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Abstract In this paper, we consider a general state-dependent finite-buffer bulk
queue in which the rates and batch sizes of arrivals and services are allowed to depend
on the number of customers in queue and service batch sizes. Such queueing systems
have rich applications in manufacturing, service operations, computer and telecommu-
nication systems. Interesting examples include batch oven processes in the aircraft and
semiconductor industry; serving of passengers by elevators, shuttle buses, and ferries;
and congestion control mechanisms to regulate transmission rates in packet-switched
communication networks. We develop a unifying method to study the performance
of this general class of finite-buffer state-dependent bulk queueing systems. For this
purpose, we use semi-regenerative analysis to develop a numerically stable method
for calculating the limiting probability distribution of the queue length process. Based
on the limiting probabilities, we present various performance measures for evaluating
admission control and batch service policies, such as the loss probability for an arriv-
ing group of customers and for individual customers within a group. We demonstrate
our method by means of numerical examples.

Keywords Bulk-arrival and bulk-service queue · Finite buffer ·
State-dependent control · Loss probabilities

1 Introduction

Group arrival and batch service queues (usually called bulk queues) have many applica-
tions in manufacturing, service operations, computer and telecommunication systems.
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564 R. Germs, N. van Foreest

Since most of these systems have finite buffer capacity, it is of interest to study queue-
ing systems with finite queue size. For example, in manufacturing systems, there is
limited waiting room before workstations in assembly lines, material handling sys-
tems, or cellular manufacturing cells. In service systems such as facilities, there are
limited circulation systems (elevators, stairways, and corridors) and finite storage areas
(MacGregor Smith and Cruz 2005). Finally, in computer and telecommunication sys-
tems, routers and switches that regulate the transmission of information packages have
finite buffer capacity.

In many of these applications, the arrival and service rate depend on the state of the
queue. For example, a long queue can “discourage” arriving customers (Dshalalow
1997) leading to queue-length dependent balking. Another example consists of sys-
tems where the server is a human being and the perception of the workload may
directly influence the server’s productivity (Bekker 2004; Bekker et al. 2004). Besides
the arrival and service rate, the size of arriving group and service batches may be queue
length dependent. For instance, when the queue length hits the maximum buffer capac-
ity, a situation can occur that a newly arriving group of customers does not find enough
room in the queue and that a part of the group has to be refused from entering the
system. Furthermore, service batch sizes are typically determined by the capacity of
the server (i.e. the maximum number of customers that can be served simultaneously)
and the number of customers waiting in queue, e.g., in the serving of people by eleva-
tors, shuttle buses, and ferries. Finally, the batch service time can also depend on the
batch size; typically larger batches require more service time. In all these applications,
it is helpful to be able to compute relevant performance measures, such as average
time in system, moments of the number of customers in queue and loss probabilities
for arriving groups of customers, or individual customers within a group. This allows
operators to determine optimal system configuration, good admission control policies,
or optimal batch sizing policies.

In this paper, we develop a simple, numerically stable, and efficient algorithmic
method that allows the performance evaluation of a general queueing system that con-
tains all of the above examples as special cases. The queueing system that we study for
our purpose is the finite-buffer state-dependent bulk queue: M(n)X (n)/G(n)Y (n)/1/
K +B. Here M(n) and G(n) correspond to the state-dependent arrival and batch ser-
vice processes, the exponents X (n) and Y (n) represent the (random) state-dependent
sizes of the arriving groups and service batches, the capacity of the queue is limited
by K , and, finally, the maximal service capacity is B. The formal analysis of this
queueing system is considered an open problem in the queueing literature (Dshalalow
1997) and thereby our research makes a start to fill a gap in literature. To do so, we
use a semi-regenerative analysis to obtain the limiting probabilities of the queueing
process, which in turn allows the computation of many performance measures relevant
for selecting the best system configuration.

The paper is organized as follows. In Sect. 2, we provide applications of the finite-
buffer state-dependent bulk queue and review literature related to the analysis of the
model. After introducing the M(n)X (n)/G(n)Y (n)/1/K+B model in Sect. 3 we illus-
trate in Sect. 4 how various special cases and applications are covered by the model.
In Sect. 5, we present the semi-regenerative analysis of the model and obtain the lim-
iting probabilities in terms of recurrence relations. Section 6 presents the algorithmic
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Analysis of finite-buffer state-dependent bulk queues 565

aspects of our solution method and Sect. 7 defines various performance measures of
the model. In Sect. 8, we use numerical examples to demonstrate our method.

2 Applications and literature review

Before reviewing related literature, we sketch two practical scenarios leading to bulk
queue models with finite buffers and state-dependent arrival or service processes.

A typical batch-wise process in the aircraft industry concerns the hardening of syn-
thetic parts (Hodes et al. 1992; Van der Zee et al. 2001). These parts arrive in groups
from preceding manufacturing steps and are hardened in an oven in a batch-wise
manner. Upon arrival the parts enter a buffer where they wait until they are loaded
into the oven. The maximum time parts can stay in the buffer is limited due to strict
quality constraints. In particular, if parts stay more than T time units in the buffer, the
products become worthless for any further use. The time limit is operationalized by
constraining the capacity of the buffer to K parts. Furthermore, service batch sizes are
limited by the physical size of the oven, and processing times (including preparation
times) are independent of the number of parts in a batch. Once processing has started,
no interruption is allowed, i.e. no addition or extraction of parts is possible during
the production process. Given these characteristics, a control policy is required that
determines, once a service batch is finished, when to start a new batch service in such
a way that logistical costs and product loss are minimized and a given service level is
reached. This process can be modeled as a finite-buffer state-dependent bulk queue.
The arrival group sizes correspond to the synthetic parts which are state-dependent
due to the finite capacity of the buffer. A service batch corresponds to the parts that are
hardened in the oven in a batch-wise manner and the service batch size is also depen-
dent on the number of parts waiting in the buffer. Other production systems that possess
more or less similar characteristics are ovens that are used for the diffusion/oxidation
process in the manufacture of semiconductor wafers (Fowler et al. 1992; Uzsoy et al.
1994) and the burn-in operation of a manufacture of medical diagnostic units (Hopp
and Spearman 2008).

