
Air Force Institute of Technology
AFIT Scholar

Theses and Dissertations Student Graduate Works

3-26-2015

Fingerprinting Software Defined Networks and
Controllers
Zachary J. Zeitlin

Follow this and additional works at: https://scholar.afit.edu/etd

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and
Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield@afit.edu.

Recommended Citation
Zeitlin, Zachary J., "Fingerprinting Software Defined Networks and Controllers" (2015). Theses and Dissertations. 73.
https://scholar.afit.edu/etd/73

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AFTI Scholar (Air Force Institute of Technology)

https://core.ac.uk/display/277528106?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/73?utm_source=scholar.afit.edu%2Fetd%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu


FINGERPRINTING SOFTWARE DEFINED NETWORKS AND CONTROLLERS

THESIS

Zachary J. Zeitlin, 2nd Lt, USAF

AFIT-ENG-MS-15-M-067

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, the Department of Defense, or the United
States Government.

This material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States.



AFIT-ENG-MS-15-M-067

FINGERPRINTING SOFTWARE DEFINED NETWORKS AND CONTROLLERS

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Cyber Operations

Zachary J. Zeitlin, B.S.C.S.

2nd Lt, USAF

March 2015

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



AFIT-ENG-MS-15-M-067

FINGERPRINTING SOFTWARE DEFINED NETWORKS AND

CONTROLLERS

THESIS

Zachary J. Zeitlin, B.S.C.S.
2nd Lt, USAF

Committee Membership:

Barry E. Mullins, Ph.D.
Chair

Timothy H. Lacey, Ph.D.
Member

Kenneth M. Hopkinson, Ph.D.
Member



AFIT-ENG-MS-15-M-067
Abstract

Software Defined Networking (SDN) transforms a network from a calcified collection

of hardware into a logically centralized and programmable method of interconnectivity.

Changing the networking paradigm shifts a network‘s security posture. Changes

visible to a host connected to the network include small latency differences between

a traditional network environment and an SDN environment. This thesis aims to

reliably distinguish SDN environments from traditional environments by observing latency

behavior. Additionally, this thesis determines whether latency information contributes to

the unique fingerprint of SDN controllers. Identifying the controller software gives an

adversary information contributing to a network attack.

An SDN and traditional network environment consisting of two hosts, one switch,

and one controller are created. Within both environments, packet Round-Trip Time (RTT)

values are compared between SDN and traditional environments to determine if both sets

differ. Latency analysis is used to observe features of an SDN controller. Collected features

contribute to a table of information used to uniquely fingerprint an SDN controller.

Results show that packet RTTs within a traditional network environment significantly

(p-value less than 1.0×10−15) differ from from SDN environments. The predicted controller

inactivity timeout within the simulated environment differs from the true timeout by a mean

value of 0.44956 seconds. The emulated environment shows that the observed inactivity

timeout depends on the network switch implementation of the controller‘s set value, leading

to incorrect observed timeouts. Within the SDN environment, the host is not able to directly

communicate with the SDN controller, leading to an inability to collect the number of

features needed to uniquely identify the SDN controller.

iv



Acknowledgments

I am absolutely grateful for my thesis advisor, Dr. Barry Mullins for his leadership

in ensuring my successful development through academic achievement. I also thank Dr.

Timothy Lacey and Dr. Kenneth Hopkinson for their motivation towards challenging

research and insights in critical thinking.

Ultimately I thank the Lord for equipping me with an intense desire for discovery. He

instils my curiosity and intellect for His glory, and all I have comes from Him.

Zachary J. Zeitlin

v



Table of Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Goals and Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.7 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

II. Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Software Defined Networking Defined . . . . . . . . . . . . . . . . . . . . 5
2.1.1 The Forwarding Plane . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 The Control Plane . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 The Management Plane . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.4 Separation of Planes . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 SDN Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 SDN Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1.1 OpenFlow . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1.2 DevoFlow . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 SDN Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 SDN Security Concerns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

vi



Page

2.5 SDN Security Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.1 Traffic Anomaly Detection using SDN . . . . . . . . . . . . . . . . 23
2.5.2 DDoS Flooding Attack Detection . . . . . . . . . . . . . . . . . . 24
2.5.3 Intrusion Prevention System with SDN . . . . . . . . . . . . . . . 25
2.5.4 Modular Security Services . . . . . . . . . . . . . . . . . . . . . . 25
2.5.5 Moving Target Defense using SDN . . . . . . . . . . . . . . . . . 26

