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A B S T R A C T 

New 2D and 3D unstructured-grid based flow solvers have been developed for 

simulating steady compressible flows for aerodynamic applications. The codes 

employ the full compressible Euler/Navier-Stokes equations. The Spalart-Allmaras 

one equation turbulence model is used to model turbulence effects of flows. The 

spatial discretisation has been obtained using a cell-centred finite volume scheme on 

unstructured-grids, consisting of triangles in 2D and of tetrahedral and prismatic 

elements in 3D. The temporal discretisation has been obtained with an explicit 

multistage Runge-Kutta scheme. An "inflation" mesh generation technique is 

introduced to effectively reduce the difficulty in generating highly stretched 2D/3D 

viscous grids in regions near solid surfaces. The explicit flow method is accelerated 

by the use of a multigrid method with consideration of the high grid aspect ratio in 

viscous flow simulations. A solution mesh adaptation technique is incorporated to 

improve the overall accuracy of the 2D mviscid and viscous flow solutions. The 3D 

flow solvers are parallelised in a MIMD fashion aimed at a PC cluster system to 

reduce the computing time for aerodynamic applications. 

The numerical methods are first applied to several 2D inviscid flow cases, including 

subsonic flow in a bump charmel, transonic flow around a NACA0012 airfoil and 

transonic flow around the RAE 2822 airfoil to validate the numerical algorithms. The 

rest of the 2D case studies concentrate on viscous flow simulations including 

laminar/turbulent flow over a flat plate, transonic turbulent flow over the RAE 2822 



airfoil, and low speed turbulent flows in a turbine cascade with massive separations. 

The results are compared to experimental data to assess the accuracy of the method. 

The over-resolved problem with mesh adaptation on viscous flow simulations is 

addressed with a two phase mesh reconstruction procedure. The solution convergence 

rate with the aspect ratio adaptive multigrid method and the direct connectivity based 

multigrid is assessed in several viscous turbulent flow simulations. 

Several 3D test cases are presented to validate the numerical algorithms for solving 

Euler/Navier-Stokes equations. Inviscid flow around the M6 wing airfoil is simulated 

on the tetrahedron based 3D flow solver with an upwind scheme and spatial second 

order finite volume method. The efficiency of the multigrid for inviscid flow 

simulations is examined. The eflficiency of the parallelised 3D flow solver and the PC 

cluster system is assessed with simulations of the same case with different 

partitioning schemes. The present parallelised 3D flow solvers on the PC cluster 

system show satisfactory parallel computing performance. Turbulent flows over a flat 

plate are simulated with the tetrahedron based and prismatic based flow solver to 

validate the viscous term treatment. Next, simulation of turbulent flow over the M6 

wing is carried out with the parallelised 3D flow solvers to demonstrate the overall 

accuracy of the algorithms and the efficiency of the multigrid method. The results 

show very good agreement with experimental data. A highly stretched and 

well-formed computational grid near the solid wall and wake regions is generated 

with the "inflation" method. The aspect ratio adaptive multigrid displayed a good 

acceleration rate. Finally, low speed flow around the NREL Phase 11 Wind turbine is 

simulated and the results are compared to the experimental data. 

SUBJECT TERMS: unstructured-grid, multigrid, adaptive mesh refinement, parallel 

computing 
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Chapter 1 Introduction 

Chapter 1 

Introduction 

1.1 Background 

Whereas a particular aerodynamic application could concern about the complex shock 

wave interaction associated with a rocket, or internal flows in turbomachinery, the 

common feature is that they are all dependent on fluid mechanics. In order to improve 

their performance, it is very important to understand the characteristics of flows. A 

powerful alternative to classical fluid mechanics and experimental methods of 

aerodynamic analysis is Computational Fluid Dynamics (CFD). CFD is widely 

accepted as a powerful means to study complex phenomena such as turbulence in the 

modem engineering community. Furthermore, CFD can provide the possibility of 

optimising the design of products with dramatic reduction of cost and time of product 

development. 

In the past decade, benefiting greatly from dramatic improvements in computer 

technology, such as the central processor, memory and network technologies, the 

development of modern CFD methods has been significantly enhanced so that 

industrial applications with complex geometries may be considered. After years' 

research efforts, it is clear that a modem computational method for industry 

applications must have certain features: 
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It must be able to deal with complex configurations, like multiple bodies and complex 
boundaries. This means that either unstructured meshes or multi-block structured 
grids should be used. 

The method must be able to resolve complex flow features, such as shock waves, 

boundary layer interaction, and flow separation and attachment. Many such complex 

flow features are associated with turbulence. Due to complex nature of the 

mathematic modelling of turbulence effects, the most common used method to 

simulate turbulent flows is still to adopt turbulence models. This would require not 

only a higher order spatial discretisation scheme and adequate turbulence modelling 

but also either a global mesh refinement or mesh adaptation technique. 

Finally, the ability to obtain results in reasonable computing time is always very 

important for practical CFD applications. This requires effective convergence 

acceleration techniques such as the multigrid method and/or the parallel computing 

technique to reduce overall computing time. 

These requirements pose new challenges on both the design of numerical algorithms 

and computing techniques. 

1.1.1 Unstructured-Grid Method in CFD 

In past decades, much progress has been made in developing computational 

techniques for predicting flowfields about complex configurations. These techniques 

include both structured and unstructured grid methods, both of which have their own 

advantages and disadvantages. 

Conventional CFD methods are usually based on structured grids (H-mesh, 0-mesh, 

C-mesh, etc) with a topologically rectangular structure and usually remain fixed 

throughout the simulation. This approach has been the mainstream of CFD for many 

years due to the limitation of computing resource in the past. Unfortunately, the 

generation of a suitable computing grid is not easy. Many, often conflicting, issues 

need to be addressed: the leading edge of an aerofoil needs increased grid density to 

avoid excessive numerical entropy increase, whereas for regions far from solid wall 
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usually less grid points are desired for economic computing. Also for accurate 
Shockwave resolution grid density is required to be increased; and so on. One method 
to deal with complex geometry configurations is the application of multi-blocked 
structured-grids. For this method, the complex computing domain is divided to 
several relatively regular sub-domains for grid generation. This process is nearly 
impossible to be automatised because it requires certain CFD expertise and human 
intervention. In some extremely three-dimensional geometry it is a very difficult task 
just to generate an adequate computing grid with this multiblock technique. 

By contrast, the unstructured-grid methodology offers some significant advantages 

compared to the traditional structured-grid method for simulating flows over complex 

geometries. This is mainly attributed to the promise that the construction of 

unstructured grids around complex configurations, such as a multi-element airfoil, 

requires much less time than a comparable multiblock structured-grid. Unstructured 

meshes usually have irregular connectivity and contain triangular elements in two-

dimensions, while tetrahedral, prismatic and/or hexahedral elements are used in three-

dimensions. This gives the unstructured-mesh method ability to use fine local grids 

without affecting the mesh in rest of the domain. In addition, because of its irregular 

connectivity on an unstructured-grid, an automatic mesh refinement technique can be 

carried out more easily to improve the accuracy of the solution with less computing 

cost than dealing with a structured-grid. Furthermore, the homogeneous data 

structures across the computing domain used in unstructured mesh methods enable 

good load balancing and scalability for parallel computing on parallel computers or 

cluster systems. 

Although the unstructured grid approach enjoys its advantages over the structured 

grid approach in some areas, the unstructured-grid based flow solvers usually suffer 

several disadvantages: 

• Complex data structures and extra storage are required. A flow solver utilising 

the unstructured mesh method needs complicated data structure to describe the 

geometry connectivity. Therefore the efficiency of this method is not as high 
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as a structured-grid method because of indirect memory addressing, and extra 
memory is needed to store these information. In some three-dimensional 
cases, the connectivity data usually requires more storage (both memory and 
hard disk) than actual flow variables. 

• Generation of adequate meshes for viscous computations is difficult. 

Although the generation of isotropic unstructured meshes for some extreme 

complex geometry can be done in a matter of hours, the generation of highly 

stretched viscous grids remains a challenge. 

• Accuracy may be compromised. With years of research, many high order 

schemes have been developed for the structured-grid method. Unfortunately, 

most of them are unable to be applied directly to an unstructured-grid method. 

• Poor convergence rate. The traditional structured-grid permits the use of 

highly efficient methods such as the Alternative Direction Implicit (ADI) 

iteration scheme and multigrid to accelerate the solution. Unfortunately, most 

of these powerful convergence acceleration methods could not be employed 

easily in the unstructured-grid method or the efficiency is reduced when 

implemented on unstructured meshes. Generally, CFD flow solvers utilising 

unstructured grids are slower than structured-grid solvers. 

• Discretisation using triangles (2D) and tetrahedral (3D) is more expensive to 

evaluate than structured-grid using quadrilateral/hexahedra. 

The use of unstructured meshes poses new challenges both on design of new 

algorithms and the grid generation technique in computational fluid dynamics. In the 

following sections, we will discuss the issues of accuracy, convergence, mesh 

generation and parallel computing on unstructured mesh methods. 

1.1.2 Mesh Adaptation 

The accuracy of CFD methods is an interesting topic. It is defined by the difference 

between a numerical solution and the actual flow, which is usually unavailable. A 
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numerical solution is often obtained following discretisation of the governing 
equations on the solution domain. The difference, also referred to as the error, is often 
associated with two discretisation phases. The error due to first part of the 
discretisation is often referred to as the modelling error, which is defined as the 
difference between the actual state of the flow and an exact numerical solution of the 
mathematical model. The discussion of the modelling error is beyond the current 
study. Our interest is focused on reducing the second group of the errors that originate 
from the spatial discretisation of the flow domain to improve the accuracy of the 
solution. 

To reduce spatial discretisation errors, one can either use higher quality computing 

grids or dynamically refined computing meshes within the areas where the numerical 

errors are most likely to occur. In the past, much work has been done in developing 

high order numerical schemes such as the TVD scheme for computational fluid 

dynamics. It seems the use of a mesh adaptation technique may offer further accuracy 

improvement in CFD simulations. 

Mesh adaptation is one of the major advantages of the unstructured-grid method over 

the traditional stmctured one due to its ability to concentrate computational as well as 

storage resources to regions where they are most needed, (i.e. regions where the 

numerical error mostly occurs.) Thus, flow solvers utilising mesh adaptation 

techniques can achieve adequately accurate results with reasonable computational 

costs in terms of both CPU time and storage. Furthermore, using the mesh adaptation 

technique can decrease the user expertise and effort required to produce satisfactory 

simulations by reducing the dependence on the grid used to initiate the process. 

The mesh adaptation technique has achieved great success in solving the Euler 

equations in past years. However, solving the Navier-Stokes equations with 

turbulence effects using this technique has been less successful. Difficulties to 

reconstmct quality viscous meshes in the boundary layer and inadequate error 

estimation both contribute to the failure of this method in viscous flow simulations. 
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1.1.3 Mesh Generation 

Designing a fully automatic two- and three- dimensional mesh generator is the 

ultimate goal of the research of the unstructured mesh generation. This fully 

automatic mesh generation requires software that could take the description of 

geometry boundary definition and produce a well-formed mesh throughout the flow 

domain without user intervention. There are several difficulties for this "fully 

automatic" mesh generation: 

1. Description of boundaries. In two dimensions, these boundaries could be 

described as several curves that define the geometry. These curves could be 

splines or connected straight lines. In three dimensions, it could be difficult to 

specify a curved surface. A possible way would be using some sort of 

established geometry systems. 

2. Generation of high quality elements. A desire for high quality meshes for 

complex geometries is the driving force for using the unstructured-grid 

method. Researchers realised a long time ago that poor mesh quality, often 

caused by non-smooth mesh and stretched elements, always leads to 

unsmooth (and very likely unphysical) solutions and poor convergences. 

3. Viscous mesh generation problems. For inviscid flow problems, even in some 

extremely complex geometry configurations, some mesh generation packages 

could produce well-formed triangular (2D) or tetrahedral (3D) elements in a 

matter of hours. For viscous flow problems, stretched meshes are required in 

regions of viscous effect domination, such as boundary layer and wakes. 

Generation of this kind of mesh is extremely difficult especially for complex 

3D configurafions. 

A huge amount of research has been invested to develop fully automatic two- and 

three-dimensional unstructured mesh generators. The 2D/3D inviscid mesh 

generation has reached a mature state. Even for some extremely complex geometry 

such as a full aircraft, with the aid of modern computers, the generation of high 

quality unstructured meshes for inviscid simulations are possible. However, the 
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generation of viscous meshes, especially in 3D complex configurations, is still less 
than mature. The main reason is that most unstructured-grid generators are isotropic 
based: triangles (2D) and tetrahedral (3D). Triangular and tetrahedral elements are 
ideal for discretisation the domain without any preferred direction. In viscous flow 
simulations, different resolutions in various directions are desired due to disparity of 
the flow. Isotropic based mesh generation techniques experience difficulties in 
delivering the desired directional resolution. An alternative mesh generation 
technique is required to resolve this problem. 

1.1.4 Multigrid Method 

Generally speaking, flow solvers utilising unstructured meshes are slower than those 

based on structured grids. The key factors behind the lower computational efficiency 

of the unstructured grid method are: 

1) It requires complex data structures to store the connectivity of elements, 

introducing the access overhead of memory through indirect addressing. 

2) It is difficult to construct an efficient multigrid or implicit solution procedure 

on unstructured meshes to accelerate the convergence. 

3) Solution of viscous flows, due to using a highly stretched triangle (2D) or 

tetrahedral (3D) in boundary layer regions, results in slower convergence than 

the more body-fitted quadrilateral (2D) or hexahedral (3D) structured grids. 

With carefully optimised coding, the overhead caused by indirect memory access and 

complex data structure in the unstructured-grid method could be relieved, but it 

cannot be avoided. The second and third factors can be minimized by using a 

carefully designed multigrid technique. 

A fine mesh resolves small-scale features of the flow field, but is slow to converge. A 

coarse mesh converges quickly but loses small-scale features of the flow field. The 

goal of a multigrid method is to obtain a solution with a fine grid resolution, but in a 

low number of iterations that is characteristic of a coarse grid. From a time-
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integration viewpoint, the convergence rate is dictated by the length of time-step, 
since disturbances with long length scales are propagated at relevant characteristic 
speeds. The use of coarse grids (thus larger time-steps) should then propagate error 
disturbances more quickly, leading to faster convergence. For an explicit time-
marching scheme, the time-step is limited by the minimum mesh spacing due to the 
stability requirement. Hence a good coarse mesh level should always increase the 
time-step to achieve better accelerate ratio. 

The multigrid method has been demonstrated as an effective means to accelerate 

solutions on structured grids. Multigrid on unstructured grids, especially with mixed-

elements is still at very early stage of development. In recent years, some progress has 

been made toward developing multigrid techniques on unstructured meshes. Various 

successful multigrid methods have been developed for Euler solutions. However, 

most of these methods achieve less satisfactory results for viscous flow problems due 

to the presence of high grid aspect ratio. 

High aspect ratio grids are commonly encountered near wall regions in high Reynolds 

number flows, where the grid must be refined very tightly in the direction normal to 

the wall to resolve the high velocity gradient. A second type of problem in which 

highly stretched meshes may be found is in the mixing flow regions. The magnitude 

of these grid aspect ratios maybe order of 10 to 1000 depending on cases. For two-

dimensional problems, the grid aspect ratio (AR) of a grid may be defined as, 

AR^^ (1-1) 

For a typical CFD problem, the time step to march the solution to a steady state can 

be obtained by computing the minimum time step in the two directions, 

. \CFLxAx CFLxAy] 
A r , = m m , — ^ (1-2) 

I ^ - v J, 
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Here, and are the acoustic eigenvalues in the respective coordinate directions. 

The time step definition above illustrates the problem experienced with high aspect 

ratio grids. When the aspect ratio is higher than unity, the time step is likely to be 

restricted by the time step in the direction of the smaller grid spacing. This results in 

poor error damping and propagation. Thus slow to converge. The problem of solving 

a complex flow model such as the Navier-Stokes equations using an unstmctured 

mesh method requires efficient and robust solution acceleration means to reduce the 

stiffness caused by the high grid aspect ratio. 

1.1.5 Parallel Computing 

CFD, as its name implies, inevitably involves computing issues, such as CPU power 

and memory technology etc. Obtaining results in less time has always been a major 

consideration in CFD. Generally speaking, there are two ways to reduce the 

computing time: using more efficient numerical methods to accelerate the solution, 

such as muhigrid approaches and implicit schemes, or using computers that are more 

powerful. 

The computing power of the fastest computers has grown exponentially from 1940's 

to the present, averaging a factor of 10 every five years. As computers become ever 

faster, it can be tempting to suppose that they wil l eventually become "fast enough" 

to solve all the computing problems in very short time. However, history suggests 

that as a particular technology satisfies known applications, new applications will 

arise that are enabled by that technology and that will demand the development of 

new technology. Development at the high end of computing has been motivated by 

numerical simulations of complex systems such as weather, climate, mechanical 

devices, electronic circuits, manufacturing processes, nuclear reaction and chemical 

reactions. 

A very important trend changing the face of computing in recent years is the 

enormous increase in the capabilities of the networks, performance of commodity 

processors as costs of the computer and networking equipment simultaneously drop. 

This trend makes it feasible to develop applications that use physically distributed 
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resources as i f they were part of the same computer. A typical CFD application of this 
sort may be clustering commodity processors together with available networking 
equipment, to complement mid-level high performance computing systems. 

A cluster is a type of parallel or distributed processing system, consisting of a 

collection of networked stand-alone computer systems working together as a single 

computing resource. On a typical cluster system, each of the machines can be a 

complete system, usable for a wide range of other computing applications. This leads 

to the suggesfion to claim all the wasted computing power of old PCs/ workstations. 

This idea is such a temptation since in some places one can easily find many old PCs 

that are suitable for clustering. 

Although this type of cluster parallel computing is cheap, highly available and can 

scale to very large systems, there are some problems for using cluster parallel 

computing on CFD applications. First, most networked hardware is not designed for 

cluster parallel computing. The latency is generally very high and bandwidth 

relatively low compared to traditional parallel computer systems with attached 

processors. Secondly, most CFD codes are designed for serial computing. Some may 

need major modifications. 

To take advantages of the cluster parallel computing for CFD applications, especially 

when using the systems not designed for high performance computing, some 

considerations have to be put on the network design, mesh partitioning, data structure, 

interface treatment and communication schemes. 

1.2 Objectives and Contributions of the Present Work 

The objective of the current research is to develop efficient and accurate 2D and 3D 

unstructured mesh flow solvers for aerodynamics applications. 

The specific objectives of this project are to: 

• Develop accurate and efficient flow solvers capable of solving the 

Euler/Navier-Stokes on 2D/3D unstructured meshes. 

10 
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Develop a solution mesh adaptation technique to improve accuracy of inviscid 

and viscous flow simulations for aerodynamic applications on unstructured 

meshes. 

Develop an efficient multigrid method capable of dealing with high grid 

aspect ratio in viscous flow simulations. 

• Validate the numerical algorithms and assess their accuracy and efficiency. 

• Explore the possibility of clustering current office PCs in University of 

Durham for parallel computing and identify the strengths and weaknesses of 

this kind of cluster system for CFD applications. Develop accurate and 

efficient parallel numerical algorithms and conduct preliminary testing to 

verify the effectiveness and potential of these algorithms. 

• Conduct numerical studies on the flows around a wind turbine blade with the 

numerical algorithms developed. 

Some specific contributions have been made in the following areas: 

• Three distinct unstructured flow solvers: a triangle-based 2D solver, a 

tetrahedron-based 3D solver and a prism-based 3D solver (semi-structured), have 

been developed to solve the Navier-Stokes equations for aerodynamics 

applications. These flow solvers feature cell-centred Finite Volume discretisation 

schemes applicable to arbitrary complex geometry configurations, Roe's upwind 

scheme, spatially second-order order, and the explicit multistage Runge-Kutta 

method. 

• An adaptive mesh refinement technique has been incorporated with the 2D flow 

solver to achieve accurate results with reasonable computing cost. 

• An "inflation" strategy for generating 2D and 3D viscous meshes has been 

developed and validated. 

11 
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• A new multigrid approach, Aspect-Ratio Adaptive Multigrid, has been developed 
and validated for two- and three- dimensional flow cases. The effectiveness has 
been demonstrated. 

• The parallel computing technique has been coupled with the three-dimensional 

flow solver on a PC cluster system to reduce computing time. 

• Flows around an NREL Phase 11 wind turbine blade have been simulated with the 

presented 3D flow solver. Satisfactory results have been achieved. 

1.3 Thesis Outline 

Chapter 2 provides a literature review of development of CFD methods on 

unstructured meshes and relevant subjects. 

In Chapter 3, flow models and numerical discretisation are summarised. The 

governing equations of fluids are presented, followed by nondimensionalisation and 

turbulence modelling. Next, the spatial discretisation, including two- and three-

dimensional finite volume schemes, a second order scheme construction, and an 

upwind technique, are described. In this section, the idea of using an alternative 

control volume in viscous layers is introduced. Subsequently, the temporal 

discretisation based on a multistage Runge-Kutta approach is discussed. This chapter 

is concluded with the description of physical and numerical boundary conditions. 

Chapter 4 outlines the mesh generation method and mesh adaptation techniques. 

First, the advancing front method for generation of two-dimensional inviscid 

unstructured meshes is reviewed. Next, a new strategy for generating viscous 

unstructured meshes for two and three dimensions is established. The final section of 

this chapter discusses the mesh adaptation techniques including the error estimation 

and the mesh reconstruction procedure. 

Chapter 5 outlines a multigrid method for improving overall convergence rate of 

unstructured-grid based flow solvers. It starts with an introduction of different ways 

to generate the sequence of grids. First, a traditional semi-coarsening method - Direct 

12 



Chapter 1 Introduction 

Connected Multigrid is proposed. Then a new approach - Aspect ratio Adaptive 
Multigrid is presented for viscous computations on high aspect ratio grids. This 
chapter ends with a discussion of the timestep and stability of this multigrid method. 

The parallel computing technique is presented in Chapter 6. It includes the mesh 

partitioning techniques, parallel computing environment, load balancing and 

communication schemes. 

In Chapter 7, the algorithm developed in previous chapters is applied on several 2D 

test cases. The first case is inviscid flows in a bump channel, which is designed to 

check the numerical accuracy of inviscid algorithm established in previous section. 

To further examine the accuracy of the inviscid algorithm and demonstrate the 

efficiency of the multigrid method and effectiveness of the mesh adaptation technique, 

inviscid flows over NACA0012 airfoil are simulated. The next test case is about 

laminar flow over a flat plate. In this case, the accuracy of using the upwind scheme 

for viscous simulation and boundary condition treatment are examined. The turbulent 

flow cases include viscous flows over a flat plate, the RAE2822 Airfoil , and a turbine 

cascade. The turbulent flow over flat plate is presented to check the implementation 

of current turbulence models and the coupled solution method. The RAE2822 airfoil 

flow case is presented to demonstrate the accuracy of the current method and 

effectiveness of the aspect ratio adaptive multigrid method. The simulations of flows 

in a turbine cascade include detailed comparison with experimental data as well as 

results using the traditional multigrid method and the aspect ratio adaptive multigrid 

method. This chapter ends with the summary of the 2D algorithm and some 

conclusions. 

In Chapter 8, the 3D validation and discussion are presented. The algorithms 

developed in previous chapters including the multigrid and parallel computing 

techniques are applied to 3D inviscid and turbulent flows. The first case is an inviscid 

flow over the ONERA M6 wing, for which experimental data is widely available in 

the public domain. This provides a validation on the inviscid algorithm developed in 

previous chapters. In the next section, the parallel computing results are presented on 

a PC cluster system. Laminar and turbulent flows over a flat plate are discussed to 
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check the viscous treatment and turbulence models used in current research. Next, 
viscous flow over the ONERA M6 wing is simulated to demonstrate the accuracy of 
the current 3D flow solvers. The result is achieved on the cluster system with a 
Multiple Instruction Multiple Data (MIMD) implementation. The convergence rate of 
the new multigrid strategy is also presented. The last 3D test case concerns flow over 
a wind turbine. Inviscid solution has been achieved on a single blade configuration. 
Pressure distribution comparisons with experimental data are presented. Attempt has 
been made to solve the turbulent flow around the wind turbine blade has failed. The 
reason has been investigated. This chapter is concluded with the discussion of overall 
3D results and general conclusions. 

Chapter 9 summaries the thesis and offers some conclusions and suggestions for 

future research. 
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Chapter 2 

Literature Review 

This chapter is an overview of unstructured mesh methods in computational fluid 

dynamics. A survey of numerical methods including the finite volume method, 

upwind scheme, turbulence modelling is also presented with particular emphasis on 

unstructured meshes. The discussion of unstructured mesh generation in complex 

geometry configurations is focused on the generation of highly stretched viscous 

meshes. Next, the efforts of improving the accuracy of unstructured mesh methods 

with solution mesh adaptation are reviewed. The discussion of the multigrid method 

on unstructured meshes is focused on different methods in simulating viscous flow 

problems with high aspect ratio grids. Further topics, such as parallelisation software, 

mesh partitioning and load balancing methods and state-of-art of parallelised CFD 

flow solver are also discussed in detail. This chapter also provides a brief review of 

CFD in wind turbine applications. 
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2.1 Unstructured=Grid Method 

The use of arbitrary control volumes to solve fluid equations can be traced back to 

early 80's. Jameson and Marvriplis' (1986) leading work of solving the Euler 

equations on two-dimensional irregular meshes is the earliest results in this field. 

They effectively extended the Finite Volume Method (FVM) established on 

structured grids and use a central difference scheme with some dissipative terms to 

suppress the odd-even decoupling. Their finite volume scheme is based on a 

cell-centred setting on triangular meshes, which are obtained from subdividing 

structured grids. Since then, much research has been carried out on the development 

of flow solvers based on unstructured meshes, including the mesh generation 

methods, discretisation schemes, higher order schemes, convergence acceleration 

methods, data structures and parallel computing techniques. 

2.1.1 Finite Volume Scheme 

The majority of discretisation of the governing equations on unstructured meshes is 

based on two lines of methods, Finite Element Method (FEM) and Finite Volume 

Method (FVM). The finite volume scheme has achieved great success both on 

structured meshes (Jameson et al. 1981; Denton 1983; He 1993) and unstructured 

meshes (Frink 1996; Marvriplis 1992; Holmes 1994). 

In the framework of a finite volume scheme, there are several distinct choices of the 

control volume for unstructured meshes, such as cell-centred (Figure 2.1a) and 

cell-vertex (Figure 2.1b) depending on where to store the flow variables. The 

cell-vertex method exploits an efficient edge-based data structure, and has been 

demonstrated to be easier in implementation of parallel computing and multigrid 

(Marvriplis 1990; Marvriplis 1992; Venkatakrishnan and Mavriplis 1994). The 

cell-centred method seems more expensive than the cell-vertex method on a given 

mesh (Barth 1991) but the solution quality of the cell-centred setting is clearly 

superior to the cell-vertex one (Pothen et al. 1993). The issue of cell-vertex vs. 

cell-centred approximations is still an open one. In the present work, a cell-centred 
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finite volume scheme on both two and three dimensional unstructured meshes is 

implemented. 