Bulk queueing systems are also often found in transportation since mass transit
vehicles are natural batch servers to which passengers arrive in groups of varying
size. Furthermore, arriving passengers may decide to take another mode of transport
when the queue length becomes excessive which makes state-dependent arrival rates
a realistic assumption. The single server system is generally found in the form of a
shuttle between two or more campuses of an institution, see e.g. (Deb 1978; Weiss
1979). The travel time does not depend on the number of passengers aboard and the
fixed travel cost is only minimally affected by the number of passengers carried. Given
these characteristics, an operating policy is required that determines when to dispatch
the shuttle such that service cost and passenger waiting time are minimized. The state-
dependent finite-buffer bulk queue is a reasonable model to evaluate dispatching rules
for the shuttle bus problem.

Besides for practical examples, the formal analysis of the M(n)X (n)/G(n)Y (n)/1/
K +B model is also theoretically a challenging problem. There is a long tradition in
the development of algorithmic methods for computing the limiting probabilities of
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566 R. Germs, N. van Foreest

generalizations of the M/G/1/K queueing process, e.g. cf. Neuts (1977) and Takagi
(1993). The M/G/1/K queue with state-dependent arrival and service rates was first
analyzed by Courtois and Georges (1971) using the embedded Markov chain approach.
However, as Gupta and Rao (1998) pointed out, the method presented by Courtois and
Georges (1971) is numerically unstable. A stable recursive algorithm for comput-
ing the limiting probabilities of the M/G/1/K queue with state-dependent arrival
rates has been given by Tijms and Van Hoorn (1981). Schellhaas (1983) and Gupta
and Rao (1998) generalized the model of Tijms and Van Hoorn (1981) by allowing
state-dependent service times, using respectively a semi-regenerative approach and
the supplementary variable method.

Comparatively less work has been done to introduce state dependencies into finite-
buffer M/G/1 bulk queues. In the survey on queueing systems with state-dependent
parameters, Dshalalow (1997) mentions that it is still an open problem to general-
ize the state-dependent M/G/1/K model for group arrivals and batch services. In
recent years, however, significant contributions have been made to the development
of algorithmic methods for computing the limiting probability of M X/GY /1/K + B
bulk queues under various rejection policies, cf. Nobel (1989), Dudin et al. (2005),
Chang et al. (2004) and Germs and Van Foreest (2010). Also the literature on queue-
ing models with different types of batch service policies has grown over the years. In
Medhi (2003) and Chaudry and Templeton (1983) a comprehensive treatment of bulk
queues with batch service can be found. However, in all of the aforementioned research
on bulk queues, none of the input or service parameters of the queueing models are
state-dependent.

3 Model

We consider a single server queue at which groups of customers arrive according to
a state-dependent Poisson process with finite rate λi when the queue contains i cus-
tomers. We note that λi denotes the rate at which groups of customers arrive; note
that, due to the finite capacity K of the queue, the arrival rate can be different from
the rate at which groups of customers are accepted. The sizes of the arriving groups
form a sequence of independent integer random variables, distributed as the generic
random variable Xi with probability mass function P{Xi = k} = xi (k), k ≥ 1.
Here and in the sequel, the subscript i will always refer to the dependence on the
queue length (number of customers waiting for service) at the moment of customer
arrival or service completion (the context will always clarify which of the two cases
apply).

Due to the limited capacity of the queue, it can occur that a newly arriving group
does not find enough room in the queue. As a consequence, a decision has to be made
which part of the group is to be refused from entering the system. Hence, dependent
on the rejection policy in use and the queue length, the distribution of the size of an
accepted group may differ from the distribution of the size of an arriving group. Let
the sizes of the accepted groups be distributed as the generic random variable X̂i with
P{X̂i = k} = x̂i (k), k ≥ 0. We refer to Sect. 4 for examples that illustrate how to
define the x̂i (k) for various rejection policies.
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Analysis of finite-buffer state-dependent bulk queues 567

Customers are served in FCFS order in service batches. Service batch sizes are
independent integer random variables, distributed as the generic random variable Yi

with distribution P{Yi = k} = yi (k), for k = 0, . . . , B, where B is the maximal server
capacity. Here, yi (0) denotes the probability that no customers are taken into service
and that, as a consequence, the server enters an idle period. A situation in which it
is reasonable to keep the server idle while there are customer waiting in queue is
when the aim is to minimize average waiting time of customers in the system. In
fact, Aalto (2000) and Deb and Serfozo (1973) prove that it is optimal to start serving
customers only when the number of customers in queue exceeds some threshold a.
Note that yi (k) = 0 if k > i , since it is impossible to take k customers into service
when there are only i < k customers in queue. We assume that any arrival during a
service joins the queue, if accepted. (Thus, if a group arrives to find k > 0 customers
in service, the group cannot join the batch already undergoing service.) Batch service
times Si,k are assumed to be independent of the arrival process, but may depend on
the service batch size k and on the queue length i , and form a set of independent
random variables distributed as Gi,k(s) = P{Si,k ≤ s}. We assume E (Si,k) < ∞ for
all i, k.

