We present a simple, accurate method for computing singular or nearly
singular integrals on a smooth, closed surface, such as layer potentials for
harmonic functions evaluated at points on or near the surface. The integral is
computed with a regularized kernel and corrections are added for regularization
and discretization, which are found from analysis near the singular point. The
surface integrals are computed from a new quadrature rule using surface points
which project onto grid points in coordinate planes. The method does not
require coordinate charts on the surface or special treatment of the
singularity other than the corrections. The accuracy is about O(h3), where
h is the spacing in the background grid, uniformly with respect to the point
of evaluation, on or near the surface. Improved accuracy is obtained for points
on the surface. The treecode of Duan and Krasny for Ewald summation is used to
perform sums. Numerical examples are presented with a variety of surfaces.Comment: to appear in Commun. Comput. Phy