4,653 research outputs found

    Review of the Synergies Between Computational Modeling and Experimental Characterization of Materials Across Length Scales

    Full text link
    With the increasing interplay between experimental and computational approaches at multiple length scales, new research directions are emerging in materials science and computational mechanics. Such cooperative interactions find many applications in the development, characterization and design of complex material systems. This manuscript provides a broad and comprehensive overview of recent trends where predictive modeling capabilities are developed in conjunction with experiments and advanced characterization to gain a greater insight into structure-properties relationships and study various physical phenomena and mechanisms. The focus of this review is on the intersections of multiscale materials experiments and modeling relevant to the materials mechanics community. After a general discussion on the perspective from various communities, the article focuses on the latest experimental and theoretical opportunities. Emphasis is given to the role of experiments in multiscale models, including insights into how computations can be used as discovery tools for materials engineering, rather than to "simply" support experimental work. This is illustrated by examples from several application areas on structural materials. This manuscript ends with a discussion on some problems and open scientific questions that are being explored in order to advance this relatively new field of research.Comment: 25 pages, 11 figures, review article accepted for publication in J. Mater. Sc

    Multiscale thermo-mechanical analysis of multi-layered coatings in solar thermal applications

    Get PDF
    Solar selective coatings can be multi-layered materials that optimize the solar absorption while reducing thermal radiation losses, granting the material long-term stability. These layers are deposited on structural materials (e.g., stainless steel, Inconel) in order to enhance the optical and thermal properties of the heat transfer system. However, interesting questions regarding their mechanical stability arise when operating at high temperatures. In this work, a full thermo-mechanical multiscale methodology is presented, covering the nano-, micro-, and macroscopic scales. In such methodology, fundamental material properties are determined by means of molecular dynamics simulations that are consequently implemented at the microstructural level by means of finite element analyses. On the other hand, the macroscale problem is solved while taking into account the effect of the microstructure via thermo-mechanical homogenization on a representative volume element (RVE). The methodology presented herein has been successfully implemented in a reference problem in concentrating solar power plants, namely the characterization of a carbon-based nanocomposite and the obtained results are in agreement with the expected theoretical values, demonstrating that it is now possible to apply successfully the concepts behind Integrated Computational Materials Engineering to design new coatings for complex realistic thermo-mechanical applications.Peer ReviewedPostprint (author's final draft
    • …
    corecore