(a) 2D cell-centred scheme (b) 2D cell-vertex scheme 

Figure 2.1 Cell-centred vs. cell-vertex scheme 

The three-dimensional simulations of inviscid flows based on tetrahedral cells (Figure 

2.2) have achieved tremendous success (Frink et al. 1991; Dawes 1992; Mamiplis 

1992; Crumpton and Giles 1997). However, using this kind of control volume in 

viscous flow simulations has been less successflil. This is mainly due to the difficulty 

to generate adequate computing meshes in viscous effect dominated regions and poor 

convergence rate caused by using highly stretched tetrahedral elements in these 

regions. Aftosmis et al (1994) examined the accuracy of viscous flow simulations by 

using various triangular meshes and quadrilaterals. The conclusion is that using 

triangular elements in boundary layer regions can not achieve improvement in 

solution accuracy. This leads to the development of the hybrid discretisation scheme. 

Connel and Braaten (1994) adopted a hybrid approach in 3D viscous flow 

simulations. In their approach, structured/semi-structured grids are used in the near 

wall regions to overcome the difficulty of mesh generation in these regions. Sbardella 

et al (1997) also presented a hybrid discretisation scheme for solving Navier-Stokes 

equations in turbomachinery applications. In both cases, layers of structured-grids are 

used near wall regions and several successful cases have been demonstrated. 

Therefore, the surfaces of solid walls are discretised with structured-grids. This 
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method is proven to be effective in some appUcations (Sbardella and Imregun 2000; 
Sayraa et al. 2000), such as flows around turbine blades, in which the geometry of the 
blade surface is relatively simple. However, when simulating flows around an object 
whose geometry of its surface is complex, such as a whole aircraft, it is often very 
hard to discretise the surface with a single structured-grid, and this method becomes 
less useftal. 

A 

Figure 2.2 Three-dimensional control volume: tetrahedron 

2.1.2 Upwind Scheme 

In the solution of hyperboUc equations such as Euler equations, the theory of 

characteristics is crucial in determining the directions of the signal propagation. The 

information gained from the characteristics theory has been very useful not only in 

the boundary condition treatment but also in the development of a computational 

method: upwind scheme. The use of upwind schemes offers several advantages over a 

central-difference formulation (Amaladas and Kamath 1998). Due to the fact that the 

upwind scheme being a characteristic based method with the introduction of physical 

properties of the equations into the discretised formulation aiming at preventing 

numerical oscillations, while artificial dissipation terms have to be added to a 

central-difference scheme for stability reasons. For viscous flow simulations, with the 

upwind scheme the resolution of the boundary layer typically requires only half as 

many points as with a central-difference code (Zheng and He 2001). 
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Venkatakrishnan and Barth (1989) proposed the idea of using an upwind scheme on 
two-dimensional triangular meshes to improve the accuracy of the solution. They 
employed a variable extrapolation - MUSCL scheme (van Leer 1979) on a cell-vertex 
setting, which is devised by Desideri and Dervieux (1988) on unstructured-grids, to 
achieve higher accuracy, as done by other authors (Frink et al. 1991; Frink 1992; 
Knight 1993). However, oscillations are still present in their results. The following 
work by Barth and Jespersen (1989) presented a monotonicity principle in 
multidimensional cases. The idea is to reconstruct the distribution of flow variables in 
a control volume to be bounded by the values of its neighbour elements. This 
reconstruction satisfies the monotonicity principle by constructing a truly 
multidimensional limiter. They employed Roe's upwind scheme (Roe 1981) to 
evaluate the inviscid fluxes. This method demonstrated smooth results even in 
transonic flow cases. 

Frink (1994) presented another approach to achieving oscillation-fi-ee in transonic 

flow cases. A weighted averaging procedure is employed to interpolate the flow 

variables from the cell centre to mesh points in a cell-centred finite volume setting. 

The weighted averaging is based on the distance of a mesh point to its cell centre. 

Flow variables on the centre of elements and mesh points are used to compute 

gradients within the cell. Roe's approximate Riemann solver (Roe 1981) and an 

explicit multistage Runge-Kutta scheme (Jameson et al. 1981) are employed to 

compute inviscid flux contributions and to advance the solution to steady state. 

Although this reconstruction is linear and not monotonicity preserving, it seems that 

the averaging process generates enough dissipation to overcome the oscillation in 

transonic flow simulations. In this method, the averaging procedure is performed on 

elements and nodes, while a limiter has to be applied on edges (2D)/ faces (3D), 

which are outnumbered elements and nodes in most cases. Thus, this approach seems 

to be slightly more efficient than an MUSCL scheme. Holmes and Connell (Holmes 

1994) proposed a modified reconstruction procedure which is linearity preserving. 

Frink et al (1996) extended the reconstruction procedure to three-dimensional 

unstructured meshes. 
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2.1.3 Turbulent Flow Simulation 

In the light of the success of the three-dimensional Euler solution (Marvriplis 1992; 

Frink 1996; Barth 1995; Frink et al. 1991; Crumpton and Giles 1997; 

Venkatakrishnan et al. 1991), some attempts have been made toward solving the 

Navier-Stokes equations on unstructured meshes (Wang et al. 1999; Mavriplis 2000; 

Barth 1995; Sbardella and Imregun 2000; Haselbacher et al. 1999). In the early stage, 

the gradients in an element used for viscous fluxes computation are worked out by 

simply integrating all the edges (2D)/ faces (3D) which composite the element. This 

procedure is very computationally expensive because of the need for integrating over 

all the faces. Barth (1991) proposed the idea of discretisation of viscous terms using a 

finite element procedure which is less expensive to compute. Another contribution of 

his work is an edge-based data structure, which greatly improved the efficiency of 

CFD flow solvers based on unstructured meshes and is widely used in other 

researchers' work (Frink 1994; Sbardella et al. 1998; Marvriplis 1992) ever since. 

The idea of the discretisation of viscous terms using a finite element procedure can 

also be found in Frink's work (1996). 

One important phenomenon for complex viscous flows is turbulence, which is very 

difficult to simulate due to the existence of a wide range of scales. The turbulence 

effect is normally modelled by using turbulence models in the CFD community. The 

most popular turbulence models can be classified by the number of equations used to 

calculate turbulence effects as: zero-equation models, one-equation models and two 

equation models. Due to the lack of structured-like grid lines, most popular 

zero-equation models such as the Baldwin-Lomax model (Balwin and Lomax 1991) 

are very hard to be implemented on unstructured meshes. Nevertheless, there are 

several reports of success with this model (Marvriplis 1991). One equation and 

two-equation models have the advantage of being easier to be implemented on 

unstructured-grids and could potentially achieve better results. A one-equation model, 

the Spalart-Allmaras model (Spalart and Allmaras 1992) gains popularity on 

unstructured meshes; partially because it is less expensive than most two-equation 

models and easier to be implemented on unstructured-grids than most algebraic 
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models. Frink (1996) incorporated the Spalart-Allmaras model in his 
three-dimensional flow solver with a wall fiinction for computing turbulent flow over 
the ONERA M6 wing. His results show reasonable agreement with the experiment 
(Schmitt and Charpin 1979). Wang et al. (1999) report their extensive research on 
two two-equation models, the k-s and SST k-co model (Wilcox 1993), and 
Spalart-Allmaras one equation model using an unstructured-grid flow solver. Their 
results show advantage of the two-equation models over the one-equation model in 
some cases. However, Spalart-Allmaras model produces excellent results in most 
cases and it is less computationally expensive. 

2.2 Unstructured Mesh Generation 

Unstructured mesh generation is a relatively new field for most CFD researchers. 

Within a few years tremendous advances in many diverse fields have been made 

toward fully automatic mesh generations both in two- and three-dimension. 

There are two major unstructured mesh generation methods for the two-dimensional 

flow computation, the advancing-front method (Lo 1985) and the Delaunay 

triangulafion method (Bowyer 1981; Waston 1981). The advancing-front method 

starts with boundaries of the domain as the initial front. Then triangles are generated 

from the current front into empty domain, and the front is updated. The operation is 

repeated unfil the whole domain is triangulated. The Delaunay method adopts the 

empty circumcircle property of the computational domain. It is generally more 

efficient than the advancing-front method (Liu and Hwang 2001). However, the 

advancing-fi-ont method has the advantage of being more robust because the 

boundary integrity is guaranteed. A ful l review of unstructured mesh generation 

theories and methods can be found in Ref (Barth 1995). Currently, the automated 

generation of unstructured mesh for simulations of inviscid fiows has reached a fairly 

mature state (Lohner and Parikh 1988; Jin and Tanner 1993; Muller 1996). 

Generating computing meshes for some complex configurations such as ful l aircraft 

can be complete in a matter of hours. 
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In simulations of viscous flows with high Reynolds number, the gradients normal to 
the wall are several orders of magnitude larger than those along the wall are. Thus, 
highly stretched elements are required to resolve the rapid changes of the flow. 
Generation of high quality unstructured meshes for viscous computations in complex 
geometries remains a difficult task. 

Despite the difficulties, some attempts have been made toward the generation of 

highly stretched grids. Lohner and Cebral (2000) presented their non-isotropic mesh 

generation method. In this method, an isotropic mesh (suitable for Euler solution) is 

generated prior to a procedure of enrichment with points in order to achieve highly 

stretched grids. Element reconnection is carried out with a constrained Delaunay 

approach. The stretched tetrahedron-based mesh of a three-dimensional generic 

hypersonic flyer is demonstrated in their report. This method is very efficient in most 

cases because it does not require any surface recovery. However, a potential problem 

for this method is that the quality of the final mesh highly depends on the Delaunay 

procedure, which could fail in some extreme complex configurations. 

Recently, there has been renewed interest in hybrid structured-unstructured grids and 

mixed element unstructured grids (Sbardella et al. 1997; Sayma et al. 2000; Sbardella 

et al. 1998). Such methods offer the advantage of reduced complexity of the grid and 

possibly increased accuracy compared with equivalent pure triangular (2D) or 

tetrahedral (3D) meshes. This is particularly true for viscous flow simulations since 

with a hybrid or mix-element methods, hexahedral or prismatic elements could be 

easily used to mesh the regions in/near the solid wall. The hybrid method combined 

with an advancing layer method and the Delaunay recormection has been used 

successfiilly in several cases (Haselbacher et al. 1999; Haselbacher and Blazek 2000; 

Sayma et al. 2000). In spite of its great flexibility in the three-dimensional mesh 

generation, the mixed-grid method shares the difficulty of generating high quality 3D 

mixed-grid meshes in a generic 3D computing domain. Furthermore, due to the 

difficulties to implement an efficient multigrid method and mesh adaptation 

technique, the performance and accuracy of the flow solver using this kind of 

discretisation could suffer. 

22 



Chapter 2 Literature Review 

Holmes (Holmes 1994) proposed an "inflation" method for viscous unstructured 
mesh generation. In this method, a few layers of structured-grids are used to "wrap" 
the airfoil, and triangles are deployed in the rest of domain. This method has the 
advantage of being easy to implement and high quality grids in the boundary layer. 
However, the extension of this method to three dimensions is not easy and may lose 
the some of the flexibility i f hexahedron is used in these layers (Sbardella and 
Imregun 2000; Sayma et al. 2000). In two dimensions, the superior discretisation 
properties of employing several layers of structured grids were investigated 
numerically by Haselbacher (1999). Peiro and Sayma (1995) reported a similar mesh 
generation scheme for 3D turbomachinery applications. 

A brief survey of some of the fundamental algorithms in unstructured mesh 

generation was presented by Owen (1998). Triangle, tetrahedral, quadrilateral and 

hexahedral mesh generation methods currently in use in academia and industry are 

discussed and categorised. His report also includes an informal survey of currently 

available mesh generation software in public domain and a comparison of their main 

features. 

2.3 Solution Mesh Adaptation 

The accuracy of numerical simulations is one of the main concerns in modem 

computational fluid dynamics. There are various ways to achieve accurate results, one 

can either employ a higher accurate scheme such as a high order upwind scheme, 

better turbulence models, or enrich the computing grids, i.e. using finer mesh. In this 

section, we will discuss the mesh enrichment approach on the unstructured mesh: 

mesh adaptation. 

In order to improve the accuracy of solution, an appropriate change of mesh 

resolution in the region of high error may be needed. In the rest of the domain, where 

the error is sufficiently small, such changes may not be necessary. This method is 

often called mesh adaptation or refinement. 

There are several ways to achieve adaptivity: 
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• Increase the degree of polynomial approximation to improve the overall 
solution quality; 

• Relocate the grid points in the regions of rapid change of solution. 

• Relocating grid points and enrich grid. 

Obviously last one is the best way, because it provides the greatest way to control the 

cell size to resolve flow feature such as shock wave, shear layer, wake, separation and 

reattachment. In this method, the problem is firsfly solved on a coarse mesh to 

roughly capture the basic feature of flows; the resulting solution is then analysed to 

determine where more grid points are needed, and an improved mesh is generated. 

The problem is solved again on the new mesh using the solution of the coarse mesh 

as an initial guess. The process is repeated until the required accuracy is achieved. 

Solution adaptive grids are increasingly being used in simulation of steady and 

unsteady flows (Hawken 1991; Dawes 1993; Dawes 1994). The adaptation concept of 

unstructured mesh applied to the Euler equations in complex geometry has gained 

great success (Marvriplis 1990; Marvriplis and Jameson 1987), but solution adaptive 

grids for the Navier-Stokes equations at high Reynolds numbers are less well 

developed. The main reason is that the presence of different scales in viscous flows 

makes the adaptation complicated (Vilsmeier and Hanel 1993). Despite this difficulty, 

significant progress has been made in numerical computations of the Navier-Stokes 

equations on fully unstructured adaptive meshes (Dawes 1993; Pelletier and Ilinca 

1997; Holmes 1994; Ilinca et al. 1997; Roehl and Simon 1999). 

The over-resolved problem described by Siden and Dawnes (1990) also has 

significant impact on the usefulness of the solution adaptation method in viscous flow 

simulations. In most current solution adaptation methods, the indicator used for 

refinement is a scalar and hence not directional. It tends to refine the grid in boundary 

layer regions without considering the local mesh topology and flow features: highly 

stretched grid and strong ID flow. Siden et al. (1990) first proposed the idea of using 

thin layers of structured-grids, consist of stretched elements. However, the mesh 
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refinement producer used in his work still produced too many inefficient 
near-equilateral elements in the boundary layer, shock, and wake regions. This 
over-resolved problem remains a challenge in viscous flow simulations with a mesh 
adaptation technique. 

2.4 Multigrid Acceleration 

Muhigrid has been demonstrated as an effective means to accelerate the solution for 

both traditional structured-grid methods (Jameson 1994; Denton 1983; Swanson 

2001) and unstructured-grid methods (Marvriplis and Jameson 1987; Carre 1997; 

Mavriplis 1996; Mavriplis 1999). For structured-grid apphcations, multigrid has 

become a routine practice (Steinthorsson et al. 1993; He 1993; Roberts et al. 1997). 

But multigrid on unstructured grids, especially with mixed-elements is still at very 

early stage of development. Depending on how the sequence of grids is constructed, 

multigrid can be classified as two families: nested methods and non-nested methods. 

Most non-nested methods start from generating several completely independent 

meshes for a specified geometry. These meshes are essentially independent from each 

other and the sequences of meshes do not always have common points. The 

cormection between the various meshes is an inter-grid operator to interpolate flow 

variables and to transfer residuals. This method has demonstrated efficiency and 

robustness in some 2D inviscid flow cases (Marvriplis and Jameson 1987). In 3D 

complex geometry cases, the generation of such sequence of unstructured meshes 

becomes a very difficult task considering the current state of three-dimensional 

unstructured mesh generation methods. Furthermore, the introduction of complex 

bilinear interpolation, which is essential to transfer flow variables and residual 

between various meshes of the sequence, means extra expensive computing 

(Marvriplis 1992) and performance penalty. Peiro and Sayma (1995) reported their 

3D multigrid implementation for unstructured meshes. In their method, a hybrid 

approach is adopted in which the near wall mesh is generated by a hyperbolic type of 

mesh generator. The main drawback of this method is that the quality of generated 

elements in coarse mesh levels is very difficult to control. 
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There are various possibilities for implementing a nested multigrid on unstructured 
grids. An obvious choice is to couple multigrid method with an adaptive mesh 
refinement technique and to use the sequence of meshes generated by the adaptive 
mesh refinement procedure as difference mesh levels. This approach starts with a 
relatively coarse mesh. The finer levels are generated by subdivision of coarser levels. 
In this way, strictly nested levels are generated. This nested multigrid method coupled 
with adaptive refinement approach has been adopted by several authors to use the 
adapted meshes as the multigrid levels (MarvripHs and Jameson 1987; Marvriplis 
1990; Connell and Holmes 1994). This method has the advantage of being easier to 
generate the coarse levels. However, multigrid efficiency is limited by the efficiency 
of solution on the fine mesh and the adaptive strategies are greatly restricted, as 
pointed out by Mavriplis (1996). 

Another nested multigrid approach starts with a fine mesh definition, and then 

constructs the sequence of coarse mesh levels automatically by the cormection 

relafion of mesh elements. This method is embodied in automated coarsening 

approach. Many researchers ( Lallemand et al. 1992; Venkatakrishnan and Mavriplis 

1994; Diskin 1999) proposed to generate the coarse levels using neighbouring 

relafions (volume-agglomeration) on a dual mesh. Marvriplis and Venkatakrishnan 

(1995) have demonstrated the efficiency of a multigrid method based on this volume 

agglomeration technique. The advantage of the method lies on reliability of 

automated coarsening algorithm. However, there are some difficulties of these kinds 

of method: firstly, the convergence is not good enough for low mach flows (Carre 

1997). Secondly, this method carmot deal with stretched meshes with high aspect 

rafio very well in solving viscous flow problems. 

High aspect ratio grids are commonly encountered near wall regions in 

high-Reynolds number flows, where the grid must be refined very fightly in the 

direction normal to the wall to resolve the high velocity gradient. A second type of 

problem in which highly stretched mesh may be found is in the mixing flow regions. 

In both cases, the high aspect ratio grid causes a strong disparity in the wave 
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propagation speeds in two coordinate directions resulting in serious convergence 
deterioration. 

For multigrid in traditional structured-grids, directional coarsening can remedy the 

problem. The idea is to coarsen the grid only in the direction normal to the grid 

stretching. Denton (1983) and He (1993) employed this idea to alleviate the stiffness 

in unsteady viscous flow simulations. A similar idea can also be found in Giles and 

Haimes' (1993) work. 

On unstructured meshes, the directional coarsening method can also be implemented 

using a graph algorithm. It starts by removing mesh points from an element 

containing the points and anisotropy in the grid. The criterion to remove a mesh 

points is based on the values of the stencil coefficients. After the points removing 

procedure is completed, the rest of the mesh points are to form a coarser mesh level. 

A major drawback of this method is that it may result in a coarse mesh of higher 

complexity. 

Marvriplis (Mavriplis 1999) proposed another directional multigrid to improve the 

effectiveness of multigrid for viscous flows. In his implementation, the graph-based 

coarsening algorithm is only employed in the boundary layer and wake regions. Once 

these regions have been coarsened, a new unstructured mesh is generated for the rest 

of domain with specified element size. This method has been demonstrated to be 

successful in several two dimensional viscous flow cases. However, the convergence 

rate of his method is still not ideal and remeshing the inviscid domain rather than 

coarsening it increases the complexity of the method. 

2.5 Parallel Computing 

Although parallel processing has been used for many years in many systems, it is still 

somewhat unfamiliar to most CFD researchers. The idea of parallel computing is 

inifially developed by Massive Parallel Processors (MPP) vendors to provide high, 

performance computing for energy applications, weather prediction, and earthquake 

simulations. Because of high cost and low accessibility of these supercomputers, the 
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parallel computing technique did not gain momentum until the later 1980s when high 
performance microprocessors, high speed networks and standard tools for parallel 
computing were widely used. The trend in parallel computing is moving away from 
supercomputers to cheaper, general purpose cluster systems consist of loosely 
coupled systems, such as PCs. This approach has a number of advantages, including 
being able to scale to large system and cost/effectiveness. However, there are some 
differences between this cluster system and traditional parallel computer: 

1) On the traditional parallel computer, the parallel computing software package is 

supplied by the system vendor. It requires very little modification of the CFD 

code to ufilise parallel computing. On a cluster PC system, communication 

software is required and some major changes have to be made in some CFD codes 

to adopt parallel computing. 

2) This kind of cluster system is usually intercormected through some kind of 

network which is not designed for parallel computing. The latency is generally 

very high and bandwidth is limited compared to supercomputers. Communication 

costs become crucial to the computing performance of a cluster system. 

3) On some shared memory parallel computers, mesh partitioning is not required. 

But on a cluster system, since the memory is located on each node in the cluster 

system, the computing mesh has to be divided into several parts for efficiency 

reasons. 

2.5.1 Parallelisation Tools 

There are many software packages suitable for parallel computing for a cluster system 

in public domain, including Chameleon (Gropp and Smith 1993), BSP (Bulk 

Synchronous Parallel Model) (Oxford University Computing Laboratory 2000), 

OPlus (Crumpton and Giles 1993), PVM (Dongarra, Geist et al. 1995), MPI (Gropp 

and Lusk 1999). 

PVM is a freely-available, portable, message-passing library generally implemented 

on top of sockets. It is supported in a widely range of hardware and software 
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platforms. These include single-processor and SMP Linux machines, as well as 
clusters of Linux or Windows machines linked by networks. In fact, PVM will even 
work across groups of machines in which a variety of different types of processors, 
configurafions, and physical networks are used. Best of all, PVM is freely available 
and is clearly the de-facto stemdard for message-passing cluster parallel computing. 
PVM also provides facilities for parallel job control. It is important to note, however, 
that PVM message-passing calls generally add significant overhead to standard socket 
operations, which already had high latency. Furthermore, the message handling calls 
do not constitute a particularly "friendly" programming model, so PVM is commonly 
used as the "portable message library target" for high-level language parallel 
compilers. 

The MPI (Message Passing Interface) is developed with the intent to be a standard 

message passing specification for Massive Parallel Processor (MPP) vendors. It 

provides a set of message passing constructs and supports features of various MPP 

and networked clusters. 

Both PVM and MPI can be used for parallel computing either on a cluster system or 

multiprocessor system. However, there are some fundamental differences between 

them. The MPI is designed to deliver high performance on MMP systems. Thus, MPI 

focuses on message passing and explicit resource management. It contains a larger set 

of point to point and collective communication routines than PVM does. By contrast, 

the PVM is built around the concept of the "virtual machine", which supports 

dynamic resource management (add/remove hosts from virtual machine, spawn/kill 

jobs). This virtual machine may consist of heterogeneous hosts. It means hosts may 

be different architectures (PCs, workstations), running different operational systems 

(windows, UNIX, Linux, etc), connected by different networks (Ethernet, ATM, etc) 

and user's program may be developed using different programming language (C/C++, 

FORTRAN). Generally speaking, MPI is faster within a large multiprocessor system, 

even though some reports suggest PVM and MPI have very comparable performance 

(Wiel et al. 1996). Furthermore, PVM is capable of running applications over 

heterogeneous networks to provide fault tolerance, dynamic resource management 
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and job control functions. A full comparison of features provided by PVM and MPI 
can be found in ref (Geist et al. 1996). 

2.5.2 Mesh Partitioning 

In a cluster system, processors and memory are distributed across the system. Thus, a 

computing problem has to be divided into several block/zones in order to distribute 

the data to individual processors in the system. For a CFD application, the computing 

grid needs to be partitioned to number of sub-grids and mapped to processors. There 

are several popular algorithms for mesh partitioning, such as the coordinate bisection, 

graph bisection and spectral bisection methods. 

The coordinate bisection method is a very intuitive method, which comes 

immediately into mind when considering a mesh partition problem. It takes advantage 

of easy to compute and requires least memory. However, this method completely 

ignores the communication between partitions in parallel computing. When a 

computing grid is divided into several smaller sub-grids, it is inevitable that the 

parallel flow solver needs to exchange information of the interface at each 

synchronisation point to result in a physically relevant solution. In a cluster system, 

this exchanging of information is done by a communication technique: message 

passing. Because the sub-grids are located in processors which are interconnected by 

some sort of network, the message passing is likely to incur some communication 

overhead. In such a cluster system, overhead costs such as the message formation, 

package sending/receiving, latency of communication are so high that it severely 

restricts the parallel programs that can run efficiently. The overhead must be driven 

down to more reasonable range for efficient computing. One optimisation technique 

to reduce the impact of the high overhead is to reduce the total communication 

volume during the parallel computing in a cluster system. 

In response to the incentive to reduce the communication overhead in a cluster system 

the number of edges cut during the partitioning of the mesh has to be minimized. A 

fair amount of reseai-ch has been put into the general problem of partitioning data 

assuming the data are representable as a graph. The resulting problem is called the 
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graph partifioning problem. The spectral bisection method proposed by Simon (1991) 
is based on the graph partition algorithm proposed by Pothen, Simon and Liou 
(1990). Simon (1991) examined these three methods for parallel computing of CFD 
problems and concluded that the spectral bisection method has significant 
improvement over the other two in terms of resuhant partitions shape and edge cut 
number. Barth (1995) and Venkatakrishnan (1991) also evaluated and reviewed these 
partitioning methods and the conclusion is that the graph-based methods are more 
computationally expensive and yield better partitions. 

2.5.3 Parallel Computing With CFD 

The concept of psirallel computing technique for CFD has been around for many 

years. It has not been widely accepted in production engineering environments mainly 

due to the complexity of parallel programming and prohibifive price of massive 

parallel processor system. Due to increase in the capabilities of the networks, 

performance of processors as costs of the computer and networking equipment 

simultaneously drop, many researchers begin to parallelise their CFD solvers in order 

to reduce the computing time (Crumpton and Gile 1997; Venkatakrishnan et al. 

1991). 

Mavriplis (2000) presented a parallelised unstructured flow solver on unstructured 

meshes. In his work, a viscous flow solver is ported to parallel machines with 

distributed memory using an explicit domain-decomposition and message passing 

approach. The message passing in his work is via an MPI implementation and 

openMP. A weighted partitioning strategy is described that incurs minimal additional 

communication overhead. Several two- and three- dimensional high l i f t cases are 

demonstrated on a 128 processor SGI Origin 2000 machine and a 512 processor Cray 

T3E machine. Very good speedup (up to 300 on the 512 processor machine) has been 

observed. The scalability of unstructured mesh method is demonstrated. However, 

these computing are performed on MPP systems, which has very high bandwidth and 

low latency compared to a cluster system consists of networked PCs. 
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Hammond and Barth (1992) developed a data parallel mesh-vertex upwind 
finite-volume scheme for solving the Euler equations on triangular unstructured 
meshes. The main contribution of their work is the introduction of a novel 
vertex-based partitioning scheme that minimises the computation and communication 
costs associated with parallel computing on a massively parallel computer CM-2 with 
8K processor. 