4 Special cases

In this section, we illustrate that M(n)X (n)/G(n)Y (n)/1/K + B model covers a large
class of well-known finite-buffer single server queueing models. The models are
loosely ranked in order of complexity. As later models are in most cases extensions of
previous models, we only specify the parameter settings in which these models differ
from the previous models.

We extend the finite-buffer single server model mainly in two directions: different
service batching policies, and rejection (blocking) policies. We choose to implement
the service (rejection) policies by means of specific choices for yi (k) (x̂i (k)).

4.1 M/G/1/K +1 queue

This queue is the base model for the other models and can be derived by taking λi = λ,
xi (1) =1 and Gi,k(·) = G(·), for i, k ≥ 0, in the M(n)X (n)/G(n)Y (n)/1/K +B model.
Since customers are blocked when K customers are in queue, it follows that x̂i (1) = 1
if i < K and x̂i (0) = 1 if i ≥ K . Observe that the server does not idle if the queue is
not empty and serves the customers one by one. Therefore, y0(0) = 1 and yi (1) = 1
for all i > 0.

4.2 M/GY /1/K +B queue with random batch service

In this model, the server has a random capacity Y . The actual number of customers
accepted in a given service period equals the whole queue, or the current batch capac-
ity, whichever is less (see Bagchi and Templeton (1973)). To implement the policy,
we set
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568 R. Germs, N. van Foreest

yi (k) =

⎧
⎪⎨

⎪⎩

P{Y = k}, if k < i,
∑∞

k=i P{Y = k}, if k = i,

0, otherwise.

A practical example of the random batch-service policy can be found in the semi-
conductor industry, where it is frequently observed that circuit boards are processed
in random batches (Hochbaum and Landy 1997).

4.3 M/G[a,b]/1/K +b queue with minimal batch service

With the minimal batch service policy, the server only serves batches of size at least a
and not larger than b, that is, P{Yi = min{i, b}} = 1 only when i ≥ a. To implement
the policy, we set yi (0) = 1 if i < a and yi (k) = 1{k = min{i, b}} if i ≥ a.

Deb and Serfozo (1973) show that the minimal batch service policy is optimal
for a batch service queue where costs are incurred for serving the customers and for
holding them in the system. Aalto (2000) generalizes the result to queueing systems
with compound Poisson arrivals. Note that if the cost of serving is set to zero, min-
imizing the expected averaged cost is equivalent to minimizing the average waiting
time. Applications of this batch service policy are abundant and can be found in the
serving of people by elevators, ferries, and shuttle buses; the transhipment of mail, and
military supplies; the processing of computer programs, job applications and library
books; and the production, inventory control and shipment of commercial products
(Deb and Serfozo 1973).

4.4 M/G[b,b]/1/K +b queue with full batch service

The full batch service policy is contained in the previous model by setting a = b.

4.5 M X/G/1/K +1 queue with partial acceptance

Since the queue length is bounded, and group sizes may be larger than 1, we need to
decide how to handle arriving groups whose size exceeds the free capacity. In case
of partial acceptance, whenever the size of the arriving group and the queue length
i at an arrival epoch exceed K , only the part of the batch that fits into the buffer is
accepted (i.e. K − i customers). Hence, for i < K

x̂i (k) =
{

xi (k), if i + k < K ,
∑

l≥k xi (l), if i + k = K ,

and x̂i (0) = 1 for i = K .
This policy has many applications in manufacturing, service, computer and tele-

communication systems, as the partial batch acceptance policy utilizes the buffer space
in an optimal manner so that the loss probability of customers is rather low.
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Analysis of finite-buffer state-dependent bulk queues 569

4.6 M X/G/1/K +1 queue with complete rejection

In a make-to-order situation where a group of customers represents a batch of products
belonging to one order, it is often not possible to allow partial acceptance of individual
products. The same holds for telecommunication systems where a group of customers
is interpreted as a set of packages belonging to one information unit (Dudin et al.
2005). For these situations, it is more realistic to select the complete rejection or the
complete acceptance admission policy.

Under the complete rejection policy the complete arriving group is rejected if its
size exceeds the available buffer space. It is not difficult to see that the distribution of
X̂i for the complete rejection model is given by x̂i (k) = xi (k)1{i +k ≤ K }, for k ≥ 1.
Observe that under the complete rejection policy, x̂i (0) is the probability that at an
arrival epoch all customers in the group are rejected. Hence, x̂i (0) = ∑

k>K−i xi (k).

4.7 M X/G/1/K +1 queue with complete acceptance

In situations where customers arrive in large groups, the complete rejection policy has
a rather high loss probability. The complete acceptance policy may provide in these
cases a much better performance. Under this policy, a group is completely accepted
whenever part of it can be accepted and therefore x̂i (k) = xi (k) if i < K and x̂i (0) = 1
if i ≥ K .

The complete acceptance discipline suggest a presence of some additional place for
admitting a whole group which can not be completely placed into the buffer. This is
however not a problem in many real life systems. For instance, if we model a computer
system we can consider RAM (Random Access Memory) as a finite buffer. In case
of buffer overflow, the information that does not fit into the RAM can be placed into
extended or expanded memory (Dudin et al. 2005).

4.8 M(n)/G(n)/1/K queue

In this model, the arrival and service process are dependent on the number of custom-
ers in the system (i.e. the number of customers in the queue plus the one in service
in case the server is busy). The model, and some special cases of it (e.g. the machine
repairman problem), has been discussed extensively by Schellhaas (1983) and Gupta
and Rao (1998). As we will discuss in Remark 2, we can let the arrival rate depend
on the status of the server by replacing the λi in the model by λi,l , where l = 1 if
the server is busy and l = 0 otherwise. Now, let the index m denote the number of
customers in the system, then we can cover the M(n)/G(n)/1/K queue by defining
λ0,0 = λ0, if m = 0, and λm−1,1 = λm , if m > 0.

