8 research outputs found

    Fingerprinting Software Defined Networks and Controllers

    Get PDF
    SDN transforms a network from a calcified collection of hardware into a logically centralized and programmable method of interconnectivity. Changing the networking paradigm shifts a networks security posture. Changes visible to a host connected to the network include small latency differences between a traditional network environment and an SDN environment. This thesis aims to reliably distinguish SDN environments from traditional environments by observing latency behavior. Additionally, this thesis determines whether latency information contributes to the unique fingerprint of SDN controllers. Identifying the controller software gives an adversary information contributing to a network attack. An SDN and traditional network environment consisting of two hosts, one switch, and one controller are created. Within both environments, packet RTT values are compared between SDN and traditional environments to determine if both sets differ. Latency analysis is used to observe features of an SDN controller. Collected features contribute to a table of information used to uniquely fingerprint an SDN controller. Results show that packet RTTs within a traditional network environment significantly (p-value less than 1:0 10(-15)) differ from SDN environments. The predicted controller inactivity timeout within the simulated environment differs from the true timeout by a mean value of 0.44956 seconds. The emulated environment shows that the observed inactivity timeout depends on the network switch implementation of the controllers set value, leading to incorrect observed timeouts. Within the SDN environment, the host is not able to directly communicate with the SDN controller, leading to an inability to collect the number of features needed to uniquely identify the SDN controller

    Re-designing Dynamic Content Delivery in the Light of a Virtualized Infrastructure

    Get PDF
    We explore the opportunities and design options enabled by novel SDN and NFV technologies, by re-designing a dynamic Content Delivery Network (CDN) service. Our system, named MOSTO, provides performance levels comparable to that of a regular CDN, but does not require the deployment of a large distributed infrastructure. In the process of designing the system, we identify relevant functions that could be integrated in the future Internet infrastructure. Such functions greatly simplify the design and effectiveness of services such as MOSTO. We demonstrate our system using a mixture of simulation, emulation, testbed experiments and by realizing a proof-of-concept deployment in a planet-wide commercial cloud system.Comment: Extended version of the paper accepted for publication in JSAC special issue on Emerging Technologies in Software-Driven Communication - November 201

    TruSDN: Bootstrapping Trust in Cloud Network Infrastructure

    Get PDF
    Software-Defined Networking (SDN) is a novel architectural model for cloud network infrastructure, improving resource utilization, scalability and administration. SDN deployments increasingly rely on virtual switches executing on commodity operating systems with large code bases, which are prime targets for adversaries attacking the network infrastructure. We describe and implement TruSDN, a framework for bootstrapping trust in SDN infrastructure using Intel Software Guard Extensions (SGX), allowing to securely deploy SDN components and protect communication between network endpoints. We introduce ephemeral flow-specific pre-shared keys and propose a novel defence against cuckoo attacks on SGX enclaves. TruSDN is secure under a powerful adversary model, with a minor performance overhead

    P-IOTA: A Cloud-Based Geographically Distributed Threat Alert System That Leverages P4 and IOTA

    Get PDF
    The recent widespread novel network technologies for programming data planes are remarkably enhancing the customization of data packet processing. In this direction, the Programming Protocol-independent Packet Processors (P4) is envisioned as a disruptive technology, capable of configuring network devices in a highly customizable way. P4 enables network devices to adapt their behaviors to mitigate malicious attacks (e.g., denial of service). Distributed ledger technologies (DLTs), such as blockchain, allow secure reporting alerts on malicious actions detected across different areas. However, the blockchain suffers from major scalability concerns due to the consensus protocols needed to agree on a global state of the network. To overcome these limitations, new solutions have recently emerged. IOTA is a next-generation distributed ledger engineered to tackle the scalability limits while still providing the same security capabilities such as immutability, traceability, and transparency. This article proposes an architecture that integrates a P4-based data plane software-defined network (SDN) and an IOTA layer employed to notify about networking attacks. Specifically, we propose a fast, secure, and energy-efficient DLT-enabled architecture that combines the IOTA data structure, named Tangle, with the SDN layer to detect and notify about network threats

    Air Force Institute of Technology Research Report 2015

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems Engineering and Management, Operational Sciences, Mathematics, Statistics and Engineering Physics

    Air Force Institute of Technology Research Report 2015

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology’s Graduate School of Engineering and Management. It describes research interests and faculty expertise; lists student theses/dissertations; identifies research sponsors and contributions; and outlines the procedures for contacting the school. Included in the report are: faculty publications, conference presentations, consultations, and funded research projects. Research was conducted in the areas of Aeronautical and Astronautical Engineering, Electrical Engineering and Electro-Optics, Computer Engineering and Computer Science, Systems Engineering and Management, Operational Sciences, Mathematics, Statistics and Engineering Physics

    Fingerprinting Software-Defined Networks

    No full text
    corecore