2.6 SDN and Latency Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.7 SDN Applied to Network Security . . . . . . . . . . . . . . . . . . . . . . 28

III. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Goals and Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.1 Experiment 1: Verify SDN Environment . . . . . . . . . . . . . . . 35

3.4.1.1 Experiment 1 Background . . . . . . . . . . . . . . . . . 36
3.4.1.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.1.3 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.1.4 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.1.5 Experiment Design . . . . . . . . . . . . . . . . . . . . 40

3.4.2 Experiment 2: Determine Flow Inactivity Timeout . . . . . . . . . 44
3.4.2.1 Experiment 2 Background . . . . . . . . . . . . . . . . . 44
3.4.2.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.2.3 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4.2.4 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.2.5 Experiment Design . . . . . . . . . . . . . . . . . . . . 47

3.4.3 Experiment 3: Determine the Flow‘s Hard Timeout . . . . . . . . . 51
3.4.3.1 Experiment 3 Background . . . . . . . . . . . . . . . . . 52
3.4.3.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.3.3 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4.3.4 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.3.5 Experiment Design . . . . . . . . . . . . . . . . . . . . 54

3.4.4 Experiment 4: Fingerprint SDN Controller . . . . . . . . . . . . . 58
3.4.4.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4.4.2 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4.4.3 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4.4.4 Experiment Design . . . . . . . . . . . . . . . . . . . . 60

vii



Page

IV. Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1 Experiment 1 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . 67
4.1.1 Simulation Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.1.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.1.1.2 Other Observations . . . . . . . . . . . . . . . . . . . . 72

4.1.2 Hardware Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.1.2.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.1.2.2 Other Observations . . . . . . . . . . . . . . . . . . . . 77

4.2 Experiment 2 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . 77
4.2.1 Simulated Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2.1.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2.1.2 Other Observations . . . . . . . . . . . . . . . . . . . . 82

4.2.2 Hardware Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2.2.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2.2.2 Other Observations . . . . . . . . . . . . . . . . . . . . 86

4.3 Experiment 3 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . 89
4.3.1 Simulated Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3.1.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.3.1.2 Other Observations . . . . . . . . . . . . . . . . . . . . 93

4.3.2 Hardware Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.3.2.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3.2.2 Other Observations . . . . . . . . . . . . . . . . . . . . 97

4.4 Experiment 4 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . 98
4.4.1 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.4.2 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

V. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.1 Research Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.1.1 Goal #1: Construct a table of features . . . . . . . . . . . . . . . . 103
5.1.2 Goal #2: Verifying feature extraction . . . . . . . . . . . . . . . . 103

5.2 Research Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

viii



List of Figures

Figure Page

2.1 SDN Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 SDN Packet-In and Packet-Out Events . . . . . . . . . . . . . . . . . . . . . . 12

2.3 SDN Packet-In and Packet-Out Events . . . . . . . . . . . . . . . . . . . . . . 12

2.4 OpenFlow v1.0 Packet-In Structure . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 OpenFlow v1.0 Packet-Out Structure . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 SDN Controller Fingerprinting Process . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Client versus Administrator SDN Controller Visibility . . . . . . . . . . . . . . 32

3.3 OpenFlow Protocol Feature Extraction Points . . . . . . . . . . . . . . . . . . 34

3.4 Path of an Initial ICMP Echo Request and Response . . . . . . . . . . . . . . . 38

3.5 Path of a Subsequent ICMP Echo Request and Response . . . . . . . . . . . . 38

3.6 Mininet Simple Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.7 Hardware Simple Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.8 Ensuring Value Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1 Ping Ratios with Simulated SDN Controllers . . . . . . . . . . . . . . . . . . 70

4.2 Example Ping Ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 Ping Ratios with Emulated SDN Controllers . . . . . . . . . . . . . . . . . . . 76