5 Semi-regenerative analysis of the model

We start with characterizing the state of the M(n)X (n)/G(n)Y (n)/1/K +B queue and
defining the limiting probabilities of the queue length process. Next, we derive a
procedure to compute these limiting probabilities.
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5.1 Preliminaries

To characterize the state of the M(n)X (n)/G(n)Y (n)/1/K + B system at an arbitrary
point in time t , we need to specify both the queue length and the server state at t . To
see this, note that in the present model, the service policy may idle the server even
when customers are present in queue. Therefore, knowing the number of customers
in the queue at time t is not sufficient to determine whether the server is idle or busy
at t . Let the queue length process {Q(t), t ≥ 0} take values in the finite set E ⊂ N,
while the busy process {B(t), t ≥ 0} takes values in {0, 1}, so that B(t) = 1 when the
server is busy at time t and B(t) = 0 otherwise. The system is now characterized by
the right continuous, bi-variate process {Q(t), B(t)}, which is assumed to have left
limits in t .

The server observes the queue length at service completion epochs and at arrival
epochs of customers when the server is idle. Let 0 = T0 < T1 < T2 < · · · be the
ordered sequence of these epochs, and let {Qn, n ≥ 0} denote the (embedded) queue
length process as observed by the server at these times, that is, we define

Qn =
{

Q(Tn−), if Tn is a service completion epoch,

Q(Tn−)+ X̂ Q(Tn−), if Tn is an arrival epoch and the server is idle.

Thus Qn is either the queue length just before service completion or the queue length
just after the acceptance of (part of) the group of customers. Then, it is clear (although
it requires some technical arguments, see e.g. Çinlar (1975) or Asmussen (2003)) that
{Qn, Tn} is a Markov renewal process embedded in {Q(t), B(t)}, so that {Q(t), B(t)}
is a semi-regenerative process. This means that for any n, the conditional distribution
of {Q(t + T0 +· · ·+ Tn), B(t + T0 +· · ·+ Tn)}t≥0 given T0, . . . , Tn , Q0, . . . , Qn = i
is the same as the conditional distribution of {Q(t), B(t)} given T0 = 0 and Q0 = i .
Hence, to characterize the conditional distribution of {Q(t), B(t)} it suffices to specify
the behavior Q(t) and B(t) on the interval [T0, T1). Let T0 = 0 and Q0 = i , then
{Q(t), B(t)} must satisfy for t ∈ [0, T1),

B(t) = 1{Yi > 0}, (1a)

where 1{A} is the indicator function of the set {A}, and

Q(t) =
{

i, if Yi = 0,

i − Yi + Zi−Yi (t), if Yi > 0,
(1b)

since if Yi = 0 the server remains idle during [0, T1) and if Yi > 0 it takes a batch of
size Yi into service while the random variable Zi (s) represents the number of accepted
arrivals during [0, s] given that at the start of the interval the queue length is i and the
server is busy. Note that Q(t) ≥ 0 for all t ≥ 0, since yi (k) = 0 if k > i , and {Zi (s)}
is a pure birth process.
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Analysis of finite-buffer state-dependent bulk queues 571

We assume that the embedded Markov chain {Qn} with state space E is irreducible
and aperiodic and that the Markov renewal process {Qn, Tn} is aperiodic. Since E is
also finite, it follows that {Qn} is positive recurrent.

Assuming that all these conditions are satisfied, the limiting distributions π of the
embedded Markov chain {Qn} and p of the semi-regenerative process {Q(t), B(t)}
exist. That is, for j ∈ E ,

π j = lim
n→∞ P{at time Tn , j customers wait in queue}

= lim
n→∞ P{Qn = j}

p j,0 = lim
t→∞ P{at time t , j customers wait in queue and the server is idle}

= lim
t→∞ P{Q(t) = j, B(t) = 0}

p j,1 = lim
t→∞ P{at time t , j customers wait in queue and the server is busy}

= lim
t→∞ P{Q(t) = j, B(t) = 1}. (2)

5.2 Analysis

We next derive a method to compute the limiting distributions of the embedded
Markov chain {Qn} and the semi-regenerative process {Q(t), B(t)}. We start with
deriving a numerically stable procedure to compute the semi-Markov kernel H =
{Hi ( j, t); i, j ∈ E, t ≥ 0} corresponding to the Markov renewal process {Qn, Tn}.
We recall from Çinlar (1975) or Asmussen (2003) that the elements Hi ( j, t) of H
over E are defined as

Hi ( j, t) = P{Qn+1 = j, Tn+1 − Tn ≤ t | Qn = i}
= P{Q1 = j, T1 ≤ t | Q0 = i}. (3)

To start the computation of H we expand the definition of Hi ( j, t) by conditioning
on Yi ;

Hi ( j, t) =
i∑

k=0

P{Yi = k} P{Q1 = j, T1 ≤ t | Q0 = i,Yi = k}.

Observe that when Yi = 0, T1 corresponds to an idle period that starts with i customers
in queue and ends within t time units with the arrival of a group of customers from
which j − i are accepted. Hence,

P{Q1 = j, T1 ≤ t | Q0 = i,Yi = 0} = (1 − e−λi t ) x̂i ( j − i).

Otherwise, when Yi = k > 0, T1 corresponds to a batch service of size k that starts
with i customers in queue and ends within t time units during which j − i +k custom-
ers are accepted. Writing Ri (m, s) = P{Zi (s) = m} for the probability to accept m
customers during a service interval of duration s that starts with i customers in queue,
we have that for k ≥ 1
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P{Q1 = j, T1 ≤ t | Q0 = i,Yi = k} =
t∫

0

Ri−k( j − i + k, s) dGi,k(s).

