2,593 research outputs found

    BRAVO for many-server QED systems with finite buffers

    Full text link
    This paper demonstrates the occurrence of the feature called BRAVO (Balancing Reduces Asymptotic Variance of Output) for the departure process of a finite-buffer Markovian many-server system in the QED (Quality and Efficiency-Driven) heavy-traffic regime. The results are based on evaluating the limit of a formula for the asymptotic variance of death counts in finite birth--death processes

    The effect of service time variability on maximum queue lengths in M^X/G/1 queues

    Full text link
    We study the impact of service-time distributions on the distribution of the maximum queue length during a busy period for the M^X/G/1 queue. The maximum queue length is an important random variable to understand when designing the buffer size for finite buffer (M/G/1/n) systems. We show the somewhat surprising result that for three variations of the preemptive LCFS discipline, the maximum queue length during a busy period is smaller when service times are more variable (in the convex sense).Comment: 12 page

    A Queueing Characterization of Information Transmission over Block Fading Rayleigh Channels in the Low SNR

    Full text link
    Unlike the AWGN (additive white gaussian noise) channel, fading channels suffer from random channel gains besides the additive Gaussian noise. As a result, the instantaneous channel capacity varies randomly along time, which makes it insufficient to characterize the transmission capability of a fading channel using data rate only. In this paper, the transmission capability of a buffer-aided block Rayleigh fading channel is examined by a constant rate input data stream, and reflected by several parameters such as the average queue length, stationary queue length distribution, packet delay and overflow probability. Both infinite-buffer model and finite-buffer model are considered. Taking advantage of the memoryless property of the service provided by the channel in each block in the the low SNR (signal-to-noise ratio) regime, the information transmission over the channel is formulated as a \textit{discrete time discrete state} D/G/1D/G/1 queueing problem. The obtained results show that block fading channels are unable to support a data rate close to their ergodic capacity, no matter how long the buffer is, even seen from the application layer. For the finite-buffer model, the overflow probability is derived with explicit expression, and is shown to decrease exponentially when buffer size is increased, even when the buffer size is very small.Comment: 29 pages, 11 figures. More details on the proof of Theorem 1 and proposition 1 can be found in "Queueing analysis for block fading Rayleigh channels in the low SNR regime ", IEEE WCSP 2013.It has been published by IEEE Trans. on Veh. Technol. in Feb. 201

    Throughput and Latency in Finite-Buffer Line Networks

    Full text link
    This work investigates the effect of finite buffer sizes on the throughput capacity and packet delay of line networks with packet erasure links that have perfect feedback. These performance measures are shown to be linked to the stationary distribution of an underlying irreducible Markov chain that models the system exactly. Using simple strategies, bounds on the throughput capacity are derived. The work then presents two iterative schemes to approximate the steady-state distribution of node occupancies by decoupling the chain to smaller queueing blocks. These approximate solutions are used to understand the effect of buffer sizes on throughput capacity and the distribution of packet delay. Using the exact modeling for line networks, it is shown that the throughput capacity is unaltered in the absence of hop-by-hop feedback provided packet-level network coding is allowed. Finally, using simulations, it is confirmed that the proposed framework yields accurate estimates of the throughput capacity and delay distribution and captures the vital trends and tradeoffs in these networks.Comment: 19 pages, 14 figures, accepted in IEEE Transactions on Information Theor

    Analysis of finite-buffer state-dependent bulk queues

    Get PDF
    <p>In this paper, we consider a general state-dependent finite-buffer bulk queue in which the rates and batch sizes of arrivals and services are allowed to depend on the number of customers in queue and service batch sizes. Such queueing systems have rich applications in manufacturing, service operations, computer and telecommunication systems. Interesting examples include batch oven processes in the aircraft and semiconductor industry; serving of passengers by elevators, shuttle buses, and ferries; and congestion control mechanisms to regulate transmission rates in packet-switched communication networks. We develop a unifying method to study the performance of this general class of finite-buffer state-dependent bulk queueing systems. For this purpose, we use semi-regenerative analysis to develop a numerically stable method for calculating the limiting probability distribution of the queue length process. Based on the limiting probabilities, we present various performance measures for evaluating admission control and batch service policies, such as the loss probability for an arriving group of customers and for individual customers within a group. We demonstrate our method by means of numerical examples.</p>
    • …
    corecore