). Computing the n-Dimensional Delaunay Tessallation with
Application to Voronoi Polytopes. Computer Journal 24(2), pp. 167-172.

Wesseling, P. (1999). 'Unified methods for computing incompressible &
compressible flows', von Karman Institute for Fluid Dynamics Lecture Series
1999-03

Wiel, S. v., D. Nathanson, et al. (1996). 'Performance and Program Complexity in
Contemporary Network-based Parallel Computing Systems'. University of
Minnesota, Technical Report HPC-96-02

Wilcox, T. (1993). Turbulence modeling for CFD. Griffin, Glendale, CA.

Wood, W. A. and W. L. Kleb (1998). 'Diffiision Characteristics of Upwind Schemes
on Unstructured Triangulations'. AIAA paper 98-2443

Zheng, Y. 'CFD Simulation of Transonic Flows in a Turbine Cascade' (Beijing
University of Aeronautics and Astronautics, Master thesis, 1995)

Zheng, Y. and L. He (2001). Muhigrid upwind Euler/Navier-Stokes computational on
adaptive unstructured meshes. The Aeronautical Journal 105(1046), pp. 173-
184.

192