Now we can expand the expression for Hi ( j, t) as

Hi ( j, t) = yi (0)(1 − e−λi t ) x̂i ( j − i)+
i∑

k=1

yi (k)

t∫

0

Ri−k( j − i + k, s) dGi,k(s).

(4)

From (4), it is obvious that it remains to find a suitable expression to compute
Ri (m, s). In the following lemma we present an efficient recursion for this purpose.

Lemma 1 The probability that in a service period of duration s, m customers are
accepted, given that just after the start of the service i customers are in queue, can be
written as

Ri (m, s) =
∞∑

n=0

Ui (m, n)e−λs (λs)n

n! , (5)

for some (finite) λ ≥ maxi∈E λi , and where Ui (m, n) satisfies the following recursion
for i ∈ E and n,m ≥ 0,

Ui (m, n + 1) = Ui (m, n)+ λi+m

λ

[
x̂i+m(0)− 1

]
Ui (m, n)

+
m−1∑

l=0

λi+l

λ
x̂i+l(m − l)Ui (l, n), (6)

with initial conditions

Ui (m, 0) =
{

1, if m = 0,

0, if m > 0.

Proof Since the group inter-arrival times are exponentially distributed it follows for
sufficiently small h > 0 that

Ri (m, s + h) = [1 − λi+mh(1 − x̂i+m(0))]Ri (m, s)

+h
m−1∑

l=0

λi+l x̂i+l(m − l)Ri (l, s)+ o(h).

Subtracting Ri (m, s) at both sides, dividing by h, and taking the limit h ↓ 0 we arrive
at the Kolmogorov forward equation
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d

ds
Ri (m, s) = λi+m(x̂i+m(0)− 1)Ri (m, s)+

m−1∑

l=0

λi+l x̂i+l(m − l)Ri (l, s). (7)

By the finiteness of the λi , there exist a finite λ such that λ ≥ maxi∈E λi . Therefore,
we can use the uniformization method and substitute the form

Ri (m, s) =
∞∑

n=0

Ui (m, n)e−λs (λs)n

n! (8)

in (7) for any such λ. After simplifying the result, we obtain (6).
The initial conditions follow from observing in (8) that Ri (m, 0) = Ui (m, 0), and

that Ri (m, 0) = 1{m = 0}.
Remark 1 Observe that Ui (m, n) can be interpreted as the probability to accept m
customers given that n groups of customers arrived since the start of the service epoch
and given that the number of customers in queue just after the start of the service epoch
was i .

Now we have all the tools to compute the semi-Markov kernel H and obtain the
transition matrix P = {P(i, j); i, j ∈ E} of the embedded Markov chain {Qn} by
taking the limit of H as t → ∞. From the assumption that {Qn} is an ergodic Markov
chain, it follows that the limiting distribution π exists and is the unique solution (up
to normalization) of

π j =
∑

i∈E

πi Hi ( j,∞)

=
∑

i∈E

πi
[
yi (0)x̂i ( j − i)+ V (i, j)

]
, (9)

where

V (i, j) =
i∑

k=1

yi (k)
∞∑

n=0

Ui−k( j − i + k, n)ai,k(n)

which we obtain after substituting (5) for Ri (k, s) in (4) and reorganizing so that the
integrations reduce to the mixed Poisson probabilities

ai,k(n) =
∞∫

0

e−λs (λs)n

n! dGi,k(s). (10)

To proceed from π to p, we use semi-regeneration in the following theorem. First,
let C denote the length of the interval between two successive embedded Markov
points Tn and Tn+1. Supposing that Qn = i , observe that C is a service interval of
length Si,k when Yi = k ≥ 1, and an inter-arrival time when Yi = 0. Therefore, the
expected cycle time Ci is
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E (Si ) =
∞∑

k=1

yi (k)E (Si,k),

if a service starts with a queue length Qn = i while it is yi (0)/λi when the server
idles. Hence,

E (C) = E (E (C |Q)) =
∑

i∈E

πi

[
yi (0)

λi
+ E (Si )

]

.

Note that it may occur that λi = 0 for some i ∈ E . We require in such states that
yi (0) = 1 to prevent that i is an absorbing state. In such cases set yi (0)/λi ≡ 0.

Theorem 1 The limiting distribution p satisfies

p j,0 = y j (0)

λ j

π j

E (C)
, (11a)

p j,1 =
∑

i∈E

πi

E (C)
Ve(i, j) (11b)

where

Ve(i, j) =
i∑

k=1

yi (k)
∞∑

n=0

Ui−k( j − i + k, n) ae
i,k(n), (11c)

ae
i,k(n) =

∞∫

0

e−λs (λs)n

n! [1 − Gi,k(s)] ds. (11d)

Proof To prove (11) we use Çinlar (1975, Theorem 6.6.12) which states that for j ∈ E
and l ∈ {0, 1}

p j,l = 1

E (C)

∑

i∈E

πi

∞∫

0

ψi (t, j, l) dt, (12)

provided that {Qn, Tn} is an ergodic process, E (C) < ∞, and the function t →
ψi (t, j, l) = P{Q(t) = j, B(t) = l, T1 > t | Q0 = i} is directly Riemann integrable
for every i, j ∈ E and l ∈ {0, 1}.

To check these conditions, note that the first two conditions are true by the assump-
tions made in Sect. 3. From (1), (4), and the fact that T1 equals a service time Si,k

when Yi = k ≥ 1, and an inter-arrival time when Yi = 0, it follows that

ψi (t, j, l) =

⎧
⎪⎨

⎪⎩

yi (0) e−λi t , if l = 0, j = i,
∑i

k=1 yi (k)Ri−k( j − i + k, t)[1 − Gi,k(t)], if l = 1,

0, otherwise.