Baggag et al. (1999) presented their work of a parallelisation of an object-oriented 

unstructured aeronautics solver. They used the idea of the Object-Oriented 

Programming (OOP) technique in computational fluid dynamics. The parallel 

implementation is based on MPI. A compact Galerkin method combined with an 

explicit time marching method is used in their solver for fime accurate computafions. 

The main contribution of their work is the code structure, object model and data 

structure in their parallelisation. Extensive benchmarks have been carried out on 

IBM-SP2 and Origin2000 workstations. Significant speedup has been achieved in all 

cases. However, all test cases presented in their report are carried out on 2D 

unstructured meshes with relatively low computation and communication 

requirements. 

Gopalaaswamy et al. (1997) presented a paper on parallelisafion and dynamic load 

balancing of NPARC codes. In their work, several two- and three- dimensional flow 

cases are carried out to study the dynamic loading balance algorithm. To achieve 

loading on each processor during execution, they decompose the computing domain 

into more blocks than the number of machines available. In the initial phase, blocks 

and interfaces are allocated to processors on the basis of block and interface sizes, 

speed of individual processor and even network speed. In the dynamic load balancing 

phase, the execution and communication cost of every processor are gathered and 

analyzed to change the initial distribution of blocks. Good load balancing has been 

proved to be important to overall performance. However, the communication 

overhead caused by decomposing flow domains to more blocks than processor 

numbers has been ignored by authors. This may seriously affect the overall 

performance when communication volume becomes the bottleneck of performance. 
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A fully distributed unstructured Navier-Stokes solver for large scale aeroelasticity 
computations has been developed by Barakos et al. (2001). They presented the 
development and validation of a parallel unsteady flow and aeroelasticity code for 
large scale numerical models used in turbo machinery applications. MPI library is 
used in the parallelisation of their code to exploit the Single Process Multiple Data 
(SPMD) paradigm. METIS (Karypis and Kumar 1995) is used to decompose the 
computing meshes. Five test cases have been carried out on CRAY T3E, SGI 
Origin2000, clustered DEC alpha workstations, DELL PoweredgelSOO and 
Networked LINUX PCs. In most of their test cases, the CRAY T3E is leading in the 
speedup comparison (speedup is about 23 using 32 processors) and networked 
LINUX PCs (speedup is about 3 at 4 processors) is the worst. These test cases also 
reveal that the communication cost is vital to parallel computing performance. 
Overall the parallel computing performance is very good. However, all test cases on 
networked LINUX PCs have carried out on only 4 processors. It is hard to assess the 
ful l strength of this kind of cluster system. 

Mavriplis (2002) summarised his results obtained with the NSU3D unstructured 

multigrid solver for the AIAA Drag Prediction Workshop. In his report, most these 

cases were run in parallel on commodity cluster-type machines while the some were 

run on an SGI Origin machine using 128 processors. He found that inexpensive 

clusters of commodity computers are able to compute large numbers of cases using an 

unstructured solver. 

It should be noticed that most of the research reviewed here are carried out on MPP 

machines, some with shared memory and attached processors. Therefore, many of 

their conclusions may not be applicable to a cluster system with a moderate number 

of nodes. The trend in parallel computing is moving away from supercomputers to 

cheaper, general purpose cluster systems consist of loosely coupled systems, such as 

PCs. The performance of parallel computing on middle-end cluster systems, 

especially on PC cluster systems, has not been fully investigated. 
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2.6 CFD on Wind Turbine Applications 

Many countries in the world are strongly committed to increasing renewable energy 

usage in order to help reduce greenhouse gas emissions and thereby contribute to 

national targets for emissions reductions (Department of Trade and Industry 2002; 

Danish Wind Industry Association 2001). Renewable forms of energy are those 

continuously available sources which do not rely on exhaustible fossil fliels (e.g. coal, 

oil and gas). Wind is an ideal form of renewable energy, which is highly available. In 

the past, windmills were used to grind com and pump water. Today, wind turbines 

use wind to generate electricity. Figure 2.3 illustrates a 2-blade wind structure. The 

speed of turbines is controlled by a yaw (14 in Figure 2.3) motor which turns the 

nacelle and rotor to face wind to gain maximum power. 

• ' 
Cross section ot blade 

Figure 2.3 A modern wind turbine used in commercial wind farms 

34 



Chapter 2 Literature Review 

European countries such as Holland, Norway and France have been the world leaders 
in the design and manufacture of wind turbines due to their historical experience of 
several centuries, in building complex wind mill structures, which were used in water 
pumping, grain grinding and for lumbering. In other part of world, the use of wind 

wind turbines and improve the efficiency and reliability, better understanding of 

flows around the wind turbine is required. 

It is nearly impossible to conduct wind timnel tests because of the size of turbine 

(typical radius of a single blade is about 10m). Schepers at al. (1997) reported their 

early field test on a NREL Phase I I HAWT blade. Pressure distributions on the blade 

surface on several spanwise positions are measured. This provides some validation 

data for CFD codes, but not enough for fully understanding the flows because of 

limited data available. Numerical simulation becomes a very important tool for 

optimal designing of the shape of the blade and the control system. 

Kang (2001) and Duque et al. (1999; 2000) reported their Navier-Stokes simulation 

results of the NREL turbine. In their simulation, a multi-block structured-grid with 

more than one million grid points is used around a single blade. The numerical results 

show good agreement with experiment except near hub regions at low wind speed 

conditions. 

2.7 Summary Comments 

Significant progress has been made in the area of spatial and temporal discretisation, 

adaptive, multigrid and parallel algorithms. Unstructured grid technology is almost on 

par with structured grid technology. The areas that require further research include 

better and faster multigrid flow solvers that is sensitive to cell aspect ratio and grid 

stretching, improved adaptive method for viscous flow simulations, better mesh 

generation technique, and application of parallel computing technique to highly 

available computing platforms. 
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1. Solution adapted grid method is increasingly used to compute complex steady 
and unsteady flows. When adapting grids to flow features, a common problem 
that may occur is that certain regions are over resolved at the expense of other 
regions, especially in viscous flow simulations. This could serious affect the 
overall convergence as well as the solution accuracy. 

2. It is well known that the grid quality is very important in order to achieve an 

accurate solution. Developing a general-purpose unstructured mesh generator 

for viscous flow computation is proved to be a difficult task. However, many 

unstructured mesh generators in public domain (Owen 1998) could produce 

high quality inviscid grid. Thus, the task remaining is to find a way to 

generate 2D/3D unstructured-grid for viscous computation utilising an 

inviscid mesh generator available in the public domain. The strategy in the 

current work is based on the "inflation" idea. 

3. Al l efforts reviewed above provide encouraging evidence of the usefulness of 

the multigrid method, particularly for the simulation of viscous flows with 

high grid aspect ratio. In general, how to construct coarse mesh levels is the 

key for a robust and efficient multigrid method. 

4. The parallel computing technique could offer massive reduction of computing 

time in the future. In all the efforts reviewed, significant development has 

been made toward efficient parallel computing on super computers with 

attached processors or high performance workstations. The objective of the 

current research is to explore the possibility of clustering highly available 

PCs. With slower network connection on most PC system, many conclusions 

drawn on high performance computing with parallel computers may need to 

be reconsidered, including loading balance, communication and partition 

schemes. 

5. The unstructured-grid could offer a better alternative to the structured-grid 

method in renewable energy applications because of the flexibility in mesh 
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generation: use a fine grid near the blade and a very coarse grid in far from 
blade regions where the flow is largely uniform. 
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Chapter 3 

Flow Models and Discretisation 

This chapter presents the governing equations of the fluid motion and numerical 

discretisations for solving steady, compressible, inviscid/turbulent viscous flows on 

2D/3D unstructured-grids. 

The first part of the discussion is an introduction of the three dimensional 

Euler/Navier-Stokes equations. To simplify the equations, a nondimensionalisation 

procedure is described in some detail. Subsequently, turbulence modelling and a 

coupled solution procedure for numerical simulations of turbulent flows are 

presented. 

In the next section, the spatial and time discretisations are discussed. The spatial 

discretisation, including two- and three- dimensional finite volume schemes, a spatial 

second order construction, and an upwind scheme, is described in detail. Next, the 

temporal discretisation based on a multistage Runge-Kutta approach is presented. 

This chapter is concluded with the presenting of physical and numerical boundary 

conditions. 
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3.1 Governing Equations 
The governing equations for the three-dimensional compressible fluid motion are the 

time-dependent compressible Navier-Stokes equations. The equations are expressed 

as a system of conservation laws relating the rate of change of mass, momentum, and 

energy in a control volume: Q. In an integral form, the equations are given as 

d_ 
dt \\QdV + <^F(Q) • hdS = j^G(Q) hdS (3-1) 

a ao da 

Where V is the volume of Q, h is the outward pointing normal to the control volume 

boundary 9Q . The vector of dependent variables Q, inviscid flux vector F and 

viscous flux vector G are given as 

' p pu pv pw 

pu pu^ + p puv puw 

pv F = puv / + J + p>w 
pw puw pvv pv^ + p 
E {E + p)u _{E + p)v (E + p)w 

(3-2) 

G = I + yy 

UT,,+VT^+M>T^^-q^ 

(3-3) 

In these equations, p is density, p is pressure, E is total energy per unit volume, u, v 

and w are the Cartesian components of velocity in x, y and z directions, respectively. 

T^j and q, are shear stress and heat conduction terms. Apart from basic assumptions 
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of no chemical reaction, mass diffusion, or heat addition and the absence of body 
force, we have to make further assumptions to close the equations, because the shear 
stress and heat conduction terms are left undefined. To specify these terms, the fluid 
is assumed to be Newtonian fluid, known as Stokes' hypothesis. For Newtonian fluid, 
the shear stress is linearly related to the fluid strain rate and heat conduction is 
linearly dependent on temperature gradients, written as, 

^xx = | / " / ( 2 " . . - v ^ - w , ) 

r , ^ = : | / / , ( 2 M . , - v ^ , - « J (3-4) 

2 , 

2 r 

dT 
dx 

57 
dy 

ciy=-K-^ (3-5) 

dT 

Where T is temperature, K is coefficient of thermal conductivity, /u is molecular 

viscosity and Pr is the Prandtl number. 
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In addition to the Stokes' hypothesis, the equations are closed with relations of state 

for perfect gas 

p = {r-\) 

p = pRT (3-6) 

Here R and y are gas constants. 

When perfect gas is assumed, the molecular viscosity is only related to temperature. 

The molecular viscosity is determined by Sutherland's law, as 

C ) (3-7) 

Where C* is a constant related to the gas property, ju^^j- is the molecular viscosity at 

the reference temperature T^^j . 

Rotational Terms 

The governing equations previously defined can also be derived for a moving control 

volume in space, such as in turbomachinery applications. This can be done by adding 

extra rotational terms to the original equations. 

Figure 3.1 Rotating Cartesian coordinate 
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For a Cartesian coordinate system rotating at a constant speed w around the x axis, as 

shown in Figure 3.1, the Navier-Stokes equations can be expressed as, 

dt 
'\\QdV + • MS = • MS + \\\SdV 
Q en en n 

(3-8) 

Where the Q is the state vector in a relative frame. The flux vectors F and G are 

identical to the non-rotating equations except that all the variables are in a relative 

frame. The source term S represents the centripetal and coriolis force. The vector of 

the source terms takes into accounts for the rotation of the frame is given as, 

S = 

0 

0 

p[tix^y-2mv) 
p[ti7^z + 2wv) 

0 

(3-9) 

Here y and z denote the centroid of the element assuming the frame is rotating about 

the X axis. The total energy becomes. 

Where r = -Jy^ +z' is the distance from the x axis. 

The perfect gas relation becomes, 

p^{^-l) E-^p(u'+v'+w')+^pm'r' 

(3-10) 

(3-11) 
p y - \ p 2^ ^ 2 

The algorithm developed in this thesis can be used to solve the flow field associated 

with a non-rotating frame and a rotating frame in its own Cartesian coordinate 

system. The algorithm for a rotating frame should return to a non-rotating form when 

the rotation speed is zero. 
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3.2 Non-Dimensionalisation 
Non-dimensionalisation of the above equations is useful because the resulting 

equations are easy to understand. Although the selection of reference could be 

different for internal and external flows, the number of reference variables is the 

same. In the present study, all dependent variables and given conditions are non-

dimensionalised by a reference length ( L ^ ^ j ) , sound speed (a^^j ), density ( p ^ ^ j - ) , 

molecular viscosity (/u^^j), temperature (T^ ĵ ), and heat conduction coefficient (k^^j ). 

X, t p 

<^refPrej <^refPref ^ ref f^rej 

(3-12) 

For shear stress and heat transfer terms, these terms are non-dimensionalised 

according to their definifion: 

r = q = f- (3-13) 

In addition, the state constants and relations become, 

r r 

£ = - ^ + - , a ( M ' + v ' + w ' ) (3-14) 
r-\ 2 

/ / = - ^ J 9 + -/7(w' + v ' + w ' ) 
Y-\ 2 

With this procedure, the form of the non-dimensional equations becomes identical to 

the dimensional one except an extra term Re before the viscous term. 
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— \\\QdV + <HFndS = -^<HG-ndS (3-15) 

3.3 Turbulence Modelling 
One important phenomenon for complex viscous flows is turbulence, which is very 

difficult to simulate due to the existence of a wide range of scales. There are many 

types of methods to deal with turbulence, ranging from the simplest algebraic model 

to the more accurate Large Eddy Simulation (LES) and Direct Numerical Simulation 

(DNS). While the LES and DNS methods are more accurate than other turbulence 

models, they require prohibitive amount of computing power. This is especially true 

for CFD codes based on the unstructured-grid method. Therefore, the most widely 

used way to deal with turbulence flow problems in industrial applications is still 

turbulence modelling. For most of turbulence models, the Reynolds stresses are 

assumed to be related to the mean strain rate by the eddy viscosity. Such models may 

be classified as zero-equation model, one-equation model, and two-equation model, 

depending on the number of transport equations needed to be solved to obtain the 

eddy viscosity. 

The closure of the Navier-Stokes equations requires the definition of turbulent 

Reynolds stress. For eddy viscosity models, the stress tensor is modelled as 

proportional to the mean strain-rate tensor. 

r , , = 2 / v , ( 5 , - 5 „ „ J , / 3 ) 

T^,=2pi,iS,-S„„5^l^-2pk5^l2> (3-17) 
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" 2 
du, ^ duj 

Where, 

= 1 while i = J 
\ = 0 while i ^ j 

Heat conduction terms 

q, = (it, + <la Pr, Pr, 
— (3-18) 
dx 

3.3.1 One-Equation Spalart-Allmaras Model 

The Spalart-Allmaras model is an eddy viscosity model based on a transport equation 

for the turbulent viscosity. It was inspired from an earlier model: Baldwin-Barth one 

equation model (Balwin and Barth 1991). The formulation and coefficients are 

defined based on dimensional analysis, Galilean invariance, and some selected 

empirical results. The empirical results used in its development are two-dimensional 

mixing layers, wakes, and flat-plate boundary layer flows. 

The aim of this model is to improve the predictions obtained with algebraic mixing-

length models and to provide an alternative to two-equation models. Furthermore, this 

model is easier to adapt to an unstructured-grid method compared to an zero equation 

model such as Balwin-Lomax model (Balwin and Lomax 1991), because it requires 

only the distance from the wall to work out the eddy viscosity at a grid point rather 

than integration along lines normal to the wall (Balwin and Lomax 1991). 

In the Spalart-Allmaras model (Spalart and Allmaras 1992), the eddy viscosity 

function is defined in terms of a dependent variable, v , and a wall function, , as 

following: 

(3-19) 
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In zones far from wall, the wall fiinction equals 1. 

The convective transport equation of the eddy viscosity is modelled as 

M + ̂  + ̂  + ̂  = Q , ( l - ^ ) p S v + 
dt dx dy oz 

(J ox 
p(Ui+v,)—-

OX dy 
pip I +v,) 

dz\ oz 

civ dv 9v 5v 
+ 

dx dx dy dy 
(3-20) 

Where the right-hand-side terms represent the turbulence eddy viscosity production, 

conservative diffusion, near wall turbulence destruction, transition damping of 

production, and transition source of turbulence. 

The model constants for free-shear flows to control the production and diffusion of 

turbulent eddy viscosity are 

CM =0.1355 C , 2 =0.622 cr = 2/3 (3-21) 

The additional constants and auxiliary functions for destruction of turbulent eddy 

viscosity in the boundary layer are 

C „ , = Q , / / c ^ + ( l + Q , ) / c T r = 
SK'd 2 J 2 

C„„ = 0.3 

C„,=2 (3-22) 

The auxiliary functions for near wall regions are given as 

S=S + 
{Kd) 

2 J v2 
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X 
/ > . 2 = 1 -

X 
vl 

C w = v . i (3-23) 

The auxiliary functions to control the laminar region of the shear layers and transition 

to turbulence are defined as: 

ftrip\ -^IriplSihp "̂ ^P - c , 
CO trip 

flripl ~ ^iripi ' ^irip^X ) 

g, . =min(0.1,At//(^,„,Ax,„^)) 

C,„^>=l-0 C„.,„, =2.0 C,„„3=1.2 C 'Ihp2 Iripi UriplA = 0.5 (3-24) 

Where is the vorticity at the boundary trip point, AL'̂  is the norm of difference 

between velocity at a field point and the velocity at the trip point, Ax,̂ p̂is the grid 

spacing along the wall at the trip, and d is distance fi-om the wall. 

Boundary conditions must be supplied for the turbulent model. Ideally, when the 

mesh near the wall is fine enough {y'^ <3), the eddy viscosity on solid wall should be 

set to zero. In most high Reynolds number flow cases, a wall fiinction has to be used 

in near wall regions to provide enough resolution. In this case, the eddy viscosity on a 

wall surface is given by the wall function relation, as we will discuss in the boundary 

condition section. For the inlet far from wall and without incoming distortion, the 

eddy viscosity should be set to zero too, but for numerical reasons, a very small value 

of the dependent variable (P" <10"^ ) should be used as the inlet condition (Spalart 

and AUmaras 1992), which implies a very small value for the eddy viscosity. For an 

outlet, a simple extrapolation is used to transport information from the computational 

domain to outside. 
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3.3.2 Coupled Solution Method 

The solution procedure for the turbulence transport equation is similar to that for 

solving the Navier-Stokes equations, so it is convenient to couple the turbulence 

transport equation with the main flow equations. There are advantages and 

disadvantages of using this approach. There are two main reasons for a coupled 

method. 

• Coding is relatively easier with this coupled method, especially when more 

than one turbulence models are adopted in a CFD code. Turbulence dependent 

variables can be aligned with other state variables using a vector. 

• Turbulence dependent variables can use the same second spatial order 

method, upwind scheme and diffusion term treatment in a single vector. 

This makes the code slightly more efficient than a decoupling method. Because the 

turbulent model equations are tightly coupled with the main equations, the time 

discretisation is an explicit multistage Runge-Kutta scheme, the same as that for the 

main equations, and the same time step has been used. Theref&re, the turbulent model 

equations are tightly coupled with the main equations. 

After coupling the turbulence equations with the main equations, the governing 

equations become: 

— f f fe^'^ + -hdS^^ j^G(Q) • MS + \\\RdV (3-25) 

The state variable vector Q, inviscid flux vector F and viscous vector G are 
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(3-26) 

Where n is the number of turbulence transport equation numbers, and g„ and K„ are 

constants and dependent variables relating to a specific turbulence model. R is the 

source term vector. 
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3.4 Spatial Discretisation 
The discretisation of the governing equations follows an approach, which decouples 

the spatial discretisation and temporal discretisation. Discretisation of the solution 

domain produces a computational mesh on which the governing equations are solved. 

In the current study, the spatial discretisation is carried out based on a Finite Volume 

Method (FVM). The name of finite volume method comes from the technique that the 

integral formulation of conservation laws. For the unstructured-grid method, it is 

natural to discretise the computational domain using a finite volume scheme. 

3.4.1 Two-Dimensional Finite Volume Method 

In the current research, unstructured meshes in two dimensions consist of only 

triangular elements (Figure 3.2), which are non-overlapping with each other and fully 

cover a computational domain. As previous stated, the control volume is cell-centred 

based, i.e. all the flow variables are stored in centre of the triangle, and flux 

evaluation occurs on the three edges which define the triangle. 

Figure 3.2 2D control volume: triangle 

The numerical evaluation of the surface integrals in conservative equations is done 

separately for the inviscid and viscous contributions. For a finite volume formulation, 

the inviscid contribution can be approximated using midpoint integration of the flux 

over each edge of the triangle that defines the control volume. 
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\F - Ml = \F •dL^Y.^{Q\Q-,n:)-l, (3-27) 
an an 1=1 

Here / is the length of the edge, which two neighboured triangles are attached 

together, is the numerical flux calculated from the states of the left 

sideg"^ and the right side of the edge, which is determined by some kind of 

interpolation from the left and right side cells of the interface. 

3.4.2 Three-Dimensional Finite Volume Method 

In three-dimensions, a computational domain is normally discretised by tetrahedral 

control volumes (Figure 3.3), with four points forming the volume and every three 

out of the points forming four faces. This kind of control volume has the ability of 

rapidly increasing control volume size to cover the whole domain for accurate and 

economical computations. 

A 

Figure 3.3 3D control volume: tetrahedron 

When computing viscous flows on unstructured meshes, it is inevitable that highly 

stretched grids are required in order to resolve boundary layer near solid wails. This is 

because of gradients in the normal direction to the solid wall being several orders 

higher compared with gradients along the wall direction. We find that using layers of 

prismatic control volumes (Figure 3.4) in the viscous effect dominated regions, such 
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as near a solid wall, wake, etc, can immensely improve accuracy of the solution and 

effectively reduce the difficulties of viscous mesh generation. For a prismatic control 

volume as shown in Figure 3.4, the bottom and top face consist of three points and 

three side faces are formed by four points that are not necessarily coplanar. 

Figure 3.4 3D control volume: prism 

3.4.3 Fluxes Evaluation 

The fluxes evaluation procedure on a finite volume method is simply summing up 

contribution of the fluxes on each face of the control volume. The procedure can be 

described as 

'\F • fids = jjF -ds « 2 ^ 0 ( 2 % ^ - , « , ) • 5, 
en an 

(3-28) 

Here s and fi are the area and out-pointing unit vector of the face, k is the number of 

faces which define the control volume. is the numerical flux 

calculated from the state variables of the left side 2 * and the right side Q' of the 

face. 

In early 1980s, researchers extended much of what was established for the traditional 

structured method to unstructured meshes (Jameson and Mavriplis 1986; Jameson, et 
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al. 1986; Jameson et al. 1981). That includes the using of central-difference 
approximation of inviscid fluxes and dissipation terms (Jameson and Mavriplis 1986). 
The use of an upwind scheme offers several advantages over a central-difference 
formulation. An upwind scheme is a characteristic based method; it has natural 
dissipation terms, while spatial dissipation terms have to be added to central-
difference schemes for stability reasons. For high Reynolds number flows, highly 
stretched grids are required to resolve the high gradient in near wall regions. With a 
central difference scheme, excessive dissipation may be introduced in the flow 
direction (Kunz and Lakshminarayana 1992), and may seriously reduce the accuracy 
and convergence rate. With an upwind scheme, the resolution of boundary layer 
details typically requires only half as many points as with a central-difference code 
(Zheng and He 2001). Furthermore, the poor performance of central difference 
formulation is attributed to the artificial dissipation formulas commonly used to damp 
odd-even oscillations and to provide non-linear stability (Anderson and Bonhaus 
1994). 

Upwind schemes are categorised as either FDS (Flux Difference Splitting) or FVS 

(Flux Vector Splitting). For the current study, a flux difference splitting scheme is 

used for computing the inviscid contribution to the fluxes. 

Roe (Roe 1981) FDS scheme is the family of Flux Difference Splitting schemes that 

use the approximate Riemann solution. His scheme is one of the most popular 

methods among the FDS schemes because of its accuracy and efficiency. 

For Roe's flux difference splitting scheme, the flux is given as a central difference 

term in addition to dissipation terms, 

^{QL ,QR) = ^ ) + ̂ (Qn)) - ^ 1 f A ( 3 - 2 9 ) 

And the second term can be written as 

(3-30) + + 
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Al l the three terms can be written as 
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(3-31) 

Where the A ( ) represents the jump between the left and the right states 

A( ) = ( ) « - ( ) . (3-32) 

And the (^) quantities are the Roe-averaged variables which can be work out as: 

P = ylpLpR 

(3-33) 
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w = 

h = -

Where a, w„ and u, are calculated directly from p, u , v and h, so 

a = 

U ^u-h+v-h+w-h. 

AU = Au • h+ Av • /z„ + Aw-h, (3-34) 

Roe FDS introduces expansion shock waves that are physically unacceptable. To 

prevent the expansion shocks, an entropy fix is imposed. A smoothed value of | is 

defined for the acoustic waves 

- 2 a, 1 
da, 4 

(3-35) 

With 

da. = max (4Aa,,0) 

This provides a parabolic curve where the wave speeds change signs. 
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3.4.4 Higher-Order Scheme 

In the current framework of a cell-centred finite volume scheme, the computational 

domain has been spatially discretised into an amount of control volumes, triangles in 

ID and tetrahedron or prism in 3D. The challenge of constructing an effective higher 

order scheme is to determine an accurate estimation of the state variables at either 

sides of a cell faces for flux evaluation. 

First Order Scheme 

A first spatial order scheme on unstructured meshes is described in this section to 

introduce the concept of construction a second order scheme. Figure 3.5 shows a 

typical two-dimensional layout of an unstructured mesh. For a first order accurate 

approximation, the left and right side value and Q~ are simply set to equal the 

cell-centred values of the left and right cells. This means that a constant distribution is 

assumed in each cell. This scheme is highly dissipative because of the constant 

solution assumption. 

Nl 

N2 

Figure 3.5 Fluxes across a cell interface 
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Second Order Construction 

For a cell-centred finite volume setting, a second-order accuracy can be obtained by 

expanding the cell-centred states to each cell face with a Taylor series (Frink et al. 

1991), as following, 

q\{x,y,z) = +Wq^ • Ar + O(Ar') (3-36) 

Where q and q^ represents solution at the centre of an element. 

