48,532 research outputs found

    Time Domain Computation of a Nonlinear Nonlocal Cochlear Model with Applications to Multitone Interaction in Hearing

    Full text link
    A nonlinear nonlocal cochlear model of the transmission line type is studied in order to capture the multitone interactions and resulting tonal suppression effects. The model can serve as a module for voice signal processing, it is a one dimensional (in space) damped dispersive nonlinear PDE based on mechanics and phenomenology of hearing. It describes the motion of basilar membrane (BM) in the cochlea driven by input pressure waves. Both elastic damping and selective longitudinal fluid damping are present. The former is nonlinear and nonlocal in BM displacement, and plays a key role in capturing tonal interactions. The latter is active only near the exit boundary (helicotrema), and is built in to damp out the remaining long waves. The initial boundary value problem is numerically solved with a semi-implicit second order finite difference method. Solutions reach a multi-frequency quasi-steady state. Numerical results are shown on two tone suppression from both high-frequency and low-frequency sides, consistent with known behavior of two tone suppression. Suppression effects among three tones are demonstrated by showing how the response magnitudes of the fixed two tones are reduced as we vary the third tone in frequency and amplitude. We observe qualitative agreement of our model solutions with existing cat auditory neural data. The model is thus simple and efficient as a processing tool for voice signals.Comment: 23 pages,7 figures; added reference

    Digital waveguide modeling for wind instruments: building a state-space representation based on the Webster-Lokshin model

    Get PDF
    This paper deals with digital waveguide modeling of wind instruments. It presents the application of state-space representations for the refined acoustic model of Webster-Lokshin. This acoustic model describes the propagation of longitudinal waves in axisymmetric acoustic pipes with a varying cross-section, visco-thermal losses at the walls, and without assuming planar or spherical waves. Moreover, three types of discontinuities of the shape can be taken into account (radius, slope and curvature). The purpose of this work is to build low-cost digital simulations in the time domain based on the Webster-Lokshin model. First, decomposing a resonator into independent elementary parts and isolating delay operators lead to a Kelly-Lochbaum network of input/output systems and delays. Second, for a systematic assembling of elements, their state-space representations are derived in discrete time. Then, standard tools of automatic control are used to reduce the complexity of digital simulations in the time domain. The method is applied to a real trombone, and results of simulations are presented and compared with measurements. This method seems to be a promising approach in term of modularity, complexity of calculation and accuracy, for any acoustic resonators based on tubes

    ELICA: An Automated Tool for Dynamic Extraction of Requirements Relevant Information

    Full text link
    Requirements elicitation requires extensive knowledge and deep understanding of the problem domain where the final system will be situated. However, in many software development projects, analysts are required to elicit the requirements from an unfamiliar domain, which often causes communication barriers between analysts and stakeholders. In this paper, we propose a requirements ELICitation Aid tool (ELICA) to help analysts better understand the target application domain by dynamic extraction and labeling of requirements-relevant knowledge. To extract the relevant terms, we leverage the flexibility and power of Weighted Finite State Transducers (WFSTs) in dynamic modeling of natural language processing tasks. In addition to the information conveyed through text, ELICA captures and processes non-linguistic information about the intention of speakers such as their confidence level, analytical tone, and emotions. The extracted information is made available to the analysts as a set of labeled snippets with highlighted relevant terms which can also be exported as an artifact of the Requirements Engineering (RE) process. The application and usefulness of ELICA are demonstrated through a case study. This study shows how pre-existing relevant information about the application domain and the information captured during an elicitation meeting, such as the conversation and stakeholders' intentions, can be captured and used to support analysts achieving their tasks.Comment: 2018 IEEE 26th International Requirements Engineering Conference Workshop

    Simulation-based high-level synthesis of Nyquist-rate data converters using MATLAB/SIMULINK

    Get PDF
    This paper presents a toolbox for the simulation, optimization and high-level synthesis of Nyquist-rate Analog-to-Digital (A/D) and Digital-to-Analog (D/A) Converters in MATLABÂź. The embedded simulator uses SIMULINKÂź C-coded S-functions to model all required subcircuits including their main error mechanisms. This approach allows to drastically speed up the simulation CPU-time up to 2 orders of magnitude as compared with previous approaches - based on the use of SIMULINKÂź elementary blocks. Moreover, S-functions are more suitable for implementing a more detailed description of the circuit. For all subcircuits, the accuracy of the behavioral models has been verified by electrical simulation using HSPICE. For synthesis purposes, the simulator is used for performance evaluation and combined with an hybrid optimizer for design parameter selection. The optimizer combines adaptive statistical optimization algorithm inspired in simulated annealing with a design-oriented formulation of the cost function. It has been integrated in the MATLAB/SIMULINKÂź platform by using the MATLABÂź engine library, so that the optimization core runs in background while MATLABÂź acts as a computation engine. The implementation on the MATLABÂź platform brings numerous advantages in terms of signal processing, high flexibility for tool expansion and simulation with other electronic subsystems. Additionally, the presented toolbox comprises a friendly graphical user interface to allow the designer to browse through all steps of the simulation, synthesis and post-processing of results. In order to illustrate the capabilities of the toolbox, a 0.13)im CMOS 12bit@80MS/s analog front-end for broadband power line communications, made up of a pipeline ADC and a current steering DAC, is synthesized and high-level sized. Different experiments show the effectiveness of the proposed methodology.Ministerio de Ciencia y TecnologĂ­a TIC2003-02355RAICONI

    Auditory power-law activation-avalanches exhibit a fundamental computational ground-state

    Full text link
    The cochlea provides a biological information-processing paradigm that we only begin to under- stand in its full complexity. Our work reveals an interacting network of strongly nonlinear dynami- cal nodes, on which even simple sound input triggers subnetworks of activated elements that follow power-law size statistics ('avalanches'). From dynamical systems theory, power-law size distribu- tions relate to a fundamental ground-state of biological information processing. Learning destroys these power laws. These results strongly modify the models of mammalian sound processing and provide a novel methodological perspective for understanding how the brain processes information.Comment: Videos are not included, please ask author
    • 

    corecore