(13)
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It is clear that ψi (t, i, 0) = yi (0) e−λi t is directly Riemann integrable for any i ∈ E .
From (13) we have that ψi (t, j, 1) ≤ maxk≤i {1 − Gi,k(t)} for i, j ∈ E . Note that
1 − Gi,k(t) is directly Riemann integrable since it is non-increasing and

∫ ∞
0 [1 −

Gi,k(t)]dt = E (Si,k) < ∞. Hence, t → ψi (t, j, l) is directly Riemann integrable for
every i, j ∈ E and l ∈ {0, 1}.

For l = 0, (11a) follows directly from (12) and (13). Let l = 1 and j ∈ E . Then
by (12), (13), (5),

p j,1 = 1

E (C)

∑

i∈E

πi

i∑

k=1

yi (k)

∞∫

0

Ri−k( j − i + k, t)[1 − Gi,k(t)] dt

=
∑

i∈E

πi

E (C)

i∑

k=1

yi (k)
∞∑

n=0

Ui−k( j − i + k, n)

∞∫

0

e−λt (λt)n

n! [1 − Gi,k(t)] dt.

This proves (11b).

Remark 2 So far, the arrival process may only depend on the number of customers
in queue and not on the status of the server (i.e. whether the server is idle or busy)
at the moment of customer arrival. Dependence of the arrival process on the status of
the server can easily be included in our model at the expense of an additional index l,
where l = 1 if the server is busy and l = 0 otherwise. Now, we define λi,1 (λi,0) to be
the rate at which customers arrive when there are i customers in queue and the server
is busy (idle). In a similar way, we extend the definitions of the probabilities xi,l(k)
and x̂i,l(k), for l = 0, 1.

The equations needed for the computation of the limiting probabilities π and p,
which we derived in this section, can now be adapted to cover the described extension.
First observe that the λi and x̂i (k) in Eq. (6) all correspond to the arrival rates and
group sizes during a busy period and therefore can be replaced by λi,1 and x̂i,1(k),
respectively. Furthermore, the yi (0) x̂i ( j − i) part in (9) and λi in (11a) (and in E (C))
correspond to the group size and arrival rate of customers to an idle server and can be
replaced by yi (0) x̂i,0( j − i) and λi,0, respectively. With these small modifications,
we can generalize our model to include the dependence of the arrival process on the
status of the server. In Sect. 4, we showed that this generalization enables us to study
the M(n)/G(n)/1/K where the number of customers in the system (instead of in the
queue) is limited by K .

6 Algorithmic aspects

Now, we summarize the approach for computing the limiting probabilities at embed-
ded, i.e., π j , and arbitrary epochs, i.e., p j , and we show how the precision of our
numerical method can be specified in advance.

The numerical method that we have developed in the previous section leads to the
following algorithm
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Step 1 Compute (by numerical integration or if possible explicitly) the mixed Poisson
probabilities ai,k(n) and ae

i,k(n) from relations (10) and (11d).
Step 2 Compute Ui (k, n) for i ∈ E and k, n ≥ 0, by means of the recursion (6).
Step 3 Use standard numerical procedures to compute π from (9).
Step 4 Compute p using the relations in Theorem 1.

To compute π j to a given precision ε > 0 it suffices to compute Ui (k, n) and the
probabilities ai,k(n) up to some finite Ni , where

Ni = min

{

m;
m∑

n=0

i∑

k=1

yi (k)ai,k(n) ≥ 1 − ε

}

.

This follows, since, c.f. (9),

V (i, j) = VNi (i, j)+ eNi ,

where

V (i, j) =
i∑

k=1

yi (k)
∞∑

n=0

Ui−k( j − i + k, n) ai,k(n),

VNi (i, j) =
i∑

k=1

yi (k)
Ni∑

n=0

Ui−k( j − i + k, n) ai,k(n),

and eNi satisfies

eNi =
i∑

k=1

yi (k)
∑

n≥Ni +1

Ui−k( j − i + k, n) ai,k(n) ≤
∑

n≥Ni +1

i∑

k=1

yi (k)ai,k(n),

since the probabilities Ui−k( j − i + k, n) ≤ 1. Therefore,

eNi ≤ 1 −
Ni∑

n=0

i∑

k=1

yi (k)ai,k(n) ≤ ε.

Similar reasoning applies to the computation of p j,1.
Finally, note that the computations in our approach only involve additions and mul-

tiplications of positive and bounded numbers, thereby preventing a loss a significant
digits. Observe also that explicit expressions for the ai,k(n) and ae

i,k(n) can be given
for the cases of deterministic and phase-type services.

7 Performance measures

In this section, we derive a set of relevant performance measures such as the aver-
age number of customers in queue (Lq), the average waiting time in queue (Wq),
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the server utilization (ρ) and the loss probability of a group of customers and of an
arbitrary customer within a group. All these performance measures can be obtained
from the limiting probabilities p j,k , c.f. the definition in Eq. (2). Since p j,k is the
probability that the queue contains j customers and the server is in state k ∈ {0, 1},
p j = p j,0+p j,1 is the limiting probability that at an arbitrary point in time j customers
are waiting in queue. Now it easily follows that

ρ = 1 −
∑

j∈E

p j,0 =
∑

j∈E

p j,1 λ′ =
∑

j≥0

λ j p j E (X̂ j ) (14a)

Lq =
∑

j∈E

j p j Wq = Lq

λ′ (14b)

where λ′ is the acceptance rate of customers.
The loss probability of a group of customers and of an arbitrary customer within

a group clearly depend on the rejection policy. Common rejection policies are the
ones we discussed in Sect. 4, i.e., partial acceptance, complete rejection and complete
acceptance. In what follows, we discuss the computation of the loss probabilities for
these three rejection policies.