In this formulation, the solution gradient in the cell centre V^^ is required. The 

gradient can be achieved by using a midpoint integral of the surface around the cell 

(Barth and Jesperson 1989; Wood and Kleb 1998), as follows, 

S/q^=^j^qf,dS (3-37) 
an 

Where V is the volume, q is the solution on the cell surface and h denotes the surface 

unit vector. 

A new second order scheme (Barth and Jesperson 1989) for a cell-centred setting 

proposed by Barth and Jesperson with a version of multidimensional linear 

reconstruction approach, which forms the basis for the present scheme. This method 

is based on the simple thinking that the reconstructed distribution in a control volume 

should be bounded by the values of its neighbours. Frink (1991) took the inifiative to 

further simplify the method so the solution gradients need not be evaluated explicitly. 

His simplification exploits the geometrical invariant of triangular and tetrahedral 

cells, which the distance of a cell-vertex to a cell-centroid is always two-thirds (for a 

triangle) or three-fourths (for tetrahedron) of the length from cell-vertex to the 
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opposing face. By using these invariants, the solution gradient for the cell CI (Figure 

3.5) along the linear extending of from a cell-vertex thi-ough cell-centroid to the 

opposing face can be written as. 

1 
3Ar 

(3-38) 

Here Ar is the distance from the centre of an interface to centre of the element. 

In 3D, the formula for a tetrahedral cell becomes, 

4Ar 
(3-39) 

Where subscripts nl, n2 and n3 denote the nodes composing the face of a cell, and A 

is the opposing node. This resulting scheme is a second-order scheme and proven to 

be two times faster than original scheme presented by Barth (Barth and Jesperson 

1989;Frinket al. 1991). 

Weighted Averaging 

In the second order implementation described previously, the nodal quantities are 

required to construct a second order scheme on a cell-centred finite volume setting. 

For a typical cell-centred finite volume scheme, the flow variables are stored at the 

geometrical centroid of each element. An averaging process is required to determine 

the solution on the nodes. A widely used weighted averaging is to distribute the 

solution from a cell centre to nodes according to their distance to the centroid of the 

cell. The following formula gives a simple formulation to extrapolate node quantities 

from a cell-centred solution, 

9« 
N 
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(3-40) 

Here, denotes the number of cells surrounding node n and r represents the distance 

from this node to the centroid of a cell. 

3.4.5 Discretisation of Viscous Fluxes 

The discretisation of viscous fluxes requires the first derivatives at the centroid of 

faces (3D) or the midpoint of edges (2D). The viscous fluxes are approximated at 

centroids of faces by a linear reconstruction which provides a continuous 

representation of solution variables across the face. 

A widely used scheme is to apply the mid-point trapezoidal rule to evaluate the 

surface integral over edges (2D) or faces (3D) composing the cell (Sbardella and 

Imregun 2000; Barth and Jesperson 1989; Frink 1994). In 2D form (Figure 3.6), the 

procedure can be described by the following formula. 

Vq,=-\q-ndl 
an 

J 3 

(3-41) 

Where q represents any of the state variables and A is the area of the cell C. 

Figure 3.6 Gradients valuation of the cell C using surrounding cells 
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After the gradient at each cell centre is known, the gradient on the interface of two 

cells can be obtained by averaging the gradients in these two cells. The main 

drawback of this method is the additional dissipation introduced by the midpoint 

integration of the edges that compose the cell. 

Another version of an interface gradient evaluation scheme exploits a stencil 

presented by Mitchell (1994), which is widely used by many other researchers (Frink 

and Pirzadeh 1998; Frink 1996; Zheng and He 2001). The stencil utilises the solution 

quantities on the nodes, which is composing of the interface, and cell-centred values 

of two cells sharing the interface. 

nl 

n2 

Figure 3.7 Evaluation of first derivatives on 2D triangular cells 

In a two-dimensional setting, shown in Figure 3.7, the first derivatives for 

q ^[p u V T] are derived from a Cramer's rule (Frink and Pirzadeh 1998) 

solution to 

•^c2 -^cl - y c l 9c2 - ^ c l 

~ ^, ,1 y„2 - y " \ . 1 y . .1n2 

(3.42) 
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n2 

A 

Figure 3.8 Evaluation of first derivatives on cells sharing a triangular interface 

In a three-dimensional setting with two cells (tetrahedron or prism) sharing a 

common triangle interface, as show in Figure 3.8, first derivatives for 

q = [p u V w r ] are derived as, 

yc2 -ycx ^c2 - ^ c l 

^ ( ^ « 2 + ^ « 3 ) - ^ „ i \iy„i+ym)-y,n \{^„2+z„,)-z„, 

~iXn^+^n^)-Xn2 ^ i y M + V ' y n2 ^(^ nl + ^ ,,3) ' ^ n2 

9c2 - ? c 

9 . 

9 z 

^{^.,2 + " , , 3 ) - ^ « l 

(3-43) 

When two prismatic cells share a quadrangular interface (Figure 3.9), the scheme has 

to be modified to result in accurate representation of gradients on the interface. In a 

quadrangular interface setting, the flow states on the four nodes composing the 

interface and cell centre values at either side of the interface are used to compute the 

gradients, as following, 
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X^2 yc2 ^c2 - 2 . 1 9. \^c2 

-y,n = (3-44) 

Xn2 ~ •^n4 -ynA Z„2 ~ 2(14 _ kn2 

Figure 3.9 Evaluation of first derivatives on cells sharing a quadrangular 

interface 

3.5 Time Discretisation 

The 2D/3D unstructured flow solvers used in the present study incorporate a standard 

multi-stage Runge-Kutta scheme, as first introduced by Jameson et al (1985). Some 

researchers (Mavriplis and Venkatakrishnan 1995) report implicit schemes for 

solving two- and three- dimensional compressible Navier-Stokes equations on 

unstructured meshes. However, the draw back of the implicit scheme is the amount of 

memory required in three-dimensional cases. 

For simplicity, the Navier-Stokes equations can be written in following form 

dt 
(3-45) 

Where W represents the numerical flux vector consisting of the inviscid and viscous 

fluxes. In the current research, three-stage and four-stage Runge-Kutta explicit 

scheme can be applied to integrate the above set of equations in time. A A:-stage time 

stepping scheme with time step would be 
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Q^'^ =Q" +a^At-W(Q^'^) (3-46) 
Q^'^ =Q" +a,At-W(Q^'^) 

Q^'^ =Q" +a,At-W{Q^''-'^) 

Many such schemes are possible and stable for range of time steps. Two widely used 

schemes are: 

K=3: fl, =0.3, ^ 2 =0 .5 , f l3 =1.0 (3-47) 

K=4: a, = 0.083, = 0.2069, = 0.4265, a, = 1.0 (3-48) 

In order to accelerate a solution to steady state, a local time stepping technique is 

adopted: 

At = CFL • 7 ^ -, c (3-49) 

Where CFL (<2V2) is the Courant-Friedrichs-Levy number; Fis the volume of the 

element; S^, and 5". are area of the element projected on y-z, x-z and x-y planes, 

which are computed prior to the time integration process. 

For turbulent flow simulations, the transport equations usually contain non-linear 

production and destruction terms, which can be very large near the solid wall regions. 

Such terms can severely reduce the convergence rate using a pure explicit scheme. 

Kunz and Lakshiminarayana (1992) recommended a quarter of the stable mean flow 
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timestep for turbulence transport equations in high Reynolds number flows to reduce 
the restriction of the CFL number to the mean flows by the turbulence transport 
equations. 

3.6 Boundary Conditions 

In numerical simulations, the flow domain has to be truncated for efficiency reasons 

to a finite field which includes the flow phenomena of most interest. The truncated 

domain edge is often referred as a boundary. On the boundary, appropriate boundary 

conditions have to be applied to produce a physically relevant solufion. For the 

physical problems presented in the current research, there are two different types of 

flows: internal flows (or bounded flows) and external flows. 

For an internal flow problem, the flow is often bounded by solid walls. No mass flux 

through solid walls is assumed. In the current research, only stationary and adiabatic 

walls (no heat flux across the wall) are considered. Other boundary conditions 

involved in the current internal flow problems are inflow and outflow boundaries. 

The number of physical boundary conditions to be imposed at these boundaries is 

determined by characteristic properties of the flow. 

For an external flow problem, a farfield boundary is always present. The farfield 

boundary is often put far away from a wall or body, where the flow approaches some 

known uniform conditions. 

Al l boundary conditions are applied at each stage of the Runge-Kutta time 

integration, prior to the calculation of fluxes and evaluation of residues. The 

boundary conditions for internal/external aerodynamics flows often include inflow, 

outflow, free stream, solid wall, and periodic conditions. 

The cell-centred finite volume scheme requires an implementation of "ghost" cells for 

the boundary condition treatment. A ghost cell is produced by constructing an image 

cell across the boundary adjacent the interior cell when the boundary is NOT a block 

64 



Chapter 3 Flow Models and Discretisation 

interface, as shown in Figure 3.10. The flow state variables and derivatives are stored 
in the ghost cell for computing the flux across a boundary face. 

Figure 3.10 Ghost cells for boundary condition treatment 

When a boundary is a block interface, the corresponding geometry information to this 

cell in another block is copied to the ghost cell in the pre-processing stage. 

3.6.1 Inflow 

Two types of inflow boundary conditions for internal flows are provided, fixed total 

pressure and temperature and fixed inflow parameters. For inlet cells in which the 

flow is supersonic, all the flow variables on the ghost cell are given by the incoming 

flow. For the subsonic case, three boundary conditions must be specified in two-

dimensions. For most internal flows the three boundary conditions are: 

• Total temperature 

• Total pressure 

• The flow angle or the velocity tangential to the boundary. 

These three conditions leave one flow variable to be extrapolated by the inner flow 

field. In the present study, pressure is extrapolated. 
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3.6.2 Outflow 

For exit cells in which the Mach number normal to the boundary is supersonic, all the 

flow variables for the boundary "ghost" cells are extrapolated from the inner flow 

field. For subsonic flows, only one flow parameter can be specified. A relatively 

simple choice is static pressure. The other three variables: velocity, velocity tangent, 

and density can be extrapolated from the inner flowfield. 

3.6.3 Farfield 

In external aerodynamics, the flow has relatively uniform free-stream conditions far 

from the body. In numerical simulations, flow domains have to be truncated to a 

finite distance from the body. The truncated faces are known as farfield boundaries. 

Physical boundary conditions to be imposed on these boundaries are entropy and the 

value of the Riemann variables (Hirsch 1990; Thomas and Salas 1986). 

3.6.4 Solid wall boundary 

In inviscid flow simulations, no the mass flux through the wall is specified. A simple 

velocity reflection technique (Allmaras 1989) is used to determine the velocity on all 

ghost cells. 

For viscous flows, fluid in contact with a non-moving solid wall must not move 

related to the wall; the so called no-slip condition. For a stationary wall, this gives 

"H- - 0 ' = 0 and = 0. 

For turbulent flow simulations with a wall function, shear stress and turbulence 

viscosity on the solid wall are determined by the wall function. To ensure this 

condition, the velocity on the ghost cell is approximated by, 

{ML + /" r ) 

K--V: (3-50) 
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Where g and c represent the ghost and interior element, r and n are tangential and 
normal to the boundary direction, and >>„ is distance from the wall of the interior cell. 

3.6.5 Wall function 

In order to apply a turbulence model to wall-bounded flows, boundary conditions 

appropriate to the solid wall for velocity of the flow and turbulence parameters are 

required. For a typical turbulent flow simulation, applying a "no-slip" wall condition 

normally requires a very fine mesh (y* < 5) near the wall boundary and integration 

through the viscous sub layer. The wall function is introduced to reduce the need for 

resolving the flow in the turbulent boundary layer with a very fine mesh. With this 

method, the inner region of the boundary layer is modelled by an empirical function. 

Thus, a coarse mesh (30 < < 150) can be used in this region. This approach has 

the advantage of significantly reducing the computing time by eliminating the large 

portion of cells normally required to resolve the boundary layer and improving the 

overall convergence by removing the thin inner layers which add extra stiffness to the 

solution. 

The wall function procedure uses the law of the wall as the relation between the 

velocity and surface shear stress. A universal law of the wall can be represented by 

the Spalding formula (Hirsch 1990), which models the inner laminar sub layer, a 

transition region and the logarithmic layer of the turbulent boundary layer. 

2 6 
(3-51) 

K = QA\ B = 5.5 

Where, 
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Here , are the fluid density and laminar viscosity on the surface, respectively, 

and the velocity magnitude at the adjacent cell located a normal distance 

away; is the friction velocity. 

A wall boundary condition for turbulent viscosity is computed from the relation 

presented in Ref (Abdol-Hamid et al. 1995; Wang et al. 1999; Bardina et al. 1997; 

Frink 1996) as 

2 
(3-53) 

In solving of the turbulence transport equations, the boundary conditions of the 

turbulence dependent variables are also required on the solid wall when the wall 

function is used. The turbulence parameters are determined by the friction velocity. 

For the one-equation Spalart-Allmaras model, the dependent variable can be given as 

V , = Ky^u^ • Re (3-54) 

The wall function sometimes does not give satisfactory solutions for separated flows 

because the law of the wall does not hold in the regions where separation occurs, so 

caution should be taken when dealing with separated flows. Furthermore, the 

numerical solution is very sensitive to the points above the solid wall where the wall 

function is used. This leads to our implementation of the wall function. 

In a typical 3D tetrahedral control volume setting as shown in Figure 3.11, the wall 

function is applied on the cells just of f the boundary. The velocity at the cell centre 

and the distance to the wall are used to work out the friction velocity on the wall 

according to equations (3-51) and (3-52). Shear stress on the wall is given as (Abdol-

Hamid etal. 1995), 

= Re- pu] (3-55) 
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The shear stress should be applied to the calculation of viscous fluxes across the 

surface, and the turbulence viscosity on the surface is given in (3-54). 

Figure 3.11 Wall function for tetrahedral elements near the solid wall 

In a semi-structured 3D prismatic setting as shown in Figure 3.12, we exploit the 

inherent structure present in the mesh produced by an "inflating" method (Chapter 4). 

As shown in Figure 3.12, the nodes are aligned along the line normal to the boundary 

surface. The surface centred friction velocity and shear stress are determined by a 

two-step process. Our implementation is inspired by Frink's (1996) similar 

implementation for tetrahedral volumes produced by an advanced layers method. 

Figure 3.12 Wall function for prismatic cells near a solid wall 

First, the friction velocity at nodes A, B and C (nodes on the surface of the wall) are 

calculated based on the equation (3-51) and (3-52) using node quantities at A l , B l 
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and C I , which are on the first layer off the wall. Next, friction velocity at the surface 
ABC is computed by averaging the friction velocity on nodes A, B and C. Thus the 
shear stress is calculated using equation (3-55). Then, the turbulence viscosity and 
parameters on the surface are defined by equations (3-53) and (3-54). 

The wall function implementation based on prismatic volumes with the layer 

structure is generally more efficient and robust than the previous one on tetrahedral 

elements. Because the wall function procedure involves a Newton iteration procedure 

to compute the friction velocity as shown in equation (3-51) and (3-52), it is likely to 

be very computational expensive. In a typical 3D surface mesh setting, there are two 

times as many triangular surfaces as nodes. The wall function iteration is likely to be 

nearly two times faster in the second implementation than in the first one. Secondly, 

the distribution of the friction velocity on the wall in the prismatic implementation is 

smoother because of the averaging process; a discontinuity is less likely to appear. 

3.6.6 Periodic boundary 

A periodic boundary is present in most turbomachinery applications. Strictly 

speaking, the periodic boundary condition is not really a boundary condition. With a 

mesh with a periodic condition, periodic nodes and edges are treated as inner nodes 

and edges, the fluxes through the pair of edges are calculated only one time and given 

to two periodic cells. 
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Chapter 4 

Mesh Generation and Adaptation 

The primary objective of the present research is to develop efficient and accurate 

numerical algorithms for solving the Euler/Navier-Stokes equations on unstructured-

grids. It is well known that quality of computational grids is very important to the 

accuracy and efficiency of a CFD solution. However, the main focus of the present 

research is not about developing a new unstructured mesh generator. The aim of the 

mesh generation part of the work is focused on generating well-formed viscous grids 

with current available isotropic mesh generators in the public domain and 

manipulating the grids for viscous flow computations. In this chapter, the 

unstructured mesh generation and adaptation technique for inviscid and viscous flow 

computations are presented. 

The first section of this chapter is about unstructured mesh generation for 

aerodynamic computations. First, different approaches for the isotropic unstructured 

mesh generation are introduced. Next, the viscous mesh generation method is 

reviewed and the "inflating" strategy is presented. This section ends with the details 

of generating 2D/3D unstructured meshes with this "inflating" method. 

A mesh adaptation approach for unstructured meshes is developed in the second 

section of this chapter. It begins with the definition of rules for the mesh refinement 

and error estimation. Then, the mesh refinement and reconnection technique are 

described in some detail. This chapter ends with the discussion of the mesh adaptation 

techniques in viscous flow simulations. 
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4.1 Unstructured Mesh Generation 

There are various reasons that the unstructured-grid method becomes widely used in 

industrial applications. The most important one is the geometry flexibility of this 

method, i.e. the ability to generate high quality grids for virtually any geometric 

configurations, at least in theory. It is well known that mesh quality greatly influences 

the accuracy and convergence of a solution. A skewed and non-smooth mesh 

generally results in slow convergence rate of the solution and less accurate results. 

Generation of high quality unstructured grids for simulating flows in complex 

geometry configurations becomes increasingly important. 

In the current research, the unstructured mesh is based on triangles in two-

dimensional and tetrahedron or/and prismatic elements in three-dimensional. In the 

following section, strategies for generating unstructured meshes for inviscid/viscous 

flow simulations are outlined. 

4.1.1 Isotropic Mesh Generation 

In inviscid flow computations, isotropic unstructured meshes are required for 

economical computing and accurate results. The reason is that in inviscid flows the 

information propagates at almost the same rate in all directions. It is sensible to use a 

grid that has the same resolution in all direction. Currently, methods for generating 

isotropic unstructured meshes in 2D computational domains have reached a fairly 

mature state. There are two major lines of methods for the 2D unstructured mesh 

generation: the Advancing Front method (Merriam 1991) and the Delaunay method 

(Bowyer 1981; Baker 1989). Both of them are widely used in unstructured mesh 

generation community. 

The Advancing Front method has become a routine practice for two- and three-

dimensional unstructured mesh generation. The process could be described as 

elements creeping into a domain from its boundaries. In 2D, it starts with boundaries 

of the domain as an initial front. Then triangles are generated from current front into 

empty domain, and the front is updated. The operation is repeated until the whole 
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domain is triangulated. In three dimensions, the front becomes a layer and this 
method is also called the advancing layer method. 

The Delaunay method adopts the empty circumcircle property of a computational 

domain. It is generally more efficient than the advancing-front method (Liu and 

Hwang 2001). However, the advancing-front method has the advantage of being more 

robust because the boundary integrity is guaranteed. 

In the present work, a two-dimensional unstructured mesh generator developed by the 

author in Beijing, China, 1994-1995 (Zheng 1995) is used to discretise a 2D 

computational domain. This 2D unstructured mesh generator is based on the 

Advancing Front method described previously and able to produce high quality 

triangles for virtually any 2D complex geometry configurations. It features a very 

coarse background structured grid and a series of source points to control the size of 

local elements. 

The discussion of the method for 3D isotropic unstructured mesh generation is 

beyond the present research. In the current work, the 3D computational meshes for 

inviscid flow computations are generated by free software in public domain such as 

GMSH (Geuzaine and Remade 1999) and GRUMMP (Ollivier-Gooch 1998; Freitag 

and Ollivier-Gooch 1997; Ollivier-Gooch 2001). 

For applications with viscous flows, the Advancing Front method described 

previously is inadequate because the method tends to generate "good" equilateral 

triangles even in a boundary layer, which is not desirable. Highly stretched grids are 

required in viscous effects dominated regions, such as in a boundary layer or wake, to 

resolve high gradients of the flows. A major bottleneck in the application of 

simulations of 2D/3D viscous flows in complex configurations is still the generation 

of highly stretched and body-fitted viscous grids. 

4.1.2 Viscous Mesh Generation and Multiblock Method 

The unstructured grid method has shown to be very successful in simulating of 

inviscid flows both in 2D and 3D (Frink et al. 1991; Marvriplis and Jameson 1987). 
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This is partially because the generation of high quality computing meshes for inviscid 
flow simulations is relatively easy. For viscous flow simulations, highly stretched 
elements are required near the wall regions, in which viscous effects dominate the 
flow. The traditional unstructured mesh (consists of only triangles in 2D and 
tetrahedron in 3D) method has been less successful. The first reason is the great 
difficulty associated with generating a good viscous mesh, especially for complex 3D 
geometries. This is generally caused by the difficulty to generate ideal stretched 
elements near solid wall regions. A more important reason is that poorly stretched 
triangular or tetrahedral elements usually lead to less accurate results and poor 
convergence. 

It seems sensible to use elements that are more suitable for viscous flow simulations, 

like quadrangular (2D) and prismatic or hexahedral (3D) elements in regions that 

viscous effects dominate the flow; and in the outer regions, i.e. far from solid wall 

regions, triangles or tetrahedron could be used to cover the domain with great 

flexibility. This leads to the development of the hybrid (or mixed-grids) method, in 

which the computing mesh may compose of several types of elements. Some authors 

(Sayma et al. 2000) presented their solution methods with a hybrid method. In spite of 

its flexibility in three-dimensional mesh generation for some relatively simple 

geometries, mixed-grid methods share the difficulty of generating a high quality 3D 

mixed-grid mesh, and because of the complexity of the solution method and the 

efficiency penalty by introducing different type of elements. 

In most viscous flow problems, flow domains consist of two parts: viscous regions 

(where viscous effects dominate the flow) and the rest of the domain, in which 

viscous effects are less significant. The viscous regions most likely appear near to 

solid walls, or in wake and mixing regions, where flows change rapidly in one 

direction but slowly in the other directions. In these regions, highly stretched grids are 

required to resolve high gradients of the flows. In the rest of the domain, such as far 

from walls and farfield regions, flows change virtually at the same rate in all 

directions. In these regions, isotropic grid elements are more desirable. 
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Based on the evidence presented, it seems best to divide the flow domain into viscous 
regions and other regions for the mesh generation. In the viscous regions, semi-
structured blocks, which consist of hexahedral or prismatic elements in 3D and 
triangles or quadrangles in 2D, should be used to discretise the domain, while for the 
remainder of the domain, triangular (2D) or tetrahedral (3D) elements should be used. 
By doing this, ideally stretched elements can be easily generated according to the 
local flow features in the viscous regions. In the rest of the domain, the use of 
isotropic elements enables rapidly changing of mesh density without compromising 
the grid resolution. 

The use of this multiblock method in mesh generations has following advantages over 

a hybrid method: 

The mesh in the viscous regions is semi-structured or structured, which 

enables the possibility of using high order schemes and convergence 

acceleration techniques well developed in past years. Furthermore, it gives 

more choice of turbulence models and viscous wall treatment, and possibly 

higher numerical resolution in these regions. 

Since the flow domain has been divided into several blocks with different 

element types, different solvers based on these elements can be used. Thus, 

the complexity of a cell-centred flow solver is lower than a hybrid solver, and 

the performance is higher. However, the difficulty of coding is increased 

because more than one flow solvers are required to march the flow in the 

whole computational domain. 

Using the semi-structured blocks enables flow solvers to change the 

computing mesh dynamically, which is vital for a mesh adaptation or dynamic 

mesh technique. With a hybrid method, the mesh adaptation by subdivision 

becomes nearly impossible or too expensive to perform because the 

reconstruction of the grid structures is too difficult due to the presence of 

different types of elements. While in the present method, a mesh adaptation 

technique by subdivision is relatively easier to be implemented 

75 



Chapter 4 Mesh Generation and Adaptation 

• More importantly, using this semi-structured mesh enables the exploitation of 
an efficient multigrid method on unstructured meshes, which will be discussed 
in next chapter. 

In the present research, a few viscous layers are generated in the viscous regions in 

both 2D and 3D to resolve rapid changes of flows in these regions. Details of the 

implementation of the algorithm are described in following sections. 

2D Viscous Mesh Generation 

In two dimensions, the process of generating a viscous mesh is very similar to 

"inflating" a solid wall. The details of the implementation on a single airfoil could be 

described as following: 

1. Calculate the thickness of the viscous layer. Prior to the mesh generation, the 

maximum boundary layer thickness can be estimated with a simple empirical 

formula for each solid wall. Then the thickness of the viscous layer can be 

given as 2 ~5 times the thickness of the boundary layer. This wil l be an 

approximate thickness of the semi-structured layer. 

2. Shift solid walls. As a typical single airfoil case, depicted in Figure 4.1 

(suppose we are not interested in the wake), a new artificial "boundary", 

whose distance fi-om the solid wall roughly equals the layer thickness 

established in the first step, can be worked out and placed in the flow domain. 

This process is very similar to inflating an object. This new artificial boundary 

described by a series of connected points for each solid wall separates the 

viscous layer and the rest of the regions. 

3. Generate an isotropic mesh. After the walls are shifted, the outer region, 

which is bounded by the artificial boundary or boundaries and other physical 

boundaries, can be easily discretised with an isotropic unstructured mesh 

generator. 
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4. Generate viscous layers. A structured mesh can be generated in the viscous 

layer using an algebraic method. In this process, the grid lines virtually 

parallel to the wall should be carefully placed according to the flow problem. 

Depending on the nature of the geometry and which part of the flowfield is 

concerned, either an 'O', ' H ' or ' C type of structured-grid could be used. For 

an isolated airfoil (Figure 4.1), when the wake is not a concern, an 'O' type of 

structured-grid is the best choice, otherwise, a ' C mesh may be used to 

resolve the wake and boundary layer flows. 

5. Triangulate the viscous mesh. The structured mesh is triangulated by 

subdividing each quadrangle to two triangles. This stage is necessary for the 

present 2D cell-centred finite volume flow solver, which can only handle 

triangles as control volume. 

Figure 4.1 Mesh generation for an airfoil using an inflation method 

Since the structured-grid generation and triangulation procedure for the viscous layer 

are simple and straightforward, it may be best to integrate the generation of the semi-

structured grid and triangulation process into the flow solver. The flow solver needs 

to take the actual profile of viscous walls and triangular elements in the outer regions 

to generate a semi-structured mesh with a given spacing of the layers. The structured-

grid generation procedure is usually controlled by a few parameters, including a 

spacing factor on the direction normal to the wall, the position of the first grid line. 
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By doing so, a mesh adaptation procedure could always reuse this subroutine to 

produce better structured layers according to the local flow state when the mesh in 

this region needs to be refined. 

