698 research outputs found

    Finite Element Quadrature of Regularized Discontinuous and Singular Level Set Functions in 3D Problems

    Get PDF
    Regularized Heaviside and Dirac delta function are used in several fields of computational physics and mechanics. Hence the issue of the quadrature of integrals of discontinuous and singular functions arises. In order to avoid ad-hoc quadrature procedures, regularization of the discontinuous and the singular fields is often carried out. In particular, weight functions of the signed distance with respect to the discontinuity interface are exploited. Tornberg and Engquist (Journal of Scientific Computing, 2003,19: 527-552) proved that the use of compact support weight function is not suitable because it leads to errors that do not vanish for decreasing mesh size. They proposed the adoption of non-compact support weight functions. In the present contribution, the relationship between the Fourier transform of the weight functions and the accuracy of the regularization procedure is exploited. The proposed regularized approach was implemented in the eXtended Finite Element Method. As a three-dimensional example, we study a slender solid characterized by an inclined interface across which the displacement is discontinuous. The accuracy is evaluated for varying position of the discontinuity interfaces with respect to the underlying mesh. A procedure for the choice of the regularization parameters is propose

    Hybrid finite difference/finite element immersed boundary method

    Get PDF
    The immersed boundary method is an approach to fluid-structure interaction that uses a Lagrangian description of the structural deformations, stresses, and forces along with an Eulerian description of the momentum, viscosity, and incompressibility of the fluid-structure system. The original immersed boundary methods described immersed elastic structures using systems of flexible fibers, and even now, most immersed boundary methods still require Lagrangian meshes that are finer than the Eulerian grid. This work introduces a coupling scheme for the immersed boundary method to link the Lagrangian and Eulerian variables that facilitates independent spatial discretizations for the structure and background grid. This approach employs a finite element discretization of the structure while retaining a finite difference scheme for the Eulerian variables. We apply this method to benchmark problems involving elastic, rigid, and actively contracting structures, including an idealized model of the left ventricle of the heart. Our tests include cases in which, for a fixed Eulerian grid spacing, coarser Lagrangian structural meshes yield discretization errors that are as much as several orders of magnitude smaller than errors obtained using finer structural meshes. The Lagrangian-Eulerian coupling approach developed in this work enables the effective use of these coarse structural meshes with the immersed boundary method. This work also contrasts two different weak forms of the equations, one of which is demonstrated to be more effective for the coarse structural discretizations facilitated by our coupling approach

    IgA-BEM for 3D Helmholtz problems using conforming and non-conforming multi-patch discretizations and B-spline tailored numerical integration

    Get PDF
    An Isogeometric Boundary Element Method (IgA-BEM) is considered for the numerical solution of Helmholtz problems on 3D bounded or unbounded domains, admitting a smooth multi-patch representation of their finite boundary surface. The discretization spaces are formed by C0 inter-patch continuous functional spaces whose restriction to a patch simplifies to the span of tensor product B-splines composed with the given patch NURBS parameterization. Both conforming and non-conforming spaces are allowed, so that local refinement is possible at the patch level. For regular and singular integration, the proposed model utilizes a numerical procedure defined on the support of each trial B-spline function, which makes possible a function-by-function implementation of the matrix assembly phase. Spline quasi-interpolation is the common ingredient of all the considered quadrature rules; in the singular case it is combined with a B-spline recursion over the spline degree and with a singularity extraction technique, extended to the multi-patch setting for the first time. A threshold selection strategy is proposed to automatically distinguish between nearly singular and regular integrals. The non-conforming C0 joints between spline spaces on different patches are implemented as linear constraints based on knot removal conditions, and do not require a hierarchical master-slave relation between neighbouring patches. Numerical examples on relevant benchmarks show that the expected convergence orders are achieved with uniform discretization and a small number of uniformly spaced quadrature nodes

    Numerical approximation of internal discontinuity interface problems

    Get PDF
    This work focuses on the finite element discretization of boundary value problems whose solution features either a discontinuity or a discontinuous conormal derivative across an in- terface inside the computational domain. The interface is characterized via a level set function. The discontinuities are accounted for by using suitable extension operators whose numerical implementa- tion requires a very low computational effort. After carrying out the error analysis, numerical results to validate our approach are presented in one, two, and three dimensions.Peer ReviewedPostprint (published version

    Strain injection techniques in dynamic fracture modeling

    Get PDF
    A computationally affordable modeling of dynamic fracture phenomena is performed in this study by using strain injection techniques and Finite Elements with Embedded strong discontinuities (E-FEM). In the present research, classical strain localization and strong discontinuity approaches are considered by injecting discontinuous strain and displacement modes in the finite element formulation without an increase of the total number of degrees of freedom. Following the Continuum Strong Discontinuity Approach (CSDA), stress–strain constitutive laws can be employed in the context of fracture phenomena and, therefore, the methodology remains applicable to a wide number of continuum mechanics models. The position and orientation of the displacement discontinuity is obtained through the solution of a crack propagation problem, i.e. the crack path field, based on the distribution of localized strains. The combination of the above mentioned approaches is envisaged to avoid stress-locking and directional mesh bias phenomena. Dynamic simulations are performed increasing the loading rate up to the appearance of crack branching, and the variation in terms of failure modes is investigated as well as the influence of the strain injection together with the crack path field algorithm. Objectivity of the presented methodology with respect to the spatial and temporal discretization is analyzed in terms of the dissipated energy during the fracture process. The dissipation at the onset of branching is studied for different loading rate conditions and is linked to the experimental maximum velocity observed before branching takes place.Fil: Lloberas Valls, Oriol. Universidad Politecnica de Catalunya; España. Centre Internacional de Metodes Numerics en Enginyeria; EspañaFil: Huespe, Alfredo Edmundo. Centre Internacional de Metodes Numerics en Enginyeria; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Oliver, J.. Centre Internacional de Metodes Numerics en Enginyeria; España. Universidad Politecnica de Catalunya; EspañaFil: Dias, I.F.. Laboratório Nacional de Engenharia Civil; Portuga