7.1 Complete acceptance

In the sequel, let � and γ , respectively, correspond to the event that a group is lost and
that an arbitrary customer is lost. Then, it is not difficult to check that for the complete
acceptance policy

P{�} = P{γ } = 1 −
K−1∑

j=0

p j .

7.2 Complete rejection

Recall from Sect. 4 that under the complete rejection policy the probability that cus-
tomers in an arriving group are rejected is x̂i (0) = ∑

k≥K−i+1 xi (k). Therefore,

P{�} =
K∑

i=0

pi x̂i (0). (15)

To calculate the rejection probability for an arbitrary customer, we use the following
renewal-theoretic result (Burke 1975):

qk = P{an arbitrary customer belongs to a group of size k} = k x(k)

E (X)
, (16)
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with x(k) = ∑
i∈E pi xi (k) and E (X) = ∑

k≥1 k x(k). Define q̄k = ∑∞
m=k qm to be

the probability that an arbitrary customer belongs to a group of size greater or equal
to k. Then

P{γ } =
K∑

i=0

P

{

γ

∣
∣
∣
∣
customer sees i customers
in queue upon arrival

}

pi

=
K∑

i=0

P

{
customer belongs to a group
of size larger than K − i

}

pi

=
K∑

i=0

pi q̄K−i+1. (17)

7.3 Partial acceptance

Under the partial acceptance policy, it is preferable to interpret � as the event that a
group of customers overflows, i.e. when an arriving group does not fit completely into
the queue (see Nobel (1989)). Then, it is easy to check that

P{�} =
K∑

i=0

pi

∑

k≥K+1−i

xi (k).

To calculate the rejection probability for an arbitrary customer, we define for k ≥ 1

ηk = P{an arbitrary customer occupies the kth position in the group}
=

∑

m≥k

x(m)

E (X)
,

where the last equation follows by conditioning on the event that “an arbitrary cus-
tomer belongs to a group of size k” and then using (16). Let η̄k = ∑∞

m=k ηm denote
the probability that an arbitrary customers occupies a position greater or equal to k in
his group. Then, analogous to the derivation of (17) we obtain

P{γ } =
K∑

i=0

pi η̄K−i+1.

8 Numerical examples

In this section, we apply the model to the numerical analysis of three examples, a
batch queueing process with queue length dependent balking, a queuing process sub-
ject to holding cost and loss, and a batch arrival/service process subject to queue
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length dependent batch arrival sizes and batch size dependent service rates. Our code
is available at the second author’s homepage.1

8.1 Bulk queues with state dependent balking and service rates

Consider a single server shop. Customers require varying amounts of service. With
little amount of work in the system, all customers are prepared to enter the system, but
when there is a large amount of work, the ‘large’ customers still enter while most of
the ‘small’ customers balk. As is commonly the case (see, e.g., Bekker 2004; Bekker
et al. 2004), the server increases the service rate when the queue becomes longer. We
assume complete acceptance, and K to be so large that the probability of overflow is
negligible.

As a concrete example, suppose that the service requirement of a large customer is
10 times that of a small customer. We model this by letting the service requirement of
a small (large) customer correspond to a batch size of k = 1 (k = 10) units. Large cus-
tomers arrive at the system at rate λl = 5 per hour. We implement the balking behavior
of the small customers by taking λs,i = max{0, 10 − i}. Then, take λi = λs,i + λl ,
and set

xi (k) =

⎧
⎪⎨

⎪⎩

λs,i/λi , for k = 1,

λl/λi , for k = 10,

0, otherwise.

(18)

Since we assume complete acceptance: x̂i (k) = xi (k) if i < K and x̂i (0) = 1 if
i ≥ K . Let service take place in single units, thus, yi (1) = 1 for all i > 0 and
y0(0) = 1. Note that the queue length corresponds now to the workload in the queue.
For simplicity, we assume deterministic service times. When the queue length is long,
however, the employee feels more stress, and therefore works at a higher rate. This is
implemented by taking Si,k ≡ (90 + i/5)−1 for all i, k.

For the case with K = 50, we find that the acceptance rate, see Eq. 14a, λ′ = 56.1
per hour, ρ = 0.6119, Lq = 5.678, and γ = � = 0.0009. As a simple reference, we
compare this system to an M/D/1 queue with load ρ = (5·10+10)/90 = 2/3, which
leads to Lq(M/D/1) = 2/3. Clearly, this value is much lower than 5.678, leading us
to conclude that simpler queueing models are not accurate models for general batch
queueing processes.

8.2 Minimal batch service queues with holding and setup costs

Consider a batch service system subject to setup and service costs, holding costs
and rejection costs. A natural batch service policy for this system is to start ser-
vice only when the queue length exceeds some threshold a and then serve as many
customers as possible. In this section, we compute the performance measures for

1 http://nicky.vanforeest.com/batchqueues/batchModel.html.
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the M X/G[a,b]/1/K +b queueing process, for which the costs are a function of the
threshold parameter a (see Sect. 4.3). We consider also three loss policies: complete
rejection, complete acceptance and partial acceptance. As in Aalto (2000) we assume
that the holding cost is ch per customer in the queue per unit time, a service cost
ck + cs j is incurred at each service epoch when j is the batch service size, and a
rejection cost of cr per unit.