Inflow 

Inflated boundary 

Figure 4.2 Shift an open wall 

When a solid wall is not entirely closed, the artificial boundary can be worked out in 

a similar fashion. Shifting of an open wall is illustrated in Figure 4.2. It should be 

noted that the artificial "boundary" does not necessarily have same number of points 

or same shape as the wall. This is because when the outer regions are meshed with 

triangles, some points may be inserted into the inflated "boundary". In order to result 

in a body-fitted and ideally stretched viscous grid in this region, the wall must be 

remeshed to the same number of points and relative position as the artificial boundary. 
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The sharp ended object 

Inflated boundary 

A. Inflating a sharp ended object when resolving wake is not required 

Flow direction 

B. Inflating a sharp end object when resolving wake is required 

Figure 4.3 Inflating sharp ended objects 

Special care must be taken when the trailing edge or leading edge of an airfoil or a 

blade has a sharp end. When the trailing edge is round, the mesh in viscous regions 

could be made very smooth with little effort. In the case of a sharp end, extra points 

may need to be inserted or points relocated to ensure the artificial bluntness of the 
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inflated "boundary" (Figure 4.3a). Alternatively, a ' C or ' H ' type of inflation should 
be used to result in a body-fitted and ideally stretched viscous grid (Figure 4.3b). 

3D Viscous Mesh Generation 

In three dimensions, this "inflating" strategy becomes more important considering the 

current status of the 3D viscous mesh generation. Furthermore, the difficulty of 

creating the artificial boundary and dealing with comer points increases as well. 

In three dimensions, there are two choices of the semi-structured mesh: either 

prismatic or hexahedral based. Our preference is given to the prismatic based control 

volume for following reasons: 

• The use of prismatic elements offers geometric flexibility. When prismatic 

elements are used, the surface of a solid wall is represented by a ful l triangular 

mesh instead of structured grid. This is very important for complex 

configurations where the solid wall is hard to be represented with structured-

grids. Furthermore, it has the advantage of generating a better surface mesh, 

i.e. using a fine grid when necessary without changing the entire surface mesh. 

• Multi-block boundary condition treatment consideration. When using 

prismatic-based semi-structured block, the block boundary between a viscous 

mesh and isotropic meshes in outer regions will always be triangular elements. 

When hexahedron-based elements are used, the treatment of the block 

boundary requires expensive bilinear interpolation. 

Similar to the 2D method, the artificial boundary that separates the viscous zone and 

outer zone have to be established by an algebraic algorithm. Next, the outer region is 

discretised using tetrahedral elements. Then the triangulated boundaries (the artificial 

boundary that separates the viscous and outer regions) with new sets of points are 

mapped back to the solid wall. In this stage, the solid wall has exactly the same 

number of mesh points and triangulation as the artificial boundary. In the flow solver 

for prismatic elements, prismatic layers are generated based on these two sets of mesh 
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points and the triangulation. Again, the layer number and relative position could be 
adjusted in the flow solver according to the flow state and local flow features. 

In the current work, when a 3D sharp ended object is present in the flow domain, 

either a ' C or ' H ' type semi-structured grid is used to discretise the near wall and 

wake regions to ensure the valid elements in these regions. Ahematively, small 

changes to the sharp end part of the object may be needed to make the object 

artificially "blunt". 

4.2 Mesh Adaptation 

There are several possible ways to achieve adaptivity on unstructured meshes. One 

can either increase the degree of polynomial approximation to improve overall 

solution quality, or move grid nodes in the regions where there is a rapid change of 

solution. Alternatively, one can both move the grid nodes and enrich the grids. This 

is the method used here, because it provides the most flexible way to control the 

element size to resolve flow features such as shock waves, shear layers, wakes, flow 

separation and reattachment. 

There are various mesh refinement techniques that may be employed. New refined 

points may be created and inserted into the mesh using a Delaunay point insertion. 

Alternatively, original elements that contain refined nodes can be simply subdivided 

into several elements, followed by a local smoothing or relaxation. 

In the method adopted, the flow-field is firstly solved on a coarse mesh generated by 

the Advancing-Front Method (Pirzadeh 1993; Zheng 1995) to roughly capture the 

basic flow features. The resulting solution is then analysed to determine where to 

insert more grid nodes, and a refined mesh is generated by subdividing elements and 

relocating nodes. The problem is solved again on the new mesh using the solution of 

the coarse mesh as an initial guess. The process is repeated until the required 

accuracy in terms of a refinement criterion is achieved. 

The advantages of this element subdivision method are higher efficiency and the 

connectivity is guaranteed. This is especially important when highly stretched meshes 
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are required in the viscous flow simulations. In viscous effect dominated regions 
where high stretched meshes are required, the Delaunay construction is no longer 
optimal and less reliable. 

4.2.1 Rules to Refine Meshes 

The refinement algorithm is a key factor for a successful mesh adaptation. It 

determines the way that the mesh is modified for the grid and is based on a set of 

refinement rules. The rules are: 

1. Always refine the grid in the region with high gradient. High gradients always 

mean high truncation errors. 

2. Ensure the resulting refined grid is valid. 

3. Ensure the resulting refined grid is in some sense a good grid. So after each 

refinement, grid relaxation or smoothing can significant improve the mesh 

quality (Bottasso et al. 1994). 

Obviously, a successful adaptation highly depends on the adaptive criteria, i.e. 

estimation of the errors. In following section, we wil l discuss the error estimation. 

4.2.2 Error Estimation 

The error estimation determines whether or not a current mesh cell should be further 

refined. For a given mesh with flow variables associated with it, there are various 

ways to define the numerical error in the flow field. 

To capture different flow features, different criteria may be used to define the error. 

For shock wave associated problems, the pressure difference of each edge is more 

relevant than other variables. For viscous layers (attached or separated boundary 

layers, wakes), vorticity and velocity gradients are dominant and thus the differences 

of these variables are used. Whilst i f there is a strong shock-wave/boundary layer 

interaction, it is more effective to resolve the boundary layers by using a 

velocity/vorticity difference before using a pressure difference to capture shock 

waves, because a typical time-scale for viscous diffusion is much longer than that for 
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a pressure propagation. Thus, for complex flow problems, the error estimation of 
combined pressure and velocity/vorticity differences has to be used to give an 
effective and efficient mesh refinement. 

In the present edge-based flow solver, the error estimation is carried out on each edge. 

Then the error is normalised by the global maximum and minimum error as: 

mm 

E -E . 
max mm 

(4-1) 

In the viscous flow simulations, multiple indicators are usually used for the error 

estimation to capture the high velocity gradients. In this case, the final error is 

estimated as: 

E = f^a,E, (4-2) 
1=1 

Here N is the number of the error indicators, £, is the normalised error of the error 

indicator and is the coefficient of this indicator. 

(0 < « , <! ) (4-3) 

A tag is marked i f the error on the edge is higher than a predefined factor. The 

predefined factor is largely based on the experience. In the present study, the factor is 

from 0.1 to 0.2 for inviscid flow simulations and from 0.1 to 0.3 when multiple 

indicators are used for the error estimation with viscous flow simulations. For 

multiple mesh refinement, a sequence of factors should be given in ascending order to 

avoid an overcrowded mesh. 

4.2.3 Mesh Refinement and Reconnection 

The refinement strategy is to adjust a mesh cell for which any of its edges has been 

tagged to refine. In order to implement this technique, various allowable subdivision 

types for triangular elements can be defined as following: 
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Figure 4.4 Sketch of subdivision types for a triangle 

After all points have been inserted into the mesh system, the mesh is smoothed to 

improve the mesh quality. Smoothing is done by moving the point slightly to an 

optimal position. The very commonly used Laplacian-type smoother is easy to 

implement and fast to compute. 

4.2.4 Mesh Adaptation in Viscous Flow Simulations 

In the simulations of high Reynolds number flows, very thin boundary layers are 

presented near solid walls, where the flow quantities are subject to strong local one-

dimensional gradients. Highly stretched cells in the boundary layers are normally 

used to effectively capture these gradients. The mesh refinement approach, as 

described above, has been shown to be less effective (Vilsmeier and Hanel 1993). 

Because of the high gradients in these regions, large amount of refinement wil l occur. 

This problem is well documented by several authors (Vilsmeier and Hanel 1993) 

(Warren et al. 1991). Several solutions have been developed including limiting the 

maximum amount of subdivision of an element in the most coarse mesh or minimum 

size of the element. Most of these have been unable to preserve the highly stretched 

body-fitted elements in the viscous regions, which is essential for economical and 

accurate computing. Therefore, another approach has been developed to deal with 

viscous flow problems. 

In the present viscous mesh generation scheme, several layers of stretched triangular 

cells are employed around solid walls and the rest of the domain is covered with 
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normal triangular cells. In order to overcome the over-resolved problem by adaptive 
mesh refinement in the near wall region described previously, a two-phase refinement 
procedure is required to deal with the outer region and viscous regions separately and 
different refinement rules are adopted in these regions. Since the subroutine for 
generation of these layers in viscous dominated regions is integrated into the flow 
solver, these regions can be easily remeshed without affecting the rest of the domain. 
Details of the implementation are described in the next section. 

4.2.5 Algorithm Description 

In the simulation of inviscid flows, the refinement procedure in the current 2D edge-

based flow solver could be as following: 

1. Clean all tags on the mesh system. 

2. Estimate the error across each edge. The error is modelled by the gradients of 

given variables across the edge. 

3. Tag edges. When the error on an edge is higher than a predefined threshold, 

the edge is marked to be refined. 

4. Mark cells based on the tags on three edges that compose the triangle. I f any 

of its three edges is marked to be refined, a cell is marked. 

5. Insert nodes based on the tagged edges. 

6. Reconstruct mesh topology. 

7. Smooth new mesh when necessary. 

8. Interpolate the solution from the original mesh to the refined mesh. 

After all the new points are inserted and a new flow field solution obtained, the flow 

solver is restarted from this new state. 

In simulations of viscous flows, the procedure described previously could produce a 

very large amount of undesirable elements in the viscous effect dominated regions, 
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especially near walls. Since the over-resolved problem most likely occurs in the 
regions where highly stretched elements are used, an alternative refinement procedure 
and rule should be applied for these regions. In the present research, a two-phase 
refinement procedure is implemented to overcome the problem. 

The first phase is to refine the outer region, where the viscous effects are less 

significant. The refinement procedure for inviscid flow simulations described 

previously is capable of producing well-formed triangular elements in these regions. 

The second phase is to refine viscous regions where highly stretched elements are 

used. After point-insertion and reconnection of the outer part of the mesh, some nodes 

have been inserted into the artificial boundary between the viscous layer and the outer 

part. The artificial boundary is recormected using nodes already in the mesh and 

newly inserted nodes. A new viscous grid is generated using the new boundary with 

the method described in the mesh generation section. In this stage, an interpolation 

procedure is performed on the solid wall to ensure a correct representation of the 

original wall profile. Currently, no extra layer is inserted into the viscous layers 

because the layers are already placed with consideration of the flow state and are 

suitable for resolving the boundary layer. 
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Chapter 5 

Multigrid Method 

In this chapter, a multigrid method to accelerate the solution of Euler/Navier-Stokes 

equations on unstructured meshes is developed. The objective of this chapter is to 

develop an efficient, robust and effective multigrid for simulating compressible 

inviscid and viscous steady flows on unstructured meshes. 

The discussion of the multigrid method begins with the introduction of different 

multigrid approaches on unstructured meshes. Next, how to generate a sequence of 

mesh levels is discussed. Two distinct multigrid methods are developed: a direct 

connectivity based method and an aspect ratio sensifive approach. This is followed by 

the inter-grid operators and presentation of the multigrid time-marching scheme. 
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5.1 Introduction 

Multigrid has been demonstrated as an effective means to accelerate the solution both 

for traditional structured methods and unstructured-grid methods. For traditional 

structured applications, the multigrid method has become a routine practise. Multigrid 

on unstructured grids, especially with mixed-elements is still at a very early stage of 

development. 

There are different approaches for adopting a multigrid technique on unstructured 

meshes. The first approach begins with a coarse mesh definifion and generates finer 

mesh levels by refinement. This approach is usually coupled with an adaptive mesh 

refinement technique. The second approach uses completely independent coarse and 

fine meshes. Since the various meshes of the sequence do not always have common 

points, linear interpolation has to be performed to transfer flow variables between 

them. Both the methods share a common difficulty in generating the coarse mesh in a 

complex configuration. The third one is to coarsen a given mesh by using directly 

neighbouring cormections of fine mesh elements. This method is able to generate 

coarse mesh levels in virtually any complex configurations and has been proven to be 

effective in inviscid flow calculations. However for the high Reynolds number 

problems, this method is less effective due to the presence of high aspect-ratio cells 

near solid wall regions. 

A successful multigrid approach usually consists of three key components: 

1. A nicely constructed sequence of meshes ranging from coarse levels to the 

finest level. 

2. A suitable inter-grid transfer operator to transfer solutions between coarse and 

fine levels. 

3. An effective iterative solver to damp high frequency error components in 

every level of the mesh. 
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The following sections are descriptions of the basic mulfigrid method for unstructured 
meshes and details of generating multiple meshes, inter-grid transfer operators and 
multigrid cycling. 

5.2 Generation of a Sequence of Mesh Levels 

For a structured grid, a sequence of coarse levels can be easily generated with its 

inherent structure. For unstructured grids, it is not straightforward to generate a 

coarse mesh because of the very nature of the unstructured-grid itself, i.e. lack of 

simple structure and connectivity. One possible way is to use a volume agglomeration 

method. The aim of the current research is to extend and enhance a volume 

agglomeration method for 2D/3D inviscid and viscous flow calculations and to 

improve the efficiency of this method for high Reynolds number flows. 

Central to the design of a volume agglomeration method is to group together cells 

that have neighbouring relations, to form a control volume of a coarse block, starting 

from the base fine mesh. Repeating this process allows the obtaining of coarser 

meshes until a sufficient number of levels are obtained. Two distinct approaches to 

coarsening are adopted: 

1) The first one would be directly based on the element connectivity. This is 

relatively easy to implement, but is not very effective for highly stretched viscous 

meshes. It can be called 'Direct Connected Multi-Grid' (DCMG). 

2) The second approach, which we advocate, is to adaptively coarsen the mesh, 

aimed at forming coarse mesh blocks with more uniform spacing in all 

directions. Consequently, on a coarse mesh, error disturbances would propagate 

at the same rate in all directions. This method can be called 'Aspect-ratio 

Adaptive Multi-Grid' (AAMG). 
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5.2.1 Direct Connected Multigrid 

The Direct Connected Multigrid is essentially a volume agglomeration method based 

on the connectivity of the mesh. To generate coarse levels automatically from an 

unstructured mesh, it is possible to group together control volumes that have direct 

neighbouring relations or nodes that are associated with contiguous volumes. 

Repeafing this process allows a coarse mesh to be obtained. In this process, the size 

of coarse mesh cells should increase, and the coarse mesh solution should accurately 

approximate the fine mesh solution to obtain a good preconditioner. 

The coarsening approach we present here is only a modified version of the volume 

agglomeration method (Lallemand et al. 1992). The direct neighbour relafion means 

that two cells have at least one shared node. The algorithm based on the direct-

connectivity relations is as following (Figure 5.1): 

Consider successively every cell C for the fine mesh: 

1. I f the cell C has already been included in a group (the cell in the new coarse 

mesh) then consider the next cell. 

2. Create a new group containing C and put into this group each cell neighbouring 

C that is not already included in any existing group. 

3. I f the new group contains only the cell C, merge the group with an existent 

group, which contain a neighbour nearest to cell C. 

4. Go to the next cell. 
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Figure 5.1 2D coarser level from fine mesh for far from wall regions 

The algorithm above allows an automatically coarsening triangular based 2D meshes 

and tetrahedron based 3D meshes. However, in order to produce optimal coarse 

levels, the procedure should start from the smallest element in the mesh. 

5.2.2 Aspect-Ratio Adaptive Multigrid 

An aspect-ratio adaptive multigrid is an enhanced version of volume agglomeration 

method aimed at viscous flow computations with highly stretched grids. I f the base 

fine mesh only contains regular triangular/tetrahedral cells, the Aspect-ratio Adaptive 

Multi-Grid will reduce to the Direct Connected multigrid method. The coarsening 

algorithm based on the direct-connectivity relations is also described in Ref. (Zheng 

and He 2001). 

For high Reynolds number viscous flow computations using highly stretched meshes 

with high grid aspect ratio near solid wall regions, the Aspect-ratio Adaptive Multi-

grid method is activated. In regions far from solid walls where isotropic unstructured 

grids are used, the direct connected multigrid method outline previously is used to 

build coarse levels by volume agglomerating. With this method, the size of the 

elements in a coarse level increases almost at same rate at all directions. In viscous 

flow computations, with an 'inflating' viscous mesh generation scheme described in 

Chapter 4, semi-structured viscous layers are used in or near solid wall and wake 

regions to resolve high gradients and rapid changes of the flow. In these regions, 

where the highly stretched triangular/prismatic cells are used, coarser levels are built 

by stacking viscous layers in the normal wall direction. By doing so, the grid aspect 
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ratio in coarse levels is reduced and the time step is increased. Thus, at a coarse mesh 
level, the solution can effectively be marched with a larger time step. 

In the present research, the Aspect-ratio Adaptive Multigrid exploits the structure of 

viscous layers introduced in the process of the mesh generation (Chapter 4) both in 

2D and 3D. Because the viscous layers generation is integrated within the flow 

solver, coarser levels can be easily built up by stacking layers of highly stretched 

grids in the viscous layer. 

In the viscous layers near solid wall or wake regions, the grid aspect ratio of elements 

in every layer are compared with a predefined grid aspect ratio value (30 in our case) 

to determine how the coarser level should be built. I f the grid aspect ratio higher than 

predefined value, four triangles (2D) in the two layers next to each other are to be 

stacked to form an element in the coarser level, as shown in Figure 5.2a. When the 

grid aspect ratio is smaller than the predefined value, as depicted in Figure 5.2b, two 

layers and one of their neighbouring rows, which are not included in any coarse level, 

are to form an element in the coarser level. This process is repeated until desired 

coarse level meshes are constructed. In this process, the size of elements are always 

increasing whilst the aspect ratios of the grid are decreasing, which allow a larger 

timestep on coarser levels. 

In three dimensions, a viscous layer consists of semi-structured prismatic grids. A 

strategy similar to 2D is adopted. The aspect ratio of a prismatic element is defined 

by the height of the element and the typical length of its bottom triangular surface: 

usually the longest edge. Starting from the first layer next to a solid wall, two 

neighbouring layers are combined to form an element in a coarser level. This process 

is repeated this process until a sequence of coarse mesh levels is constructed. 

However, no element combination along the wall is considered in the process. The 

process is described in Figure 5.3. 
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a. Coarse levels for cells with high aspect ratio in near wall regions 

b. coarser levels for normal triangular cells in near wall regions 

Figure 5.2 2D coarser meshes generation in visous layers 

/ 

/ 
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/ 

Figure 5.3 3D coaser meshes generation in viscous layers 

5.3 Intergrid Transfer 

In order to transfer a solution from one grid to another, consideration needs to be 

given to the design of the multigrid method. In the traditional multigrid approach, 

linear or nonlinear interpolation is used to transfer flow variables and residuals 
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between the various meshes of the sequence. In the approach adopted in the present 
study, an efficient collecting/distributing process is adopted to transfer solutions. 

In the Fine-to-Coarse stage, fluxes of a finer mesh are summed to obtain the fluxes of 

the coarser meshes instead of using a first order upwind solver, which is considered 

too expensive to perform on a highly polyhedral grid. 

In the Coarse-to-Fine stage, the coarse mesh residual are directly distributed back to 

the fine mesh cells, which has been shown to be effective on structured mesh solvers 

for steady flows (Denton 1983), and unsteady flows (He 1993). 

In this way, only fluxes on the basic fine mesh are evaluated by the upwind scheme, 

and the fluxes of elements on a coarse mesh can be directly obtained from those on 

the finer mesh of the sequence: 

N 

C'=E^1 (5.1) 
where N is the number of cells in the finer mesh that contained in the element m of 

the coarse mesh level. / and / +1 indicate the sequence of the meshes. The solution is 

accelerated by distributing the residuals on cells of the coarse mesh to the finer mesh. 

Consider a one-stage time integration of a cell on k levels of meshes: 

(Q"''~Q")=—R'+--rR''' +. . . (/=1,2,..^) (5.2) 

The left side is the effective change of flow variable in one step of time-marching. 

A/ ' , A' and R' denote local time step, area, and fluxes of mesh level z, respectively. 

This method is straightforward to implement because of the conservation relation for 

both fluxes and areas. Another key feature of this method is its speed, because it does 

not require calculating fluxes on coarse levels by integration. For instance, on a 

typical three level multigrid mesh configuration (2D), the number of cells of the three 

level meshes (fine, coarse and coarser mesh) are in the ratio of 12:4:1, the total 
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computing time of the 3-level multigrid wil l increase by about 10% per step 
compared to that for the baseline single grid. 

5.4 Stability and Timestep of Multigrid Approach 

The efficiency and robustness of the multigrid approach depends on accurate 

estimation of the local timestep. For steady problems, maximum local time step is 

essential for efficiency. Since the coarse meshes are very likely to be highly non

uniform polyhedral, it is very difficult to compute a stable local time step for a coarse 

mesh by Fourier analysis. Hence, we prefer a simple estimation of the local timestep. 

n n n 

/ = i / = i 1=1 

At = CFL-,—^- -, r (5.3) 
[u + c)-Ax + [v + c)-Ay + [w + c)-Az 

Here n is the number of edges or faces which form the polyhedral element and Aex,, 

Aey^ and Aez, are the projected length/area of the edge/face in three coordinate 

directions, respectively. At is the time step of the element, which volume is V. 
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Chapter 6 

Parallel Computing 

In this chapter, we review the parallel computing technique in CFD with unstructured 

meshes, covering the subjects of parallel computer, parallel programming models, 

data distribution and mapping, and communication schemes. 

Parallel computing for CFD involves software, hardware and algorithm design. It 

promotes a view of parallel computing as an engineering discipline, in which 

programs are developed in a methodical fashion and both cost and performance are 

considered in a design. The discussion of parallel computing in this chapter is divided 

into five parts. The first part is the introduction of the parallel computing environment 

and programming model. Then, the multi-block method for unstructured meshes is 

reviewed. Consequently, the mesh partitioning, data mapping method and related 

software are discussed. Next, the issue of parallel computing performance on a PC 

cluster system is discussed. The last section describes in detail the implementation of 

the parallel computing technique in the present CFD code. 
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6.1 Parallel Computing Environment 
"A parallel computer is a set of processors that are able to work cooperatively to 

solve a computational problem" (Foster 1998). By the configuration of their memory 

system, the parallel computer can be classified as multiprocessor with uniform shared 

memory system, cache-based processors with uniform shared memory system, cache-

based processors with non-uniform shared memory access system and cache-based 

processors with distributed memory system (Mavriplis 2000). It is also possible for a 

group of computers (for example, a group of PCs each running Linux or windows 

system) to be interconnected by a network to form a parallel-processing cluster 

system. 

Parallel computing has not been widely accepted in the production engineering 

environment mainly due to the complexity of parallel programming and low 

accessibility of parallel computers. On a parallel computing system, a task has to be 

partitioned and distributed appropriately among processors. In the mean time, the 

communication cost should be minimised and loads among processors balanced. 

More importantly, even with careful partitioning and mapping, the performance of an 

algorithm may still be unsatisfactory, since conventional sequential algorithms may 

be serial in nature and may not be implemented efficiently on parallel machines. In 

order to achieve optimal performance, in addition to partitioning and mapping, a 

carefiil performance study should be conducted for a given application and parallel 

system to identify the strength and weakness of this system. 

6.1.1 Parallel Programming Model 

Although the concept of parallel processing has been used for many years in many 

systems, it is still somewhat unfamiliar to most CFD researchers. Thus, before 

discussing details of the implementation, it is important to become familiar with two 

parallel architectures: SIMD and MIMD. 

SIMD (Single Instruction stream, Multiple Data stream) refers to a parallel execution 

model in which all processors execute the same operation at the same time, but each 

processor is allowed to operate upon its own data. This model naturally fits the 
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concept of performing the same operation on every element of a mesh on 
multiprocessor machines. Because all operations are inherently synchronized, 
interactions among SIMD processors tend to be easily and efficiently implemented. 

MIMD (Multiple Instruction stream, Multiple Data stream) refers to a parallel 

execution model in which each processor is essentially acting independently. This 

model most naturally fits the concept of decomposing a program for parallel 

execution on a functional basis. This is a more flexible model than SIMD execution, 

and it is f i t for both multiprocessor systems and networked systems. 

SIMD has the advantage of being easy to implement. However, when a parallel 

execution requires several different programs working together, MIMD is the choice. 

In the present study, when computing a 3D viscous flow problem, there are two types 

of blocks, prismatic and tetrahedron, present in the viscous mesh. A prismatic block 

requires a prism based flow solver and a tetrahedron block requires a tetrahedron 

based flow solver to march the solution on given meshes. Our preference is given to a 

MIMD implementation of parallel computing. 

6.1.2 Cluster of PC Systems 

In the University of Durham, there are numbers of workstations available for 

computing. These workstations are operated by the IT department in the university. 

Most of systems are running SUN OS and each of them has up to four processors. 

These workstations are providing generic computing. Email and WWW services for 

students in the university. They are inter-connected with high-speed connection 

within the IT centre. Because these workstations are not fiilly accessible to the author 

and jobs may be subject to over-crowded users, they are not suitable for any 

dedicated parallel computing tasks. 

In the thermo-fluid division in School of Engineering, University of Durham, there 

are some desktop PCs and old workstations are available for cluster computing. 

These PCs are running the Windows 95 operating system for a range of functions 

including office applications. Email and WWW services. They are connected to a 

lOM/s HUB, which is connected to the local network within School of Engineering. It 
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is well known that the Windows 95 has limited network capability, although there are 

some successful attempts made toward using PVM in Windows 9x systems (Fischer 

1999). Extra software packages (Fischer 1998) are required for running parallel jobs 

on a windows 95 system and it is not famous for its stability. Therefore, it is not 

suitable for parallel computing tasks. The good thing is that the Linux system can be 

easily installed on these PCs with ful l network functions and support of most parallel 

computing software. A dedicated computing cluster system was built using these PCs 

within School of Engineering as Figure 6.1. 

a n o 
Figure 6.1 Cluster of PCs in the University of Durham 

Cluster computing offers great potential, but that potential may be very difficult to 

achieve for most applications. However there is quite a lot of software support that 

wi l l help to achieve good performance for programs that are well suited to this 

environment, and there are networks designed specifically to widen the range of 

programs that can achieve good performance. These include a software system widely 

used to for parallel computing: PVM. 

6.1.3 The Software Package: PVM 

The development of PVM started in 1989 at Oak Ridge National Laboratory. Central 

to the design of PVM is the notion of a "virtual machine" (VM), a set of 

heterogeneous computers connected by a network that appears logically to a user as a 

single computing resource. 

