3,090 research outputs found

    The lexicographic closure as a revision process

    Full text link
    The connections between nonmonotonic reasoning and belief revision are well-known. A central problem in the area of nonmonotonic reasoning is the problem of default entailment, i.e., when should an item of default information representing "if A is true then, normally, B is true" be said to follow from a given set of items of such information. Many answers to this question have been proposed but, surprisingly, virtually none have attempted any explicit connection to belief revision. The aim of this paper is to give an example of how such a connection can be made by showing how the lexicographic closure of a set of defaults may be conceptualised as a process of iterated revision by sets of sentences. Specifically we use the revision process of Nayak.Comment: 7 pages, Nonmonotonic Reasoning Workshop 2000 (special session on belief change), at KR200

    Datalog± Ontology Consolidation

    Get PDF
    Knowledge bases in the form of ontologies are receiving increasing attention as they allow to clearly represent both the available knowledge, which includes the knowledge in itself and the constraints imposed to it by the domain or the users. In particular, Datalog ± ontologies are attractive because of their property of decidability and the possibility of dealing with the massive amounts of data in real world environments; however, as it is the case with many other ontological languages, their application in collaborative environments often lead to inconsistency related issues. In this paper we introduce the notion of incoherence regarding Datalog± ontologies, in terms of satisfiability of sets of constraints, and show how under specific conditions incoherence leads to inconsistent Datalog ± ontologies. The main contribution of this work is a novel approach to restore both consistency and coherence in Datalog± ontologies. The proposed approach is based on kernel contraction and restoration is performed by the application of incision functions that select formulas to delete. Nevertheless, instead of working over minimal incoherent/inconsistent sets encountered in the ontologies, our operators produce incisions over non-minimal structures called clusters. We present a construction for consolidation operators, along with the properties expected to be satisfied by them. Finally, we establish the relation between the construction and the properties by means of a representation theorem. Although this proposal is presented for Datalog± ontologies consolidation, these operators can be applied to other types of ontological languages, such as Description Logics, making them apt to be used in collaborative environments like the Semantic Web.Fil: Deagustini, Cristhian Ariel David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Martinez, Maria Vanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Falappa, Marcelo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Simari, Guillermo Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentin

    Sensor Scheduling for Optimal Observability Using Estimation Entropy

    Full text link
    We consider sensor scheduling as the optimal observability problem for partially observable Markov decision processes (POMDP). This model fits to the cases where a Markov process is observed by a single sensor which needs to be dynamically adjusted or by a set of sensors which are selected one at a time in a way that maximizes the information acquisition from the process. Similar to conventional POMDP problems, in this model the control action is based on all past measurements; however here this action is not for the control of state process, which is autonomous, but it is for influencing the measurement of that process. This POMDP is a controlled version of the hidden Markov process, and we show that its optimal observability problem can be formulated as an average cost Markov decision process (MDP) scheduling problem. In this problem, a policy is a rule for selecting sensors or adjusting the measuring device based on the measurement history. Given a policy, we can evaluate the estimation entropy for the joint state-measurement processes which inversely measures the observability of state process for that policy. Considering estimation entropy as the cost of a policy, we show that the problem of finding optimal policy is equivalent to an average cost MDP scheduling problem where the cost function is the entropy function over the belief space. This allows the application of the policy iteration algorithm for finding the policy achieving minimum estimation entropy, thus optimum observability.Comment: 5 pages, submitted to 2007 IEEE PerCom/PerSeNS conferenc

    The semantics of rational contractions

    Get PDF
    This paper is concerned with the revision of beliefs in the face of new and possibly contradicting information. In the Logic of Theory Change developed by Alchourron, Gärdenfors and Makinson this nonmonotonic process consists of a contraction and an expansion of a set of formulas. to achieve minimal change they formulated widely accepted postulates that rational contractions have to fulfill. Contractions as defined by Alchourron, Gärdenfors and Makinson only operate on deductively closed sets of Formulas. Therefore they cannot be used in practical applications, eg. knowledge representation, where only finitely representable sets can be handled. We present a semantical characterization of rational finite contractions (the class of rational contractions maintaining finite representability) which provides an insight into the true nature of these operations. This characterization shows all possibilities to define concrete functions possessing these properties. When regarding concrete contractions known from literature in the light of our characterization we have found that they are all defined according to the same semantical strategy of minimal semantical change. As this strategy does not correspond to the goal of keeping as many important fotmulas as possible in the contracted set, we suggest a finite contraction defined according to the new strategy of maximal maintenance

    What can one learn about Self-Organized Criticality from Dynamical Systems theory ?

    Full text link
    We develop a dynamical system approach for the Zhang's model of Self-Organized Criticality, for which the dynamics can be described either in terms of Iterated Function Systems, or as a piecewise hyperbolic dynamical system of skew-product type. In this setting we describe the SOC attractor, and discuss its fractal structure. We show how the Lyapunov exponents, the Hausdorff dimensions, and the system size are related to the probability distribution of the avalanche size, via the Ledrappier-Young formula.Comment: 23 pages, 8 figures. to appear in Jour. of Stat. Phy

    Belief Revision with Uncertain Inputs in the Possibilistic Setting

    Full text link
    This paper discusses belief revision under uncertain inputs in the framework of possibility theory. Revision can be based on two possible definitions of the conditioning operation, one based on min operator which requires a purely ordinal scale only, and another based on product, for which a richer structure is needed, and which is a particular case of Dempster's rule of conditioning. Besides, revision under uncertain inputs can be understood in two different ways depending on whether the input is viewed, or not, as a constraint to enforce. Moreover, it is shown that M.A. Williams' transmutations, originally defined in the setting of Spohn's functions, can be captured in this framework, as well as Boutilier's natural revision.Comment: Appears in Proceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence (UAI1996
    corecore