Let π and p denote the limiting distribution of the queue length process at embed-
ded and arbitrary epochs, respectively. It is easy to check that the average rejection
costs per time unit under the complete acceptance (RCca), complete rejection (RCcr)
and partial acceptance (RCpa) policy can be expressed as follows

RCca = cr

∑

i≥K

pi

∞∑

j=1

xi ( j) j = cr

∑

i≥K

pi E (Xi )

RCcr = cr

K∑

i=0

pi

∞∑

j=K+1−i

xi ( j) j

RCpa = cr

K∑

i=0

pi

∞∑

j=K+1−i

xi ( j) ( j − K + i).

Now the average cost per time unit under the minimal batch service policy and rejec-
tion policy ξ ∈ {ca, cr, pa} can be expressed as ACξ (a) = HC(a) + SC(a) + RCξ ,
where the average holding cost

HC(a) = ch

∑

i≥0

pi i,

and average service cost per time unit

SC(a) =
B∑

i=a

πi (ck + cs i)+
∞∑

i=B+1

πi (ck + cs B).

As a concrete example, suppose for all i ∈ E , λi = 0.2, xi (1) = 0.25, xi (3) = 0.5,
xi (5) = 0.25, E (Xi ) = 3, service is deterministic, i.e., Si,k ≡ 10 for all k, i , B = 10,
and K = 10. The parameters x̂i (k) and yi (k) are defined as in Sect. 4 for the three
rejection policies and the minimal batch service policy. Furthermore, the cost parame-
ters are given by ch = 5, ck = 10, cs = 5 and cr = 50. In Table 1, we present the costs
per unit time for different values of the threshold a. It is easy to find that the optimal
minimal batch service threshold value a� is 6 for the complete rejection policy, 7 for
the partial acceptance and complete acceptance policies. Thus, the threshold value
increases when the acceptance policy is less ’strict’. This is as expected, since the pol-
icy makes a trade-off between set-up costs, i.e., a cost ck is incurred for each service
interval, and the rejection costs. Setting the threshold a to a lower value increases the
long run average setup costs but lowers the rejection costs.
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Table 1 Long run average holding cost (HC), service cost (SC), rejection cost (RC) and total cost (AC)
for the rejection policies Partial rejection (pr), Complete rejection (cr) and Complete admission (ca) as
functions of the minimal batch service threshold a

a 1 2 3 4 5 6 7 8 9 10

HCca 14.90 14.47 14.37 14.42 14.78 15.44 16.94 18.49 21.15 24.52

SCca 35.37 33.75 33.02 30.61 28.99 27.60 26.05 25.06 24.22 23.52

RCca 10.75 10.28 10.05 9.26 8.66 8.11 7.61 7.50 7.91 9.21

ACca 61.02 58.49 57.45 54.30 52.43 51.14 50.60 51.06 53.28 57.25

HCpr 13.24 12.86 12.81 13.00 13.45 14.19 15.62 16.84 18.61 20.70

SCpr 34.14 32.57 31.99 29.53 28.02 26.74 25.01 23.89 22.30 20.46

RCpr 15.32 14.63 14.36 13.11 12.26 11.47 11.57 12.41 16.23 22.87

ACpr 62.70 60.06 59.15 55.64 53.74 52.41 52.20 53.15 57.13 64.03

HCcr 12.83 12.47 12.43 12.65 13.13 13.89 15.44 16.73 18.84 21.27

SCcr 32.89 31.51 30.96 28.65 27.24 26.03 24.30 23.19 21.40 19.38

RCcr 21.46 20.48 20.10 18.36 17.17 16.07 20.53 23.31 33.63 43.31

ACcr 67.27 64.47 63.49 59.66 57.54 55.99 60.27 63.24 73.87 83.97

8.3 Queueing at thrill rides at fairs

Consider now the queueing process at a thrill ride such as the ‘Freak Out’ (see Wikipe-
dia2 for a description). Customers arrive in groups, and are served in batches. Larger
groups tend to balk less quickly, as the customers in one group also take pleasure
(hopefully) in each other’s company. The service time of a batch depends on the batch
size, since each customer in the rider requires a safety check before the ride can take
off. The problem is to determine the minimal batch size, i.e., the a parameter of the
previous model, that maximizes the number of persons entering, i.e., paying.

As a simple numerical illustration, suppose couples, i.e., two customers, arrive
at rate λs,i = max{0, 1 − i/14} per minute, while groups of four persons arrive as
λl,i = 0.25 1{i ≤ 20}, where 1{·} is the indicator function. Set λi = λs,i + λl,i , take

xi (k) =

⎧
⎪⎨

⎪⎩

λs,i/λi , for k = 2,

λl,i/λi , for k = 4,

0, else.

(19)

and assume complete acceptance. The service time of a batch consists of the time of
the actual ride, 2 (very long) minutes, 1 min of loading and unloading, and 5 s per
safety check. Assuming that the service time does not depend on the queue length, the
service distribution then becomes Si,k = 3 + k/12 minutes, where k is the batch size.
Finally, the Freak Out has 16 seats, so the maximal batch size is 16.

2 http://en.wikipedia.org/wiki/Freak_Out_(ride).
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Table 2 Revenue rate λe as a function of the minimal batch service threshold a

a 2 4 6 8 10 12 14 16

λe 2.3204 2.3239 2.3230 2.2988 2.2319 2.1148 1.9495 1.6844

Clearly, the revenue rate equals the rate λe at which customers enter the system,
which is given by

λe =
∑

i∈E

pi (2λs,i + 4λl,i )

Note that the maximal entering rate occurs when Q(t) = 0, which in this case becomes
2λs,0 + 4λl,0 = 3 per minute. Table 2 shows the dependency of λe on the minimal
threshold parameter a. Interestingly, greedy service leads for this model to higher
revenues than full batch service.
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