PVM has some features suitable for the current implementation of parallel computing 

on a PC cluster system. 

• It is portable. In PVM, communication between hosts is done by message 

passing. PVM supplies a range of message passing API which is available to 
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most known platforms: Windows, Linux, UNIX and UNIX compatible 
systems. Thus, programs developed on one platform with PVM can be easily 
port to another platform without major modifications. 

• Process control and dynamic resource management. In PVM, program not 

only can add/delete hosts any time when necessary, but also can spawn/kill 

tasks at any nodes within V M any time. This enables the current design of the 

MIMD parallel computing model and gives the program maximum control of 

the computing process with minimum user intervention. Furthermore, the 

dynamic process control is also essential to dynamic load balancing for 

achieving maximum speedup gains on a parallel system. 

• Error tolerance. PVM can detect errors during the message transmission and 

notify the user of the errors. 

• It supports heterogeneous hosts. PVM support a range of hardware, such as 

X86 PCs, PPCs, Workstations, multiprocessor systems. It also supports the 

co-existence of a wide range of operating system in the V M : Win9X, WinNT, 

Mac OS, Linux and UNIX. It is well known that some of these systems are 

not binary compatible. PVM message passing library can translate the 

message when the source and destination hosts are not compatible. This 

enables the possibility of making use of all the old PCs and workstations 

running different operation systems. 

In the present study, PVM is used as the parallel computing platform on a PC cluster 

system. Message passing between flow solvers running on hosts across the network is 

via PVM message passing library. A control program is developed to dynamically 

manage the virtual machine and computing processes. 

6.2 Multi-Block Method and Parallel Computing 

The multi-block concept has been widely and successfully used in structured-grid 

flow solvers (Rizzi et al. 1992) to deal with the difficulties of grid generation in 

complex configurations for many years. In this method, the problem to be solved over 
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a given domain is divided into many sub-domains, called blocks. By doing this, a 
more complex geometry may be divided into a sequence of simple geometries. Then, 
a structured grid in each block can be easily generated. The blocks are interconnected 
to each other through block boundaries. This method becomes very popular in 
structured codes because of the capability of dealing with complex geometries. 

The multi-block approach in unstructured meshes does not receive much attention, 

partially because computational meshes for complex geometries can be relatively 

easy to generate using an unstructured-grid method without the aid of the multi-block 

approach. However, due to the increasing needs for generating well-formed and 

body-fitted viscous grids for 3D turbulent flow simulations, the muhi-block method 

becomes increasingly important for the unstructured-grid method. Initially, the multi-

block approach is employed in unstructured solvers to reduce the memory 

requirement. Sheng etc (Sheng, Tylor et al. 1995) reported multi-block approach 

both for structured code and unstructured codes (Sheng, Whitfield et al. 1999). They 

found the multi-block technique can significantly reduce the memory requirement for 

both structured and unstructured methods. Most importantly, the multi-block method 

exposes opportunities for parallel execution. 

Most computing problems have several parallel solutions. The best solution may 

differ from that suggested by existing sequential algorithms. The design methodology 

that we describe is intended to foster an exploratory approach for data parallelism for 

CFD applications with unstructured grids. The multi-block method meets the need for 

data parallelism: blocks are served as partitions for concurrent computing. 

6.3 Partitioning Unstructured Meshes 

Partitioning the computing grid is a fundamental component in parallel computing. In 

a cluster system, the main memory of the system is distributed over the networked 

hosts. Therefore, the program and its associated data, such as the computational grid 

and solution, must be distributed between processors. This leads to the issue of how 

to partition a large unstructured grid. 
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One partitioning scheme is to ensure every element of the mesh is assigned uniquely 
to a partition which is often associated with a processor and inter-partition boundaries 
consist of faces from the original mesh. The nodes and faces on an inter-partition 
boundeiry are duplicated. This method is often called a non-overlapped method. 
Another approach called an overlapped method involves constructing a halo zone 
between partitions, where grids are overlapped in these regions. Our choice is given 
to the non-overlapped method because the numerical efficiency of this method is 
higher than an overlapped method. 

The first objective of a non-overlapped partitioning scheme is to ensure an even 

distribution of computational workloads among the processors according to their 

computing powers. Secondly, the amount of time spent on inter-processor 

communication and on waiting for other processes to finish their computing is 

minimised. The first requirement is termed load balancing. I f the workload is not well 

balanced on a distributed system, some processors may have to wait at 

synchronization points for other processors to finish their computing in order to 

commence communication. Inter-processor communication is generated by the mesh 

surface that straddles two adjacent mesh partitions. The second requirement comes 

from the fact that the communication time cannot always be ignored especially on a 

cluster system. 

Partitioning can be done recursively starting with the problem of dividing one domain 

to A'̂  sub-domains. The mesh could be partitioned by a variety of methods. An 

obvious approach is to partition the domain according to the geometric feature of the 

particular problem. For example, a single airfoil computation could be performed 

using two domains, one on top the airfoil and one below it. This approach is popular 

in simple geometries, because it is simple, robust and quick. However, this method is 

unable to produce well-balanced partitions and optimistic partitioning, i.e. minimised 

communication volume. Our preference is given to a graph based method, such as 

METIS. 
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6.3.1 Software Package: METIS 

METIS (Karypis and Kumar 1998) is a software package for partitioning large 

irregular graphs and partitioning large meshes. It is capable of using multi-constraint 

partitioning graphs and providing high quality partitions with the option of 

minimizing the total communication volume and minimizing the maximum 

cormectivity of sub-domains. 

The algorithms in METIS can be used to compute a balanced A:-way partitioning that 

minimizes either the number of edge-cuts or the total communication volume. The 

communication volume definition in METIS is different from the communication 

cost in our parallel computing. In the present implementation, communication occurs 

where the two adjacent elements are separated into two blocks. Therefore, the edge-

cut is more appropriate to define the total communication volume. The objective of 

partitioning is down to minimise the edge-cut while balancing the load in each 

partition. 

METIS provides two programs PMETIS and KMETIS for partitioning a graph into k 

parts. Both programs provide high quality partitions. However, depending on the 

application, KMETIS is preferred when partitioning the graph into more than eight 

partitions, and PMETIS is preferred when partitioning a graph into a smaller number 

of partitions. METIS also provides a library interface that can be used in a user's 

partitioning program to partition a graph. In the current implementation, the METIS 

library that can be used be partition graphs into unequal-size partitions is linked to the 

main control program that is responsible for mesh partitioning. 

6.3.2 Mesh to Graph Conversion and Mapping 

As we discussed previously, METIS is a software package capable of partitioning a 

graph into partitions. In the present cell-centred finite volume setting, all the fluxes 

are computed along faces and accumulated to cell centres during the residual 

evaluation. To ensure the interface of two adjacent cells will not be broken, the 

triangle or tetrahedron based unstructured mesh has to be converted to its compatible 

graph for partitioning. 
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A mesh can be transformed to its compatible graph by connecting all adjacent 

element centroids. Figure 6.2 demonstrates a 2D unstructured mesh and its 

compatible graph. In three dimensions, the connection is similar to 2D, except each 

element has up to four edges connected to its adjacent elements. The graph is often 

referred to as a dual of the original mesh. In this procedure, the connection topology 

and element-cell mapping must be stored for reconstructing meshes from a 

partitioned graph. 

Figure 6.2 A 2D unstructured mesh and its compatible graph 

After a mesh is successfully transformed to its compatible graph, the METIS 

subroutine is used to partition the graph to a number of sub-graphs. It should be 

noticed that in the current setting, all the weightings on every nodes are set to be 1 

because of the fact that the amount of communication at every edge is the same. 

When the partitioning of the graph is done, the partition information based on the 

graph is mapped back to the mesh based on the connection topology and element-cell 

mapping. Thus, the original mesh is divided into several unstructured-grid blocks for 

parallel computing. Each block has a completely valid unstructured mesh, which is a 

subset of the original mesh. In this process, block boundaries between two adjacent 

blocks is constructed by duplicating nodes and faces shared by blocks according to 

the partitioning information. Natural boundaries are divided when necessary and 

assigned to blocks accordingly. 
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6.4 Performance of Parallel Computing 

The nature of the parallel computational problem, and to a lesser extent, the 

programming model, dictates the degree of communication that is required. Thus, 

unlike its counterpart serial computing, the performance of the parallel computing is 

not only evaluated based on the computer power, but also the costs of the 

communication between distributed processors over the network. In order to obtain 

optimal computing efficiency, reducing both computation and communication costs 

should be considered. 

For a given CFD problem, the total computational costs are normally bounded by the 

size of the computing mesh and numerical algorithm adopted. Additional 

computation overhead introduced by parallel computing, such as packing/unpacking 

communication data and computing block boundary multiple times, can be reduced 

by optimal program design and communication pattern. 

The communication costs are usually decided by two factors, bandwidth and latency 

of a communication system. Latency of a communication system is the minimum 

time taken to transmit one message, including any send and receive software 

overhead. Latency is very important in parallel computing because it determines the 

minimum useful gain size, the minimum run time for a segment of code to yield 

speed-up through parallel execution. Basically, i f a segment of code runs for less time 

than it takes to transmit its result value (i.e., latency), executing that code segment 

serially on the processor that needed the result value would be faster than parallel 

execution; serial execution would avoid the communication overhead. The bandwidth 

of a communication system is the maximum amount of data that can be transmitted in 

a unit of time. Bandwidth for serial connections is often measured in bits/second 

(b/s), which generally corresponds to 1/8 of the number of Bytes/second (B/s). For 

example, a lOM Ethernet transfers about 1.25 MByte/s, whereas an up-to-date PC 

with Intel Pentium IV processor with RDRAM has up to 4GB memory bandwidth. 

High bandwidth allows large amounts of data to be transmitted efficiently between 

processors. 

105 



Chapter 6 Parallel Computing 

6.4.1 Load Balancing 

Apart from the numerical algorithmic efficiency, one also needs to consider the 

performance of the overall computation, such as processor speed and communication 

speed between processors. For the traditional computing, i.e. serial computing, 

computer central processor speed is always the bottleneck. For a cluster system, the 

bottlenecks could arise because the computational loads of processors are not even or 

the communication costs are too high. 

In a cluster system, the computing time on each sub-domain is decided by dividing 

the amount of computation with the processor's power of the node. Considering the 

overall computing performance, the computing time is only affected by the slowest 

domain. Obtaining maximum efficiency leads to the amount of computation (load) of 

a partition balanced by the power of the processor, with which the partition is 

associated. 

For a parallel computing problem, the amount of computation of a partition is a 

function of the total number of elements in this partition. Therefore, to balance the 

load, the number of elements in a partition should be. 

N Total (6-1) 

/ = 1 

here P,^ is the computing power of the processor, N is the total number of processors 

and Mj„,^, is the number of elements in the global computational mesh. 

In some cases, load balancing not only means balancing of computational loads, but 

also communication costs. The execution time of a partition is denoted as: 

Here T^^^p is the computing time for the flux evaluation, boundary condition 

treatment and time integration and is the waiting time at each synchronization 

106 



Chapter 6 Parallel ComputinR 

point when the computational load is not well balanced. The third term in the right 
hand side of the equation is the communication time, which represents the 
performance penalty introduced by partitioning. It is a linear function of the 
communication volume, which is modelled by the number of duplicated faces or 
edge-cut in a partition. For a typical CFD problem on a cluster system, the 
communication volume for a block at each time step can be expressed as: 

Ko..=Z(^E,) (6-3) 

Where N^^ is number of neighbouring partitions of the block and £^ is the number 

of duplicated faces with the current neighbouring partition. /? is a constant depending 

on the computing problem and message pattern. From the equations (6-2) and (6-3), it 

is clear that load balancing also requires the number of edge-cuts in each partition to 

be balanced to obtain maximum efficiency. However, it is often very hard to achieve 

the minimum edge cut globally while edge cut numbers in every partition are equal. 

The efficiency (or speedup) of a parallel computing can be modelled as: 

= y- (6-4) 
exe 

here T̂ ^̂  is parallel execution time and is serial computing time. 

In a small cluster, the communication costs ai'e relatively small compared to 

execution time for a typical CFD problem because relatively fewer edges have been 

cut and each partition generally has few neighbours. The communication volume and 

number of edge-cuts and neighbours increase when the computing domain is 

partitioned to more sub-domains. At this stage, while the execution time in each 

partition is decreased, the speedup of the parallel computing is increased. In the mean 

time, the communication time is increased, due to the more edge-cut and each 

partition has more neighbours. When the commimication time exceeds the computing 

time in the slowest partition, the speedup wil l decrease even when the number of 
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processors and partition is increased. The maximum efficiency is reached when the 
communication time equals to the computing time. 

6.4.2 Fast Communication 

When computing on traditional parallel computers, such as a multiprocessor system, 

load balancing is very important, because the communication costs are relatively low 

due to the high bandwidth and low latency of the system. On a PC cluster system, it is 

often very important to optimise the communication because of the high latency and 

limited bandwidth of the system, which means that the communication would take 

more time. 

In the present parallel implementation on cell-centred finite volume based 

unstructured-grid solvers, flow variables of the elements that lie on both sides of a 

block boundary are required to be updated at each synchronisation point. As 

described in chapter 3, ghost elements are employed as the receiving buffer to store 

the flow data from the other side of the boundary. In addition, the flow data on the 

nodes that lie on the block boundary have to be updated to keep the interface 

consistence across the flow field. The exchanging of data between different zones on 

every synchronization point is done by message passing over the network. 

The message is a package of data that consist of message type, destination, message 

length and actual message data. Depending on cases, the length of the message can 

vary from a few bytes to several Megabytes. The transmission time could be ranging 

from several hundreds of microseconds to several seconds on a typical Ethernet 

compared to be normally several microseconds for random memory access on a 

shared memory parallel system. Therefore, minimization of communication for 

parallel computing on a distributed system is vital for performance. 

6.5 Parallel Implementation on Distributed Systems 

The implementation of distributed-memory explicit message passing parallel 

computing on unstructured-grid flow solvers has been discussed extensively in 

references (Venkatakrishnan, Simon et al. 1991; Mavriplis 2000) In this section, we 
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focus on issues of the present multi-block parallel implementation, including the data 

structure, block interface treatment and message passing pattern. 

6.5.1 Data Structure and Interface Treatment 

A very important issue in the parallel computing is the interface treatment, i.e. the 

block boundary treatment, which is vital to accuracy and stability of a solution. 

A partition or block interface is where two blocks are next to each other. Figure 6.3 

depicts block interfaces between three 2D unstructured meshes. It is clear that faces 

on an interface are shared by two blocks, and a point may be shared by more than two 

blocks depending on its location. After partitioning, these points and faces are 

duplicated and distributed to corresponding blocks, which are often associated with 

processors across the network. This information must be stored to be available to 

relevant flow solvers. In the present edge-based data structure implementation, a set 

of interface arrays is declared to store this information. An interface node array is 

allocated to store IDs of nodes on interfaces in this partition, corresponding node IDs 

in the other block, ID of the partition, and how many times this point has been 

duplicated. An interface edge array is used to store the current face IDs in this block, 

corresponding face IDs in the other block, and the ID of the other block. 

BlockA 

Block B 

Block C 

Interface Nodes 

Interior edges 
Block Interfaces 

Figure 6.3 Block interface 
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Block 1 

P2 

PI 

B' 

Block 2 

A' 

P2 

Figure 6.4 Interface treatment 

In parallelised flow solvers, these block boundaries are treated as internal faces, i.e. 

using the same way to evaluate fluxes across these faces. At the pre-processing stage, 

the contribution (used for the weighted averaging procedure) of each block to 

boundary nodes is calculated and sent to corresponding blocks. At each 

synchronization point, there are two phases. First, the flow variables of the nodes that 

lie on a block boundary are updated by sending and receiving messages. As shown in 

Figure 6.4, flow variables of nodes PI and P2 are updated by message passing at this 

stage. Then, the flow variables near the boundary face are evaluated using formulae 

described in 3.4.5 and sent to the other block. In Figure 6.4, the flow variables near 

P1-P2 in element A is used to update the values of A' in block 2. 

A synchronization point is placed immediately after the boundary condition 

treatment, so that the information of either side of the block could be updated with the 

aid of PVM message passing API. 

6.5.2 Message Passing Pattern 

Message passing is a programming model for interactions between processors within 

a parallel system. In general, a message is constructed by a program on one processor 

and is sent through an interconnection network to another processor, which then must 

accept and act upon the message contents. Thus, message passing can yield high 

efficiency mziking it a very effective way to transmit a large block of data from one 
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processor to another. However, the overhead in handling each message including 
latency could be high, which could lead to a major dropping in performance. In order 
to minimize the need for expensive message passing operations, data structures within 
a parallel program must be spread across the processors so that most data referenced 
by each processor is in its local memory. This task is known as mesh partitioning in 
CFD terms. 

The actual cost of transmission of a message can often be modelled by a linear 
relationship, 

Tc=T[+T^+aM + T', (6-5) 

where T[ and are the communication latency of the sending/receiving system, 

is the cost for preparing the message (including copying, packing and unpacking) 

that is linearly related to the length of the message, a is the rate of bandwidth for 

data transfer between two processors and Mis the message length. 

In a parallel system, the total cost of N message transmission on every 

synchronization points wil l be A'̂  • . Because and a can be considered as 

constants and is only related to the message length, one can either reduce the total 

message numbers or the message length to reduce the total communication cost. For a 

given partitioned mesh, the total communication volume is constant. Reducing the 

number of messages to be transmitted becomes an obvious choice to reduce the 

overall communication cost. 

In the present 3D flow solvers, a 3D block (sub-grid) may consist of a number of 

triangular or rectangular faces. Each element of these boundaries contains three 

(triangle) or four (rectangle) nodes, two neighbouring element IDs (one in the current 

block and one in the other block) and the neighbouring block ID. At each 

synchronization point, the flow variables of the boundary elements in the current 

block should be sent to its neighbouring blocks to overwrite values in ghost elements. 

For a typical 3D block, it may consist of several thousands of such boundary faces. 
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That means equal amount of messages are required to be sent at each synchronization 
point. As we mentioned previously, the latency of a PC cluster system is very high, 
one can expect a very low efficiency outcome with such a scheme. To reduce the 
number of messages to be transmitted, all the boundary faces sharing the same 
neighbouring block are collected and compiled to several sending buffers and 
receiving buffers prior to any communication. Each sending buffer contains the 
destination block ID and IDs of the elements in the current block to be sent. Each 
receiving buffer contains the block ID that the incoming message is expecting and the 
IDs of ghost elements that the message data should be unpacked for. 

At each synchronization point, the flow variables of these in the send buffer are sent 

to their destination process according to their neighbouring block ID. When a 

message is received, the destination ID is checked and unpacked according to the 

receiving buffer. In this manner, each block only sends and receives the number of 

messages equal to the number of their neighbours. Thus, the overhead due to latency 

of the network is reduced. 

6.5.3 Parallel Programming in a Cluster System 

In parallel computing of a CFD problem on a cluster system, the partitioned sub-

domains (blocks) are distributed across processors in the cluster system. During the 

parallel execution, inter-communication between blocks to determine block boundary 

conditions at each time integration step is required. In a system with shared memory, 

one can simply "copy" the memory from a block boundary array to its corresponding 

zone boundary array. This procedure is very simple and efficient because of the high 

bandwidth and low latency of the system memory. Unfortunately, this method cannot 

apply to a cluster system with distributed memory. For a cluster system, the 

communication is implemented using the PVM message passing library and the inter-

processor communication pattern is pre-determined at run time. 

MIMD is a flexible programming model. It allows different programs working 

together. In the present parallel implementation, a master/slave programming model 
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is adopted. The master process is a control process with a range of the 

responsibilities, including: 

1. Pre-processing. The master process reads the computing mesh and 

configurations for parallel computing, adds computing nodes that are not 

currently in V M . 

2. Partitioning the computing mesh. After reading the computing grid and 

partitioning instructions, the master process coverts the mesh to its compatible 

graph, partitions the graph and then maps the partitioned graphs to the 

computing meshes. 

3. Initialising computing processes across the network and detecting faulty 

nodes. After computing processes are spawned, partitioned computing 

meshes, initial and boundary conditions are sent to corresponding processes in 

the network by the PVM message passing library. 

4. Sending the initial data to computing processes and receiving the final resuh 

from them. When the solution is converged, computing processes are 

terminated by the control process. 

There are two types of flow solvers serving as slave computing process: TetraSD and 

Prism3D. The TetraBD is a tetrahedron based flow solver and the PrismBD is 

prismatic element based. Each of the solvers can be run in the parallel mode or single 

process mode. After a flow solver is launched, it wil l try to get its V M parent process 

id. I f the parent id is - 1 , it indicates no V M parent is present and it turns into the 

single process mode. In single process mode, it will turn off any parallel subroutines. 

When in parallel mode, it will receive the partitioned computing mesh from the 

control process and send/receive any messages at each synchronization point. The 

following flow chart (Figure 6.5) represents a simple parallel computing job with one 

tetrahedron block and one prismatic block, in which the dash lines represent 

communication among processors. 
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Figure 6.5 Flow chart of parallel computing 
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Chapter 7 

2D Validation and Discussion 

In this chapter, Euler/Navier-Stokes algorithms based on unstructured-grids 

developed in the previous chapters are examined on a range of 2D flow cases. These 

cases are served to validate the solution algorithms for inviscid, laminar and turbulent 

flows, and to assess accuracy and efficiency of these methods. 

The basic algorithms developed in Chapter 3, including the upwind scheme, explicit 

multi-stage Runge-Kutta method, spatial second order scheme and cell-centred finite 

volume method, are examined and validated on several selected inviscid flow cases. 

The results are compared to analytical and experimental data to assess overall 

accuracy of the algorithm. Several laminar and turbulent flow cases are presented to 

validate the viscous term treatment and to confirm the correct implementation of the 

turbulent model. The inflation mesh generation technique developed in Chapter 4 is 

demonstrated in several turbulent flow cases. 

The adaptive mesh refinement technique is demonstrated in both inviscid and viscous 

turbulent flow cases to assess accuracy of this method. The efficiency of the multigrid 

method developed in Chapter 5 is examined in both inviscid and turbulent flow 

simulations. The results of turbulent flow simulations also serve to demonstrate the 

effectiveness of the present aspect-ratio adaptive multigrid method. 
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7.1 Results for Euler Algorithm 

In this section, the Euler equations are solved on a cell-centred finite volume setting 

using an upwind scheme on several inviscid flow test cases. The first case is subsonic 

flow in a 2D channel with a bump. This case is designed to demonstrate the overall 

accuracy of the second spatial order scheme. The second test case is the simulation of 

transonic flow over a NACA 0012 airfoil to examine the efficiency and accuracy of 

the mesh adaptation technique. The third case is transonic flow around a RAE 2822 

airfoil. This case is to demonstrate the effectiveness of the multigrid in inviscid flow 

simulations. 

Al l numerical results presented in this section are obtained using the spatial second 

order scheme as described in Chapter 3. Roe upwind scheme (3.4.3) is used to 

evaluate fluxes across internal edges. The solutions are advanced to steady states by 

using a four-stage explicit Runge-Kutta time integration with local time stepping. 

7.1.1 Subsonic flow in a 2D Channel 

The first test case is a 10% thick circular arc bump in a channel. The flow approaches 

at a zero incident with an inlet Mach number ofM^„,^, =0.5 . This case has been 

widely used by many researchers due to simplicity of the geometry (Allmaras 1989). 

Figure 7.1 Unstructured-grid in a 2D channel 

Figure 7.1 shows the computational unstructured-grid used in this case, which is 

generated by the mesh generator developed by the author (Zheng 1995). The mesh 

contains 699 points and 1,285 triangles. The flowfield is completely subsonic with 

stagnation points at the leading and trailing edge of the bump as shown by Mach 
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number contours (Figure 7.2). Figure 7.3 is the distributions of Mach number and 

pressure (non-dimensionlised) on the upper and lower walls (Figure 7.3). 

..-0.606916-

Figure 7.2 Mach number contours 

MACH 
PRESS 

Figure 7.3 Mach number and Pressure distributions on the wall 

In this case, the overall quality of the solution is indicated by symmetry distribution 

of the flowfield about the bump. Reasonably good symmetry of Mach number 

distribution is observed in Figure 7.2 and 7.3, except from the bump trailing edge to 

exit plane due to the propagation of the numerical dissipation. It is also noticed that 

the simple reflected exit boundary condition treatment (3.8) also contributes to the 

non-symmetric distribution near the exit plane. 
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7.1.2 Transonic Flow over a NACA 0012 Airfoil 

The second test case is the transonic flow over a NACA 0012 airfoil. This case is 

designed to examine the shock wave capturing ability of the present 2D unstructured 

flow solver and to assess the accuracy of the solution with the mesh adaptation 

technique. 

The flow over the NACA 0012 airfoil approaches at a free stream Mach number of 

0.8 with an incidence angle of 1.25°. The far field boundary is approximately circular 

and placed at a distance of five chords away from the airfoil to minimise the 

disturbance. Figure 7.4 shows the initial coarse unstructured-grid, which contains 581 

nodes and 1,097 triangles. 
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Figure 7.4 The initial computational mesh around NACA 0012 

The computing begins on the coarse mesh (Figure 7.4). The mesh adaptation is 

enabled and the refinement criterion is set to static pressure because of the inviscid 

nature of the flow. The Direct Connected Multigrid (DCMG) is used to accelerate the 

solution. After three times of successive mesh adaptations, the solution reaches a 
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steady state. The sequence of the meshes used in the different phases of the 

computation is plotted in Figure 7.5. The mesh near the airfoil is refined repeatedly 

due to the high pressure gradients in this region. High density of the mesh on the 

upper surface regions indicates the presence of a strong discontinuity. Most of the 

triangles are well formed due to the mesh relaxation procedure after each refinement. 

(a) Initial mesh around the airfoil (b) Refined mesh 1 

(c) Refined mesh 2 (d) Final mesh 

Figure 7.5 Sequence of the unstructured meshes 

Figure 7.6 is the plot of Mach number contours of the flowfield. Both the strong 

shock on the upper surface and the weak shock on the lower surface are well 

resolved. This is due to the mesh refinement in these regions, as depicted in Figure 
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7.5. It is often very important to investigate the changes of entropy (e = I n - ^ ) of 

a solufion to determine the accuracy of a scheme. For convenience, the entropy 

function ( S = - ^ ) is used to model the entropy increase (— 1). Figure 7.7 shows 

the entropy increase contours. As we know, entropy increase should be zero for an 

inviscid flow upstream of the shock wave. As can be seen in Figure 7.7, the computed 

values near the leading edge are below 0.5%, which is a good indication of local 

accuracy of this solution. Adaptive mesh refinement is evident in the region of the 

leading edge, and in the vicinity of both the upper shock and the lower weak shock 

waves. The distribution of the surface pressure coefficient ( — — ^ ) shows very 
iPv^ 

good agreement with the structured grid calculation of Ref (Anderson et al. 1986) in 

Figure 7.8. 