    Phase-field modeling of brittle fracture with multi-level hp-FEM and the finite cell method

    Full text link
    The difficulties in dealing with discontinuities related to a sharp crack are overcome in the phase-field approach for fracture by modeling the crack as a diffusive object being described by a continuous field having high gradients. The discrete crack limit case is approached for a small length-scale parameter that controls the width of the transition region between the fully broken and the undamaged phases. From a computational standpoint, this necessitates fine meshes, at least locally, in order to accurately resolve the phase-field profile. In the classical approach, phase-field models are computed on a fixed mesh that is a priori refined in the areas where the crack is expected to propagate. This on the other hand curbs the convenience of using phase-field models for unknown crack paths and its ability to handle complex crack propagation patterns. In this work, we overcome this issue by employing the multi-level hp-refinement technique that enables a dynamically changing mesh which in turn allows the refinement to remain local at singularities and high gradients without problems of hanging nodes. Yet, in case of complex geometries, mesh generation and in particular local refinement becomes non-trivial. We address this issue by integrating a two-dimensional phase-field framework for brittle fracture with the finite cell method (FCM). The FCM based on high-order finite elements is a non-geometry-conforming discretization technique wherein the physical domain is embedded into a larger fictitious domain of simple geometry that can be easily discretized. This facilitates mesh generation for complex geometries and supports local refinement. Numerical examples including a comparison to a validation experiment illustrate the applicability of the multi-level hp-refinement and the FCM in the context of phase-field simulations

    A Simple Method for Computing Singular or Nearly Singular Integrals on Closed Surfaces

    Full text link
    We present a simple, accurate method for computing singular or nearly singular integrals on a smooth, closed surface, such as layer potentials for harmonic functions evaluated at points on or near the surface. The integral is computed with a regularized kernel and corrections are added for regularization and discretization, which are found from analysis near the singular point. The surface integrals are computed from a new quadrature rule using surface points which project onto grid points in coordinate planes. The method does not require coordinate charts on the surface or special treatment of the singularity other than the corrections. The accuracy is about O(h3)O(h^3), where hh is the spacing in the background grid, uniformly with respect to the point of evaluation, on or near the surface. Improved accuracy is obtained for points on the surface. The treecode of Duan and Krasny for Ewald summation is used to perform sums. Numerical examples are presented with a variety of surfaces.Comment: to appear in Commun. Comput. Phy

    Crack-path field and strain-injection techniques in computational modeling of propagating material failure

    Get PDF
    The work presents two new numerical techniques devised for modeling propagating material failure, i.e. cracks in fracture mechanics or slip-lines in soil mechanics. The first one is termed crack-path-field technique and is conceived for the identification of the path of those cracks, or slip-lines, represented by strain-localization based solutions of the material failure problem. The second one is termed strain-injection, and consists of a procedure to insert, during specific stages of the simulation and in selected areas of the domain of analysis, goal oriented specific strain fields via mixed finite element formulations. In the approach, a first injection, of elemental constant strain modes (CSM) in quadrilaterals, is used, in combination of the crack-path-field technique, for obtaining reliable information that anticipates the position of the crack-path. Based on this information, in a subsequent stage, a discontinuous displacement mode (DDM) is efficiently injected, ensuring the required continuity of the crack-path across sides of contiguous elements. Combination of both techniques results in an efficient and robust procedure based on the staggered resolution of the crack-path-field and the mechanical failure problems. It provides the classical advantages of the “intra-elemental” methods for capturing complex propagating displacement discontinuities in coarse meshes, as E-FEM or X-FEM methods, with the non-code-invasive character of the crack-path-field technique. Numerical representative simulations of a wide range of benchmarks, in terms of the type of material and the failure problem, show the broad applicability, accuracy and robustness of the proposed methodology. The finite element code used for the simulations is open-source and available at http://www.cimne.com/compdesmat/.Postprint (published version

    Integration of Polynomials Times Double Step Function in Quadrilateral Domains for XFEM Analysis

    Get PDF
    The numerical integration of discontinuous functions is an abiding problem addressed by various authors. This subject gained even more attention in the context of the extended finite element method (XFEM), in which the exact integration of discontinuous functions is crucial to obtaining reliable results. In this scope, equivalent polynomials represent an effective method to circumvent the problem while exploiting the standard Gauss quadrature rule to exactly integrate polynomials times step function. Certain scenarios, however, might require the integration of polynomials times two step functions (i.e., problems in which branching cracks, kinking cracks or crack junctions within a single finite element occur). In this context, the use of equivalent polynomials has been investigated by the authors, and an algorithm to exactly integrate arbitrary polynomials times two Heaviside step functions in quadrilateral domains has been developed and is presented in this paper. Moreover, the algorithm has also been implemented into a software library (DD_EQP) to prove its precision and effectiveness and also the proposed method’s ease of implementation into any existing computational software or framework. The presented algorithm is the first step towards the numerical integration of an arbitrary number of discontinuities in quadrilateral domains. Both the algorithm and the library have a wide application range, in addition to fracture mechanics, from mathematical computing of complex geometric regions, to computer graphics and computational mechanics
    corecore