1.3052 
0.630852 

Figure 7.6 Mach number contours 
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Figure 7.7 Entropy increase contours 

The convergence history of the entire calculation is shown in Figure 7.9. After each 

adaptive refinement, flow variables are interpolated to the new mesh and a series of 

multigrid levels is built up based on this new mesh. With 3 levels of multiple grids 

(DCMG) and 3 stages of adaptive mesh refinement, the solution procedure converges 

very rapidly. This case takes about 3 minutes on a Pentium I I 450 PC. It is evident 

that the present multigrid is effective for the inviscid flow simulation. 
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Figure 7.8 Pressure coefficient distribution on the airfoil 

121 



Chapter 7 2D Validation and Discussion 

s r - 1 

5-2 
•o 

I 
K -3 

4 
X L 

1 

0 100 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 

Time step 

Figure 7.9 Convergence history 

7.1.3 Transonic Flow over R A E 2822 Airfoil 

The final test case for the Euler algorithm is transonic flows over a RAE 2822 airfoil, 

which is developed by Cook et al (Cook et al. 1979). A range of experiments has 

been carried out at the Royal Aircraft Establishment, UK. In the present study, a 

transonic flow case corresponding to the experiment case 10 is simulated. 

In this case, the flow approaches the airfoil at M„ = 0.75 with an incidence of 

a = 3.19°. In the experiment, a strong shock wave located at about 53% chord of the 

upper surface is observed. The main objective of this case study is to assess the 

effectiveness of the multigrid method for inviscid flow simulations. 

The computational mesh (Figure 7.10) for this case consists of 5,217 points and 

10,320 triangles. It is generated by the 2D mesh generator in the GRUMMP (Ollivier 

Gooch 1998). The mesh adaptation function is disabled in this case because the main 

objective of this case is to examine the effectiveness of the present multigrid method. 

Three levels of multigrid, as plotted in Figure 7.11, are used to accelerate the inviscid 

solution. These coarse meshes are generated with the DCMG method based on the 

connectivity of triangles. 
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(a) Full field view of mesh 

(b) Unstructured-grid near the airfoil 

Figure 7.10 Computational mesh around R A E 2822 airfoil 
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I \ 

(A) First level of coarse meshes 

-1 

(B) Second level of coarse meshes (C) Third level of coarse meshes 

Figure 7.11 Sequence of coarser levels 

Two computations with the same flow conditions are performed: a single grid and a 

mulfigrid. The unstructured mesh used in both computations is plotted in Figure 7.10. 

The final flowfield for both computations are identical. Figure 7.12 is the plot of 

Mach number contours. The incoming flow is accelerated to supersonic on the upper 

surface of the airfoil and a strong shock is formed at around 70% of the chord. Figure 

7.13 shows the comparison of the pressure distribution on the airfoil with 

experimental data (Cook et al. 1979). The pressure coefficient shown in the plot is 

defined as C„ With this definition, could exceed 1.0 in the leading 
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edge area. The pressure on the upper surface is in reasonable agree with experimental 

data before the shock wave, but it is clear that the inviscid solver fails to predict the 

location of the shock wave correctly. This highlights the importance of viscous 

effects in transonic flow simulations. Figure 7.14 is the comparison of the 

convergence histories of the single grid and muUigrid computations. With three levels 

of coarse meshes, the multigrid converges within 1000 steps and it takes a much 

longer time, around 8500 steps, for the single grid to reach a steady solufion. 
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Figure 7.12 Mach number contours 
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Figure 7.13 Comparison of the surface pressure distribution 
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Figure 7.14 Comparison of Convergence histories 

Although both computations fail to predict the location of the shock wave as 

expected, very good acceleration is observed in the multigrid computation. With three 

levels of coarse meshes, the solution converges in 20 minutes on a PII 450 PC. It is 

evident that the direct connectivity based multigrid can deliver up to 7 times of 

speedup in inviscid computations. 

7.2 Laminar Flows over a Flat Plate 
In this section, the simulation of the flat plate boundary layer is carried out to 

demonstrate the accuracy of the viscous term treatment and to examine the influence 

of the mesh with a high aspect ratio on the present 2D unstructured solver. The 

computations are carried out on a triangular based unstructured mesh (Figure 7.15a) 

for M„ = 0.2 at various Reynolds numbers. The accuracy is assessed by comparing 

the flat plate flow solution with the Blasuis similarity solution, which can be regarded 

as the exact solution for incompressible laminar boundary layers on a flat plate. 
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(a) Full field view of the unstructured-grid 
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(b) Unstructured-grid near the wall 

Figure 7.15 Computational grid for the flow over a flat plate 

The unstructured mesh (Figure 7.15) used in the various laminar flow simulations is 

generated by subdividing a 61x31 H-topology structured-grid. The mesh is uniform in 

streamwise spacing and highly stretched near the solid wall (Figure 7.15b). The 

maximum aspect ratio near the solid wall is around 30. In all flat plate boundary 

layer calculations, the Mach number is kept at 0.2 to minimise the compressibility 

effect. 

The first computation is performed at a Reynolds number of 5 x l 0 \ Figure 7.16a 

shows the comparison of the boundary layer velocity profile, where T] is 

(7-1) 
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and ŵ , is the velocity of farfield. With 12 grid lines (excluding the first grid line 
which lies on the wall), the velocity profile is well modelled against the Blasius exact 
solution. Figure 7.16b is the comparison of the skin friction coefficient Cj , 

^ *Re, (7-2) 

with from the Blasius analytical solution, 

(7-3, 

and the Icoal Reynolds number based on x is obtained from the reference Reynolds 

number. 

Re^=M*Re (7.4) 

In the skin friction coefficient plot (Figure 7.5b), some disagreements are shown near 

the leading edge of the plate and the trailing edge. The disagreement at the leading 

edge suggests some numerical errors or compressible effects, while at the trailing 

edge, the simple boundary condition treatment is likely to be the reason. This issue 

can be addressed by adding a buffer zone at the trailing edge to smooth the pressure 

changes from the inner boundary layer to a free flow condition. 

To further investigate the accuracy of the present solution method, numerical 

simulations are carried out at different Reynolds numbers. Figure 7.17a at 

Re = 1x10'' and Figure 7.17b at Re = 4x10 ' ' , respectively. By using various 

Reynolds numbers, various boundary layer thicknesses can be obtained on one 

unstructured-grid. The velocity profile agrees well with the Blasius solution when the 

Reynolds number is doubled from 5 x l O \ When the Reynolds number increases to 

4x10' ' , some disagreement can be observed in Figure 7.17b, which suggests too few 

grid lines in the boundary layer. It is noted the upwind procedure requires only 9 
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points to resolve the boundary layer well (Figure 7.17a), whilst our experience 

suggests typically 20 points or more would be needed for central difference schemes 

with the artificial viscosity. 

0.6 H 

o Unstructured-grid solution 
Blasius solution 
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(b) Local wall friction coefficient 

Figure 7.16 Laminar flow over a flat plate 
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Figure 7.17 Velocity profiles at various Reynolds numbers 
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7.3 Results for Turbulent flows 
In this section, turbulent flows are simulated to validate the correct implementation of 

the turbulence model and to assess the accuracy and efficiency of the present 2D 

unstructured flow solver. These include low speed flow over a flat plate, transonic 

flows around the RAE 2822 airfoil and low speed flows in a linear turbine cascade. 

7.3.1 Turbulent Flows over a Flat Plate 

The flat plate boundary layer solution serves to confirm the correct implementation of 

the Spalart-AUmaras turbulence model. Numerical results are compared with an 

empirical formula: the law of the wall. 

In this case, the undisturbed incoming flow is approaching the flat plate at = 0.2 

and Re^ =2x10*. Because natural transition cannot be predicted by the present 

model, a trip point is placed at 10% of the plate length to produce transition to 

turbulent flow. This is done by the transition terms in the turbulence model (3.24). 

The computation is carried out on the same unstructured mesh used in the previous 

laminar flow computation. At the farfield, the turbulence dependent variable v is set 

to 0.001 for numerical reasons. A no-slip condition is applied on the solid wall. 
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Figure 7.18 Velocity profile against the law of wall 
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Figure 7.18 shows the resuh in terms of the velocity profile using the Spalart-

Allmaras one-equation model at 50% length of the flat plate. The calculated velocity 

profile agrees well with the law of the wall. Figure 7.19 is the convergence history of 

the computation. The residual goes down rapidly before 1000 time step, but slows 

down after 1000 time step. This indicates that the explicit single grid solver is 

effective in damping the high order frequency errors and less effective against the low 

order frequency ones. 
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Figure 7.19 Convergence history 

In this simplified boundary layer problem, the 2D unstructured-grid based flow solver 

accurately predicts the velocity profile. This indicates the correct implementafion of 

viscous terms and the turbulence model. The convergence history reveals the need for 

more effective convergence acceleration means for viscous flow computations. 

7.3.2 Turbulent Flow over RAE2822 Airfoil 

The second test case is the turbulent flow around the RAE 2822 airfoil at = 0.75, 

Re„ = 6.2x 10*, and a = 3.19°. This corresponds to the condition of test case 10 in 

Ref. (Cook et al. 1979). The similar inviscid computation can be found in 7.1.3, in 

which the shock wave position has not been predicted correctly. Here the same case is 
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computed including viscous effects to examine the capacity of the present flow solver 

to simulate the boundary-layer and shock wave interaction problem as well as to 

assess the accuracy of the adaptive mesh refinement technique and effectiveness of 

the present multigrid method in viscous flow simulations. 

(a) Initial mesh 

(b) Final mesh 

Figure 7.20 Unstructured-grid around the R A E 2822 airfoil 
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With the mesh adaptation technique, a relatively coarse unstructured grid generated 

with the Advance Front method is used as an initial mesh, plotted in Figure 7.20a. It 

consists of 2,329 nodes and 4,491 triangles. The solution is obtained on a fine mesh 

(Figure 7.20b) with 5,846 nodes and 11,457 triangles after four successive adaptive 

mesh refinements. It is clear that most element subdividing occurs in the wake region 

and near the airfoil. The high density of the grid on the upper surface indicates the 

capture of a strong discontinuity. Figure 7.21 shows a close view of the 

computational grid near the airfoil. The computational grid in the leading edge region 

is well formed as shown in Figure 7.21. The mesh near the solid surface is highly 

stretched (the maximum aspect ratio is about 25) to resolve the boundary layer. The 

typical of the first point of f the wall is 20 and a wall function is employed. 

(a) Around the airfoil 

(b) Near the leading edge 

Figure 7.21 Computational grid near the airfoil 
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Figure 7.22 shows the computed result in terms of Mach number contours, 

demonstrating that the shock wave is well resolved. Figure 7.23 is the plot of eddy 

viscosity contours near the airfoil. The comparison of the computed surface pressure 

and experimental data is shown in Figure 7.24. The shock wave location and pressure 

distribution near the leading edge obtained using the Spalart-Allmaras model agrees 

well with the experimental results. However, it seems the pressure coefficient is 

over-estimated after the Shockwave. This indicates the separation induced by the 

shock wave is not well predicted. 

0.91406 

n.664773 

0.664773 

Figure 7.22 Mach number contours 

Figure 7.23 Eddy viscosity contours 
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Figure 7.24 Comparison of surface pressure distribution 

The effectiveness of the aspect-ratio adaptive multigrid for the high Reynolds number 

flows is evaluated in this case. The mesh used here is the final refined mesh of the 

last simulation, and the maximum aspect ratio is about 25. The solutions are obtained 

in three different ways: Single grid (SG), the Direct Connected Multi-Grid (DCMG) 

and the Aspect-ratio Adaptive Multi-grid (AAMG). Figure 7.25 shows the meshes of 

the sequence of AAMG. A four-stage Runge-Kutta scheme is used in all calculations 

with a fixed CFL number around 1.2. Figure 7.26 shows the convergence histories for 

the three calculations. It can be seen that the solver with the aspect-ratio adaptive 

multigrid gives about 6 times speedup compared to the single grid solver and two 

times speedup compared to the direct connected multigrid solver. The direct 

connected multigrid can give about 3 times speedup. It should be noted that DCMG 

and AAMG methods increase by about 12% the computing time per step compared to 

the single grid because of extra calculation of the fluxes and residuals on coarse 

levels. 
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(a) Fine mesh 
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(b) The first coarse level 
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(c) The second coarse level 
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(d) The third coarse level 

Figure 7.25 Multigrid meshes used in AAMG near the airfoil 
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Figure 7.26 Convergence histories 

7.3.3 Turbulent Flows in a Turbine Cascade 

The simulations of turbulent flows in a turbine cascade have been selected as a test 

case for the performance and accuracy of the present 2D code when large scale 

separation is present. He (1998) conducted exhaustive studies using both numerical 

and experimental methods of this case. In this case, flows in a low-pressure turbine 

cascade with inlet flow angles of 20° and 40° are simulated at Re = 2.2x10'. In 

both cases, a large turbulent separation bubble appears on the pressure surface near 

the leading edge, and a small laminar separation bubble with transition and 

reattachment appears on the suction side, as observed in the corresponding 

experiment (He 1998). In the present calculations, the flow is assumed to be fully 

turbulent from the leading edge, and no attempt is made to resolve the small laminar 

bubble on the suction surface. 
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Initial mesh 

Inner layer 

Figure 7.27 Computational meshes around a turbine blade 

The initial mesh used in both calculations is generated by the Advancing Front 

method, as plotted in Figure 7.27. The initial mesh consists of 4,347 nodes and 8,295 

triangles. The solution for the case with an 40° incoming flow angle is obtained on a 

mesh with 8,500 nodes and 16,441 triangles after three successive adaptive mesh 

refinements. The velocity criteria are used to decide whether to subdivide elements 

because strong viscous effects are likely to dominate the flow. Figure 7.27 illustrates 

the initial mesh (upper part on the left), the final mesh (bottom part on the left) and 

the local refinements near the blade and the wake region. 

Figure 7.28 Mach number contours 
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Figure 7.29 Flow vectors near the separation 
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Figure 7.30 Pressure coefficient comparison 

Figure 7.28 shows the computed resuh in terms of Mach number contours in the 

whole flowfield. Figure 7.29 illustrates the flow vectors in the separation region. The 

calculated separation bubble starts from about 10% chord and reattaches at about 25-

30% of the chord. This agrees with the experiment very well. The comparison of the 

pressure coefficient { — — — ) , which is total pressure at the inlet, p2 is the static 
Po-Pi 
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pressure at the outlet) distribution with experiment (He 1998) is plotted in Figure 

7.30. Figure 7.31 is the convergence history for the turbulence calculation with three 

adaptive mesh refinements and three levels of multiple grids (AAMG). 
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Figure 7.31 Convergence history 

An examination of two different multigrid methods, AAMG and DCMG was carried 

out on the turbine cascade with an incoming flow angle of 40° when high grid aspect 

ratio is present. The computational mesh used in this case is the final mesh of the 

previous computation, which consists of 11,309 nodes and 22,038 triangles. Figure 

7.32 shows the meshes near the leading and trailing edge, the mesh near the blade is 

highly stretched to resolve the boundary layer. The maximum aspect ratio of the grid 

is about 60. 

The calculations using two distinct multigrid methods: AAMG and DCMG are 

performed with the same CFL number, boundary conditions and initial condition. 

Figure 7.32 shows the convergence histories of the solutions with AAMG and DCMG 

method. The AAMG solver converges rapidly in 4,100 steps. The DCMG solver 

converges 2.5 times slower than AAMG solver and also indicates some oscillatory 
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behaviour. It is evident that in the high aspect ratio case the Aspect-ratio Adaptive 

Multi-Grid method is more effective. 

Figure 7.32 Close view of the mesh near the leading and trailing edge 
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Figure 7.33 Convergence histories 

It has been proven that the present 2D flow solver is capable of capturing the small 

separation bubble and flow reattachment present this case. In the following test case, 

the incoming flow angle is decreased to 20° to examine the effectiveness of the 
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present multigrid and mesh adaptation techniques in the presence of massive 

separation of the flow field. 

When the incoming flow angle decreased to 20° in the same cascade, a massive 

separation occurs in the pressure side of the blade, as described by He (1998). The 

initial computational grid is the same as the 40° flow angle case. After 3 times of 

mesh adaptations, the flowfield reach a steady state. Figure 7.34 shows the closeup 

view of the final mesh. It is clear that the mesh is adaptively refined in the separation 

region (Figure. 7.34a) and the wake region due to high gradients of velocity. 

(a) Computational mesh in the seperation region 

(b) computational grid near the trailing edge 

Figure 7.34 Close view the final mesh 
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The result in terms o f Mach number is plotted in Figure 7.35. It is clear that the wake 

is resolved by the mesh adaptation. Flow vectors and eddy viscosity contours are 

presented in Figure 7.36. The f l ow separates near the leading edge and reattaches at 

about 38% o f the chord. This agrees well wi th the experiment. 

Figure 7.35 Mach number contours 

Figure 7.36 Flow vectors and eddy viscosity in the separation region 

Figure 7.37 shows the comparison o f the pressure distribution wi th the experimental 

data; it shows a good overall agreement. Figure 7.38 is the convergence history for 

the turbulence simulation with three adaptive mesh refinements and three multiple 
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grids ( A A M G ) . In this case, the convergence is clearly affected by the separation and 

reattachment o f the f low. 
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Figure 7.37 Blade pressure distribution 
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Figure 7.38 Convergence history 

7.4 Concluding Remarks 

A 2D f low solver based on a cell-centred finite volume scheme using unstructured-

grids has been developed for solving Euler/Navier-stokes equations and has been 
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presented. Several inviscid/viscous f low simulations were performed on the 2D 
unstructured grid based f low solver. The accuracy and the efficiency o f this method 
were investigated. The fol lowing conclusions have been drawn: 

The spatial and temporal discretisation scheme used in the present 2D f low 

solver has shown to be accurate and efficient in solving both inviscid and 

viscous steady f l o w problems. The Roe upwind scheme is accurate in 

simulating Shockwave and boundary layer interaction problems. The 

turbulence model used in the present solver is accurate in simulating boundary 

layer problems. 

The inflation method for solving viscous f low problems, such as turbulent 

flows around the RAE 2822 airfoil and in the turbine cascade, has been shown 

to be effective and efficient in solving viscous problems. The diff icul ty in 

generating the highly stretched grids near the solid wall is reduced by using 

this method. 

Adaptive mesh refinement exhibits great potential to improve the accuracy o f 

the solution as is shown in simulations o f inviscid f l ow around the N A C A 

0012 airfoil , turbulent flows around the RAE 2822 airfoil and turbulent flows 

in the turbine cascade. This method is able to concentrate the computing 

resource where it is most needed. The over-resolved problems can be 

countered by a carefully designed error indicator and the two-phase 

refinement procedure. 

The multigrid method developed in the present research has been shown to be 

efficient in simulations o f both inviscid and viscous flows. The Adaptive 

Aspect-ratio Mult i -Grid method is particularly effective in solving viscous 

f l ow problems. In inviscid f low problems, the method becomes a semi-

coarsening method. Reasonably good speed-ups compared to a single grid 

solution are observed. 
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Chapter 8 

3D Validation and Discussion 

Several test cases are presented in this chapter to validate the Euler/Navier-Stokes 

algorithms on 3D unstructured-grids as described in previous chapters. Two 

distinctive 3D cases are the f low around a transonic airfoil (the ONERA M 6 wing) 

and that around a low speed wind turbine blade (the NREL Phase I I Wind turbine). 

Accuracy and speed of the 3D f low solvers are studied on various configurations. The 

accuracy is achieved with the high order spatial discretisation method and an upwind 

scheme. Mult igr id schemes and parallel computing techniques are used to accelerate 

solutions to steady state and to reduce overall computing time. Furthermore, an 

alternative discretisation scheme is applied to viscous f low simulation o f boundary 

layer problems to improve the overall accuracy and efficiency of the solutions. 

Applications of two distinct three dimensional f l ow solvers (a prismatic mesh based 

and a tetrahedron mesh based) developed in the current research are presented in this 

section. Both are completely standalone CFD codes capable o f solving various f low 

problems. Furthermore, both o f them are capable of serving as a slave computing 

process in the parallel computing mode. As described in previous chapters, the 

prismatic based solver is aimed at viscous effect dominated regions for efficiently 

resolving the boundary layer characteristics o f the f low, and the tetrahedron based 

solver is targeted at the outer regions where the viscous effect is relatively small or no 

boundary layer characteristic is present. 
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Results o f parallel computing on a small Linux clustered PC system are also 
presented in this chapter. The capability o f the cluster is assessed by the speedup on 
computing a 3D inviscid f low problem wi th different partition schemes. 

8.1 Inviscid Flows around ONERA M6 Wing 
The first 3D case considered in this section is the simulation o f the transonic flow 

past an ONERA M 6 wing. The configuration has been widely used as a benchmark to 

validate three dimensional solution algorithms and to evaluate the performance o f 

solution methods. The wing has a symmetrical airfoil section, a leading edge sweep 

angle o f 30 degrees, and an aspect ratio o f 3.8. The root chord o f the airfoil is 0.67m 

and the semi-span of the wing is 1.0m with a rounded tip. The geometry o f the M6 

wing is provided by NPARC Alliance Validation Archive (NASA 1999). 

The test case presented here has an incoming flow at M „ = 0.8395 and a flow angle 

of 3.06°, which corresponds to the test 2308 fi*om the report by Schmitt and Charpin 

in the A G A R D Report AR-138 (Schmitt and Charpin 1979). A t this condition, two 

strong Shockwaves are developed on the upper wing surface. Correctly resolving the 

locations o f these two Shockwaves is the key indicator o f solution accuracy. This 

computation is used to validate the basic 3D algorithm as well as to examine the 

performance o f the multigrid method for inviscid computations. 

The computing mesh (Figure 8.1) for the inviscid computation is generated by GMSH 

developed by Geuzaine and Remade (1999) in a semi-sphere domain with a radius o f 

5 times o f the main chord o f the wing. The 3D unstructured mesh consists o f 29,432 

nodes, 168,432 tetrahedral elements with 8,642 triangular cells on the wing surface. 

The overview o f the surface mesh on the wing and the symmetric plane is plotted in 

Figure 8.1a, where the centre o f the symmetric plane located at the trailing edge o f 

the root o f the wing. The farfield, which is almost a half sphere, is plotted in Figure 

8.1b. Figure 8.1c is the close view of the surface meshes o f the wing. 

The inviscid computation is performed using the tetrahedral based flow solver with 

an explicit 4-stage Runge-Kutta time stepping method and the multigrid technique. 
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Three levels o f multigrid are employed in the calculation: the original mesh and two 
coarse levels generated by the D C M G method described in Chapter 5. The computed 
result is presented in terms of Mach number contours on the wing surface in Figure 
8.2. Two shock waves and their crossing are clearly visible on the wing surface. To 
investigate the Shockwave position, comparisons of pressure distributions 

(c = ^ " ~f ) at sections located at 20%, 44%, 90% and 95% of the span are plotted 

in Figure 8.3. It should be noted that the current computation is performed without 

viscous effects. The Shockwave positions are generally well predicted, better than one 

would expect f rom an inviscid solution. This might be due to numerical viscosity and 

dissipation introduced by the coarse mesh on the wing surface (Figure 8.1c). 

To assess the performance o f the direct connectivity based multigrid method, a single 

grid computation is performed on the same grid with the same CFL number starting 

f rom free stream conditions. The convergence histories for the single grid and the 

previous multigrid solution are plotted in Figure 8.4. A 4-5 times improvement in 

convergence rate is observed. This indicates the effectiveness o f the direct 

connectivity based multigrid. The speedup is slightly lower than that o f this method 

used in two dimensional computations. 

8.2 Parallel Computing Performance 

As one o f main interests in this work is to explore the parallel computing on a cluster 

system, some corresponding investigations are carried out. 

8.2.1 The Cluster System 

The parallel computing platform used for the 3D computation is based on a PC 

clustered system, which consists o f 4 Intel Pentium I I PCs (which could be directly 

accessed by the author during the time of the work) running Linux systems. Table 8.1 

shows the specifications o f these PCs and network hardware. 
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Table 8.1 Specification of the PC cluster system 

PCOl PC02 PC03 PC04 

CPU Pentium 11 

450MHZ 

Pentium 11 

500 M H Z 

Pentium 

I I 500 

M H Z 

Pentium I I I 

600 M H Z 

Memory 128M 128M 128M 512M 

Operation 

System 

Linux (Kerne 2.2,1586) 

Network 

Hardware 

1OM Ethernet adaptor, Netgear 1OM hub 

8.2.2 Test Case and Computational Mesh 

The inviscid f low around M6 Wing case is selected as a test case for parallel 

computing performance, since the f low feature has been studied in the previous case 

and the size o f computing mesh is suitable for parallel computing on these 4 PCs with 

relatively small amounts o f memory. 

The computing mesh used is the same inviscid mesh as shown in Figure 8.1. It 

consists o f 168,432 tetrahedral elements and 29,432 nodes. METIS (Karypis and 

Kumar 1998) partitioning library is used for domain decomposition. The calculations 

performed on the clustered system are identical to the one performed on PCOl except 

that the computational mesh is pre-partitioned to 2, 3 and 4 sub-grids, which are 

almost equal in size (the difference o f the element number is no more than 1). Figure 

8.6, 8.7 and 8.8 are the partitioning results for the two-, three- and four-zone runs. 

The minimum edge method cut is used as the partition criterion. 
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8.2.3 Timing and Results 

Performance tests have been conducted on the cluster PC system described 

previously. A l l the tests cases presented here are about solving the inviscid f l ow over 

the M6 wing with same boundary and initial conditions. To assess the speedup, all the 

runs execute 1000 timesteps and the running times are recorded by the internal timer 

of a PC. Then the overall rurming time is averaged to each step and listed below. 

Table 8.2 Summary of the single processor run 

Host Tetra Node Boundary Computing time (sec) Time/step 
(sec) 

PCOl 168,432 29,432 0 6.50 6.50 

Speedup: 1.0 Communication: 0 

Table 8.3 Summary of the two-zone run 

Host Tetra Node Boundary Computing time (sec) Time/step 

(sec) 

PCOl 84216 14943 6226 3.25 

3.80 PC02 84216 15201 6226 3.25 3.80 

Speedup: 1.71 Communication: 0.55 sec/step 

Table 8.4 Summary of the three-zone run 

Host Tetra Node Boundary Computing time (sec) Time/step 

(sec) 

PCOl 56138 9909 2094 2.17 

2.66 PC02 56138 10253 1138 2.17 2.66 

PC03 56138 10484 1172 1.95 

2.66 

Speedup: 2.44 Communication: 0.49 sec/step 
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Table 8.5 Summary of the four-zone run 

Host Tetra Node Boundary Computing time (sec) Time/Step 

(sec) 

PCOl 42108 7674 1716 1.62 

2.02 PC02 42108 7727 1186 1.62 2.02 

PC03 42108 7881 1618 1.46 

2.02 

PC04 42108 7911 1986 1.23 

2.02 

Speedup: 3.21 Communication costs: 0.40 sec/step 

The final speedup performance has been plotted along with the ideal speedup on this 

cluster system in Figure 8.9. The ideal speedup is defined by the number o f 

processors used in a parallel computing job. Reasonably good speedup of the PC 

cluster system has been achieved. 

8.3 Turbulent Flows over a Flat Plate 

To examine and validate the implementation o f the present turbulence model and the 

viscous term treatment, turbulent flows over a flat plate are simulated with the present 

prism mesh and tetrahedron mesh based flow solvers. 

Both the tetrahedron and prism based mesh for the flat plate boundary layer flow has 

been generated by subdividing a 61x41x3 H-topology structured grid. The 

structured mesh is highly stretched near the solid wall and has uniform spacing in the 

other two directions. Each hexahedron in the structured-grid is divided into 6 

tetrahedral elements in the tetrahedron based mesh and 2 prismatic elements in the 

prism based mesh. This results in 7,503 points and 14,400 tetrahedral elements for the 

tetrahedron mesh (Figure 8.10) and 9,600 prismatic elements for the prism mesh. The 

maximum aspect ratio near the wall is about 30. The computational domain is f rom 

x=-0.1 to x=1.0 in the streamwise direction, and z=0.0 to 0.02 in the wall normal 

direction, and fi-om y=0.0 to y=0.02 in the spanwise direction. The free stream Mach 
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number is maintained at M „ = 0.2 to minimise the compressible effect and the 
Reynolds number is Re^ =3x10^ for the tetrahedron f low solver and Re^ = 2 x 1 0 * 
for the prism f low solver, respectively. 

Both computations are carried out at CFL=1.2 with 2 levels o f multigrid. Results 

using the Spalart-Allmaras one-equation turbulence model with the tetrahedral and 

prismatic f l ow solvers are shown in Figure 8.11 and Figure 8.12. In both cases, the 

velocity profiles agree well wi th the law of the wall . The residual history for both 

computations is plotted in Figure 8.13. Both solutions converge rapidly wi th 

multigrid acceleration. From the convergence rate point o f view, it is evident that the 

prismamtic solver wi th the aspect ratio adaptive multigrid delivers better performance 

than the direct connectivity based method for viscous f l ow simulations wi th stretched 

grid near solid wall surfaces. Furthermore, the computing time of the tetrahedron 

based solver is far greater than that o f the prism based solver, because there are 

28,800 elements wi th the tetrahedral discretisation and 9,600 with the prismatic 

discretisation. It is clear that the prismatic discretisation is more effective in resolving 

this boundary layer f l ow problem. 

8.4 Turbulent Flows over ONERA M6 Wing 

In this section, numerical results o f the turbulent flows over the ONERA M 6 wing are 

presented to validate the present 3D Navier-Stokes algorithms. This case is the same 

as the case in section 8.1, except that the f low is turbulent. The Reynolds number is 

1.172 X 1 0 ' . When viscous effects are taken into account, the locations o f Shockwaves 

on the upper surface o f the wing should move forward compared to the inviscid 

solution due to the presence o f boundary layer. The correct prediction o f positions 

and amplitudes o f the shock waves is the key indicator o f the accuracy o f this 

computation. 

The viscous mesh generation follows the method described in Chapter 4. The wing 

surface profile (Figure 8.14) is inflated by 15% o f the main chord. To resolve the 

wake and avoid the sharp end o f the trailing edge of the wing, a ' C style inflation 
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scheme is adopted. Due to the fact that the wing is symmetric, the unstructured grid 
generation is carried out on half o f the domain to reduce the memory overhead o f the 
mesh generator. After generating the tetrahedral grid in the outer region, a new 
interface grid (Figure 8.15) is extracted f rom the tetrahedral grid. This surface grid is 
then mapped onto the surface of the wing. The resultant surface grid on the wing is 
plotted in Figure 8.16. The mapped surface grid and interface grid are used as the 
baseline grid for the generation of the prismatic grid. Figure 8.17 is the 3D view o f 
the surface mesh on the wing surface and the symmetric plane. The outer region mesh 
consists o f 43,230 nodes, 234,372 tetrahedral elements. There are 16 layers o f 
prismatic elements around the wing and the wake region. Figure 8.18 shows a closeup 
view o f the surface mesh near the wing root regions (The outer regions are plotted 
wi th an offset f rom the inner layers). 

The computations are carried out on the cluster system described previously. The 

computing domain is decomposed to four sub-blocks as shown in Figure 8.18, 2 

tetrahedral and 2 prismatic blocks. It is clear that the load on each processor is not 

balanced because o f the presence o f 2 different types o f blocks. Two tetrahedral based 

and two prismatic based solution processes are used in the parallel computing. 

Figure 8.19 is the pressure contours on the upper wing surface, in which two strong 

Shockwaves can be observed. Comparisons o f pressure distributions with 

experimental data (Schmitt and Charpin 1979; N A S A 1999) are presented for 

locations at 20%, 44%, 65%, 80%), 90% and 95% o f the span in Figure 8.20. A t 20% 

span, the position o f the first Shockwave is well resolved, but the solution has failed 

to predict the position o f the second one. It should be noted that in the viscous 

computation, a finer unstructured grid is employed, thus leads to a sharper shock 

wave than the previous inviscid solution. At 44% o f the span, reasonably good 

agreement is displayed by the prediction o f both shock waves and the overall good 

match o f the pressure coefficient on both surfaces o f the wing. A t 65%) and 80%) of 

the span, the second Shockwave is well resolved, but the first Shockwave, which is 

present near the leading edge, is smeared. This may be caused by insufficient grid 

resolution in this region. A t 90% and 95%o of span, good overall agreement is 
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observed. The strong Shockwave is well predicted. Generally speaking, the first 
Shockwave is smeared due to the limitation o f the current mesh generation package. 
However, some minor disagreement at the bottom wing surface is shown at 90% of 
span. Very good agreement o f pressure distribution is observed for the bottom wing 
surface except at 90% of the span and the second Shockwave is wel l modelled. This 
indicates high accuracy o f both prism and tetrahedron based flow solvers. 

In order to evaluate the ability o f the multigrid method to solve turbulent flows, a 

multigrid simulation is carried out with the same CFL number and initial conditions. 

Three mesh levels are employed in the multigrid calculation: the original mesh and 

two coarse meshes generated by our A A M G method. In the regions with semi-

structured mesh (consisting o f prismatic elements), coarser levels are built by 

stacking certain numbers o f layers in the finer mesh level depending on the maximum 

aspect ratio of that layer. In this case, each of the two coarser levels consists o f 2 and 

4 layers o f the original fine grid. In the fiall unstructured-mesh regions (consisting o f 

tetrahedron elements), a semi-coarsening procedure is used to generate a coarser 

level. 

The efficiency o f the A A M G multigrid method is assessed by the convergence 

comparison with a single grid computation. Figure 8.21 is the comparison o f 

convergence history. It is evident that the present multigrid scheme achieves about 5 

times speedup compared with the single grid solution. This speedup is less than the 

same method in 2D unstructured-grid cases (around 7 for viscous flows). The main 

reason behind this could be the actual 3D flow effects and the assumption that the 

flow is strongly I D in the near solid wall regions. In the present 3D A A M G method, 

the method of stacking finer layers results in fast information propagation in the 

direction normal to the wal l , but is less effective when the flow along the wall 

changes rapidly, as in this case when Shockwaves are present on the wing surface. 
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8.5 Inviscid/Turbulent Flows over a Wind Turbine 
Blade 

This test case concerns a wind turbine tested at the National Wind Technology Centre 

of the National Renewable Energy Laboratory (NREL), Colorado, USA. It is a 10.06 

m diameter, three-bladed, downwind, free-yaw turbine (Figure 8.22). 

This case is chosen because the complex nature of the flow around the blade provides 

us a good chance to demonstrate the state-of-the-art unstructured flow solver for 

rotary aerodynamics. 

8.5.1 Geometry of the wind turbine blade 

The wind turbine blade is non-twisted and non-tapered. The blades consist o f an S809 

airfoil , developed by Air fo i l s Inc. for N R E L (Duque et al. 2000; Duque et al. 1999). 

The size o f blade span is 4.52 m and the root is at radius 0.51 m. The blade pitch 

angle is 12 degrees. For the present test cases, where there is no twist, the pitch angle 

corresponds to the local blade angle, i.e. the angle between the chordline o f the blade 

element and the rotor plane, and is positive when it points opposite to the wind 

direction. Figure 8.23 shows the definition o f the pitch angle o f the non-twisted blade. 

8.5.2 Test cases and flow conditions 

There are three test cases available in the public domain (FLOWNET 2001), for 

which experimental data is available. They correspond to different incoming flow 

speeds, as shown in Table 8.6. In all cases the incoming flow is assumed to be fu l ly 

axial. 
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Table 8.6 Definitions of the test cases 

Test Case 1 Test Case 2 Test Case 3 

Incoming f low speed 7 m/s 13 m/s 19 m/s 

Rotational speed 71.68 rpm 71.19 rpm 71.54 rpm 

Static temperature 283.1 K 292.1 K 291.1 K 

Static pressure 81055 Pa 80138 Pa 80138 Pa 

Re (based on diameter) 3.99x10' 7.237x10' 1.06x10' 

For all these test cases, the pressure distributions are available at spanwise positions 

o f 30%, 47%, 63% and 80%. 

Table 8.7 Angle of attack at different spanwise positions 

Spanwise Test Case 1 Test Case 2 Test Case 3 

Position 7 m/s 13 m/s 19 m/s 

30% 19.87° 37.3° 47.4° 

47% 9.64° 24.58° 35.18° 

63% 4.49° 16.97° 26.84° 

80% 1.2° 11.55° 20.38° 

The simulations have been carried out at slightly different f l ow conditions to the 

original test cases to avoid the calculation o f the virtually incompressible f low with a 

compressible flow solver. The incoming flow speed has to be increased to Mach 

number 0.1 to maintain good convergence o f the solver. 

According to the velocity triangle in Figure 8.24, to keep the same flow angle with 

original test cases, the rotation speed has to be increased by the scale o f the increase 

of the absolute velocity. Table 8.7 shows calculated flow angles at four spanwise 

locations where experimental data are available. The Reynolds numbers are kept the 

same with those of the test cases to maintain solution similarities wi th the actual 

flows. The definitions o f the flow conditions for the numerical simulations are given 

in Table 8.8. 
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Table 8.8 Flow conditions of simulations 

Test Case 1 Test Case 2 Test case 3 

Incoming flow speed 33.721 m/s 34.24 m/s 34.20 m/s 

Rotational speed 345.307 rpm 187.574 rpm 128.772 rpm 

Static temperature 283.1 K 292.1 K 291.1 K 

Static pressure 81055 Pa 80138 Pa 80138 Pa 

Re (based on diameter) 3.99x10' 7.237x10' 1.06x10' 

8.5.3 Computational Mesh Generation 

There are only three non-twisted blades in the wind turbine, as plotted in Figure 8.22. 

Thus, the blade-blade interaction is unlikely to be very strong except near the shaft 

regions and computational costs can be reduced by using a small part o f the flow 

domain. In this case, a computational domain less than 1/5 o f the whole domain is 

adopted. The inlet and outlet plane are placed at 2 chords away f rom the blade and the 

top surface is placed at 5 chords away f rom the blade tip. The flows on these 

"periodic" and far field boundaries are assumed to be undisturbed. 

The computational mesh for the inviscid simulation is generated by GMSH (Geuzaine 

and Remade 1999) using an advancing layer method. The mesh consists o f 82,176 

tetrahedral elements and 40,212 nodes. There are 32,760 triangle elements and 16,470 

nodes on the surface o f the turbine blade. Figure 8.25 shows the computational mesh 

on the wind turbine and the surface grid o f the computational domain. 

The mesh for the viscous simulation is generated fol lowing the way described in 

Chapter 4. First, the surface triangulation is achieved by dividing a structured surface 

mesh. Then, a similar surface mesh is generated at l/10*chord away f rom the surface 

with the same connectivity o f the surface mesh by moving the surface mesh normal to 

the surface. Next, this new blade surface triangulation along with the surface 

triangulation o f the other boundaries o f the domain is used for the volume mesh 

generation with GMSH. The resultant volume mesh o f the outer domain consists o f 

236,558 tetrahedral elements and 150,636 nodes. Around the turbine blade, there are 
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24 prismatic element layers, which are built f rom a surface mesh o f 129,280 triangles 
and 82,480 nodes. The maximum mesh aspect ratio near the blade is about 60. 

8.5.4 Numerical Results and Discussions 

Numerical simulations o f flows around the wind turbine blade are performed on the 

PC cluster system described previously. The computing mesh is partitioned equally to 

4 domains with minimum communication restraint in each case using the METIS 

graph partition library. 

Inviscid simulations are carried out for all three flow conditions listed in the Table 

8.8. Farefield boundary conditions are applied to the inlet/outlet and the top surface. 

A slip wall condition is applied to the hub surface. Since the computational mesh 

contains only tetrahedral elements, four tetrahedral slave computing processes are 

employed in all three inviscid computations. 

In Figure 8.26 predicted pressure coefficient f rom the test case 1 (7m/s) is plotted 

along wi th the experimental data f rom Flownet (Flownet 2001). Excellent agreement 

with experimental data at all four spanwise locations is observed. At 7m/s, the flow 

angle is relatively small (Table 8.2) f rom the hub to tip. Therefore, the flow is largely 

attached. The agreement demonstrated that the tetrahedron flow solver is accurate. 

Figure 8.27 shows the comparison of predicted pressure coefficient for the test case 2 

(13OTA) and the experimental data. Good agreement is displayed for 63%) and 80%) 

spanwise positions. At 30%) span position, the predicted pressure distribution is 

inaccurate on the suction surface, because the flow is separated in these regions when 

the wind speed is increased to 13m/s (34.24 m/s in the simulation) and the present 

inviscid solution is incapable o f predicting separation. 

When the incoming flow speed increased to 19 m/s (test case 3), massive separation 

appears near the hub regions where the flow angle is very high (Table 8.7). The 

present inviscid solution failed to predict the pressure correctly in these regions, as 

shovm in Figure 8.28. Good agreement is observed at spanwise positions o f 44%), 

63%) and 80%), where the flow is largely attached. 
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In Figure 8.29, the computational grid and flow vector & streamlines on the pressure 
surface at 22%-28% span at 7m/s of the blade are plotted. It should be noted that the 
large separation on the surface is non-physical phenomena because the inviscid 
solution is incapable of predicting separation. However, the real flow in this region 
should show similar pattern, such as strong radial flow and large separation. 

Further efforts were made to use the Navier-Stokes solver to compute the turbulent 

flows for this wind turbine case. However, it appears that the present 3D viscous flow 

solver has some convergence problems for low Mach flow conditions. Because for 

low Mach number flows, the stiffness of the governing equations is very high and the 

numerical methods developed for compressible flows could break down or not 

function properly (Wesseling 1999). The reason behind this break down is that the 

solution of the Navier-Stokes equations contains pressure fluctuations of the order of 

Mach number while the continuous pressure scales with the square of Mach number 

(Guillard and Viozat 1999). The use of preconditioning (Godfrey and Leer 1993; 

Wesseling 1999) should help in addressing this problem. 

8.6 Concluding and Remarks 

A cell-centred finite volume scheme has been presented for the solution of the 

Euler/Navier-Stokes equations on 3D unstructured meshes. An upwind scheme 

has been adopted in both prismatic mesh and tetrahedron mesh based flow 

solvers to compute the inviscid flux contributions. The flow solvers employ an 

efficient and accurate wall function procedure and use a face stencil to construct 

interface gradients. A parallel computing technique is adopted to reduce 

computing times in 3D. The flow solvers exploited a multi-block scheme. 

The accuracy of the present 3D spatial discretisation is displayed by a number of 

test cases. The simulations of inviscid flows around the M6 wing and a wind 

turbine blade show good agreement with experimental results. Excellent 

agreements with experimental data have been observed in the turbulent flow 

simulations over a flat plate and the M6 wing. This indicates that the present 3D 

flow solvers are accurate in simulating turbulent flows. However, the present 3D 
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flow solver is not functioned properly for simulations of low Mach number flows 
as shown in the wind turbine flow case. A preconditioning method is needed to 
remove the convergence difficulty associated with high stiffness. 

The proposed "inflation" unstructured mesh generation method is tested for 3D 

cases. In the viscous flow around the M6 wing, a "C" type inflation scheme is 

used to generate highly stretched elements in viscous effects dominated regions. 

In the outer domain, tetrahedral elements can be easily generated using an 

isotropic unstructured mesh generator. This method shows good potential in 

reducing the difficulty of generating stretched viscous mesh near solid walls and 

improving overall solution accuracy. Furthermore, this mesh generation scheme 

enables the exploitation of an efficient and robust multigrid method. 

The proposed multigrid method is effective both for inviscid and turbulent flow 

simulations as shown in the cases of inviscid and viscous flow around the M6 

wing. This indicates that computational methods employed in the current 

research are computationally efficient. However, the efficiency of the aspect-

ratio adaptive multigrid in 3D viscous flow computations is less satisfactory than 

in 2D. This is mainly due to the 2D nature of the method. An aspect-ratio 

adaptive multigrid capable of building coarser levels both normal to the wall and 

along the wall direction is urgently needed. 

The parallel computing on the PC cluster system is successfiil. In all tests 

conducted on the M6 wing, very good speedup is observed. This indicates that 

the present implementation of parallel computing with PVM message passing is 

efficient on a low bandwidth and high latency cluster system. This cluster system 

is also used in simulating turbulent flows around the M6 wing and flows over the 

wind turbine blade. The conclusion is that clustering currently available desktop 

PCs or workstafions to build a middle level parallel system is possible. However, 

due to lack of resource (only 4 PCs are available) the full strength of this 

clustering idea has not been investigated. 
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(a) Overview of the surface mesh on wing and the symmetric plane 

(b) Surface mesh of the farfield 

(c) Surface grid on the wing surface 
Figure 8.1 Computational grid 
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Figure 8.2 Mach number contours 
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Figure 8.4 Convergence histories 
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Figure 8.5 A Linux PC cluster system 

(a) Full flow field view 

(b) The wing surface and the symmetric plane 
Figure 8.6 Two zones of the computational grid 
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(a) Full flow field view 

(b) The wing surface and the symmetric plane 
Figure 8.7 Three zones of the computational grid 
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(a) Full flow field view 

(b) The wing surface and the symmetric plane 
Figure 8.8 Four zones of the computational grid 
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Figure 8.9 Observed speedup 
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Figure 8.10 Tetrahedral grid for the flat plate 
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Figure 8.11 Velocity profile on the tetrahedron mesh 
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Figure 8.12 Velocity profile on the prismatic mesh 
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Figure 8.13 Convergence history 
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Figure 8.14 Surface profile of the M6 wing 

Figure 8.15 New interface grid 
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Figure 8.16 Mesh on the wing surface 

Figure 8.17 3D view of the surface mesh 
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Figure 8.18 Four zones of the computational grid 

Figure 8.19 Mach number contours on the wing surface 
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Figure 8.25 Computational grid for single passage 
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Figure 8.27 Pressure distributions on the wind turbine (13 m/s) 
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Figure 8.29 3D plot of the flow at 22%-28% of the span (7 m/s) 
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Chapter 9 

Conclusions and Recommendations 

In this chapter, conclusions and findings are drawn from the development of efficient 

and accurate solution algorithms for Euler/Navier-Stokes equations on 2D/3D 

unstructured meshes. This thesis has presented four contributions all aimed at 

improve the accuracy and efficiency of the unstructured-grid method. These 

contributions are the 2D/3D spatial discretisation and inflation mesh generation 

scheme developed in Chapter 3 and 4, the solution mesh adaptation scheme discussed 

in Chapter 4, the aspect-ratio related Multigrid approach described in Chapter 5 and 

the parallel computing technique on a cluster system discussed in Chapter 6. This 

chapter ends with recommendations and suggestions for fiirther research. 
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9.1 Conclusions and Highlights 
The primary aim of the present work is to develop efficient and accurate solution 

algorithms for the Euler/Navier-Stokes equations on 2D/3D unstructured meshes. In 

respect to the overall objective, 2D/3D flow solvers based on unstructured-grids are 

developed for aerodynamics applications. Extensive studies have been carried out to 

validate the algorithms and assess the accuracy and efficiency of the solution methods. 

The following conclusions are drawn from the present research: 

1. The 2D and 3D inviscid/viscous flow solvers based on unstructured-grids for 

steady compressible flows are capable of solving the Euler/Navier-Stokes 

equations for 2D and 3D aerodynamics applications. The spatial discretisation 

with a cell-centred finite volume scheme on 2D and 3D unstructured meshes 

is accurate in simulating inviscid and viscous turbulence flows. The 

multistage time integration scheme along with a local time stepping technique 

is effective in marching flows to a steady state solution. 

2. The "inflation" mesh generation technique coupled with traditional isotropic 

mesh generators to generate 2D/3D computational meshes is effective for all 

the present viscous computations. This method also improves standard 

unstructured-grid schemes in terms of accuracy, speed and storage. Accuracy 

and efficiency are improved by using prismatic elements in the regions where 

highly stretched cells are necessary to resolve the disparity in directional 

gradients. Furthermore, this inflation method enables an efficient and robust 

multigrid method and a solution mesh adaptation procedure to overcome the 

over-resolved problems. 

3. The mesh adaptation technique developed for the present 2D flow solver can 

effectively improve the accuracy of solution with reasonable costs. The 

method is based on an adaptive mesh refinement procedure. Various strategies 

are used to capture shockwave / boundary layer problems. By utilising the 

structure of the viscous grids, the meshes can be better refined near solid wall 
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regions. Thus the over-resolving problem is overcome with a two-phase 
refinement procedure in the viscous flow simulafions. 

4. The multigrid method developed in the present research is effective in 

accelerating the solution of the Euler/Navier-Stokes equations. The Aspect-

ratio Adaptive multigrid is particularly effective when a high aspect ratio grid 

is used in viscous turbulence flow simulations. 

5. The cluster system developed in the present research can be used for middle 

level high performance computing. The mesh partitioning and communication 

scheme developed is suitable for parallel computing on a PC cluster system. 

9.2 Suggestion for Further Research 

In the light of above conclusions it is felt that this exercise has established good 

confidence in the solving of aerodynamic problems with unstructured meshes. The 

unstructured-grid method has displayed an excellent ability to simulate complex flow 

problems in various geometric configurations. It has been foreseen that this method 

would play a more important role in solving flow problems over complex geometries 

with the aid of solution mesh adaptation and parallel computing techniques in the 

fiiture. However, there are still major challenges with this kind of method and a 

number of possible improvements are suggested below. 

9.3.1 Mesh Generation 

The present "inflation" method has been very successful in 2D viscous flow 

simulations. With this method, highly stretched elements can be easily generated 

without the sacrificing flexibility of the unstructured-grid. However, dealing with 

comer points and sharp-ended objects remains a challenge in 3D. A more 

sophisticated and robust method is needed to generate more effective artificial 

boundaries that separate inner viscous layers and outer regions before this method 

can be used in more complex geometries. 
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9.3.2 Time Marching Solution 

The explicit time marching scheme adopted in the present work represents a 

straightforward way of integrating the Euler/Navier-Stokes equations. It is ideal for 

damping high-frequency errors. However, it has been proved to be inefficient for low-

frequency error damping. This leads to slow convergence in simulations of unsteady 

flows and viscous turbulent flows. An efficient implicit method might be beneficial 

for solving steady and unsteady viscous flow problems on unstructured-grids. 

However, this is not easy and there are several difficult issues in developing an 

implicit method on unstructured-grids: multigrid, parallel scalability, high Reynolds 

number flows. 

9.3.3 Solution Mesh Adaptation 

Solution mesh adaptation holds the key for the success of the unstructured-grid 

method. The adaptive mesh refinement method developed in this project has been 

proved to be capable of capturing complex phenomena such as shock waves, 

boundary layers, separation and wakes. However, the present remeshing scheme is 

based on "refining" a grid when the local error is high. A "coarsening" procedure is 

necessary when high grid density is no longer required in some previously refined 

regions in solving unsteady flow problems. Furthermore, given the state of the current 

viscous mesh generation, the idea of solution mesh adaptation for simulating 3D 

viscous flows becomes more important in improving the quality of grids and thus the 

accuracy of solutions. 

9.3.4 Multigrid Techniques 

The new multigrid method developed in the presented work has displayed excellent 

convergence rate for both 2D inviscid and viscous flow simulations. The Direct 

Connectivity based Multigrid shows moderate convergence rate in simulating 3D 

inviscid flows. However, the performance of the new multigrid method for 3D 

viscous flow simulations is less than satisfactory. A more general aspect-ratio 

sensitive multigrid, i.e. not only stacking layers of prismatic elements in the wall 
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normal direction but also grouping elements in the other two directions when 
necessary, should greatly improve the efficiency of this method. 

9.3.5 Navier-Stokes Solvers 

A preconditioning method is need for the present flow solvers in order to solve low 

Mach number viscous flows. The convergence problem revealed in the 3D viscous 

flow simulation around the NERL Phase I I wind turbine blade highlights the urgency. 

Turbulence modelling represents an important issue for solving complex aerodynamic 

problems. In this work, the one-equation model of Spalart and Allmaras model has 

been used. When dealing with more complex problems, extension to more 

sophisticated models might be required. However, more complex turbulence models 

may also increase the numerical stiffness of the solution. 

9.3.6 Parallel Computing Suggestions 

New trends in software and hardware technology are likely to make computing using 

clusters more promising. Clustered super-computers are seen everywhere. Further 

testing of the cluster system with more PCs is required to assess the strength of this 

kind of systems. The graph-partitioning scheme with METIS is well suitable for small 

and middle size applications. However, it is noticed that the increasing requirement of 

partitioning memory with METIS becomes higher as the number of points in the 

mesh increases. Therefore, a new efficient partition scheme is needed to partition a 

large 3D unstructured mesh domain. Furthermore, the present partitioning scheme is 

not optimised when both prismatic and tetrahedral blocks are present for viscous 

computations. A more sophisticated partitioning scheme is needed to produce more 

effective partitions. In the present parallelisation of 3D flow solvers, the error 

tolerance is not implemented. This means when one node in the cluster fails, the job 

has to be restarted manually from the last saved point. An error tolerant 

implementation is needed to automatically start the job on other nodes when one fails, 

in order to improve the overall reliability and operafional effectiveness of the parallel 

computing. 
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