4.4 Inactivity Timeout Delta Histogram (Outliers Included) . . . . . . . . . . . . . 80

4.5 Inactivity Timeout Delta Histogram (Outliers Excluded) . . . . . . . . . . . . 81

4.6 Inactivity Timeout Delta with HP Switch Histogram . . . . . . . . . . . . . . . 84

4.7 HP Switch Flow State With Ryu Controller Attached . . . . . . . . . . . . . . 88

4.8 HP Switch Flow State With Iris Controller Attached . . . . . . . . . . . . . . . 88

4.9 Hard Timeout Delta Histogram (Outliers Included) . . . . . . . . . . . . . . . 91

4.10 Hard Timeout Delta Histogram (Outliers Excluded) . . . . . . . . . . . . . . . 92

ix



Figure Page

4.11 Hard Timeout Deltas Using The Hardware HP Switch (Outlier Included) . . . . 95

4.12 Hard Timeout Deltas Using The Hardware HP Switch (Outliers Excluded) . . . 96

4.13 Modified SDN Simple Network . . . . . . . . . . . . . . . . . . . . . . . . . 100

x



List of Tables

Table Page

2.1 OpenFlow v1.3.4 Match Fields . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 OpenFlow v1.3.4 Available Flow Statistics . . . . . . . . . . . . . . . . . . . . 11

3.1 List of Features and Collection Times . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Experiment 1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Experiment 1 Parameters Held Constant . . . . . . . . . . . . . . . . . . . . . 41

3.4 Experiment 2 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Experiment 2 Parameters Held Constant . . . . . . . . . . . . . . . . . . . . . 47

3.6 Interpretation of ZS core Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.7 Discovering Inactivity Timeout (With Precision of 0.5 Seconds) . . . . . . . . 50

3.8 Experiment 3 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.9 Experiment 3 Parameters Held Constant . . . . . . . . . . . . . . . . . . . . . 54

3.10 Discovering Hard Timeout (With Precision of 0.5 Seconds) . . . . . . . . . . . 56

3.11 Experiment 3 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.12 Experiment 4 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.13 Experiment 4 Parameters Held Constant . . . . . . . . . . . . . . . . . . . . . 60

3.14 List of Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.15 SDN Controller Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.16 Partial List of OpenFlow Packet Types . . . . . . . . . . . . . . . . . . . . . . 64

4.1 Experiment 1 Sample Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Experiment 1 Summary Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Experiment 1 T-Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 Experiment 1 RTT Values Below Maximum Traditional RTT Value . . . . . . . 73

4.5 Experiment 1 Sample Hardware Data . . . . . . . . . . . . . . . . . . . . . . 75

xi



Table Page

4.6 Experiment 1 Hardware Summary Data . . . . . . . . . . . . . . . . . . . . . 75

4.7 Experiment 1 T-Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.8 Experiment 2 Sample Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.9 Experiment 2 Summary Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.10 Discovering Inactivity Timeout of 2.625 (With Precision of 0.25 Seconds) . . . 82

4.11 Experiment 2 Sample Hardware Data . . . . . . . . . . . . . . . . . . . . . . 83

4.12 Experiment 2 Summary Hardware Data . . . . . . . . . . . . . . . . . . . . . 84

4.13 Experiment 2 Hardware Data Subset . . . . . . . . . . . . . . . . . . . . . . . 85

4.14 Experiment 2 Hardware Data Subset . . . . . . . . . . . . . . . . . . . . . . . 87

4.15 Experiment 3 Sample Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.16 Experiment 3 Summary Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.17 Experiment 3 Sample Hardware Data . . . . . . . . . . . . . . . . . . . . . . 94

4.18 Experiment 3 Summary Hardware Data . . . . . . . . . . . . . . . . . . . . . 95

4.19 List of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.20 SDN Controller Feature Table . . . . . . . . . . . . . . . . . . . . . . . . . . 102

xii



List of Acronyms

Acronym Definition

ABf Average Bytes per flow

ADf Average Duration of the flow

ADS Anomaly Detection Systems

APf Average Packets per flow

API Application Programming Interface

ARP Address Resolution Protocol

CLI Command-Line Interface

CPU Central Processing Unit

csv comma-separated values

DDoS Distributed Denial of Service

DoS Denial of Service

GDP Growth rate of Different Ports

GPU Graphic Processing Unit

GSf Growth rate of Single-flows

ICMP Internet Control Message Protocol

IDS Intrusion Detection System

IPS Intrusion Prevention System

ISP Internet Service Provider

LLDP Link Layer Discovery Protocol

MAC Media Access Control

OF-RHM OpenFlow Random Host Mutation

PPf Percentage of Pair-flows

rIP real Internet Protocol addresses

xiii



Acronym Definition

rps requests per second

RTT Round-Trip Time

SDN Software Defined Networking

SOM Self-Organizing Map

STP Spanning Tree Protocol

TRW-CB Threshold Random Walk with Credit Based rate limiting

vIP virtual Internet Protocol address

VLAN Virtual Local Area Network

xiv



FINGERPRINTING SOFTWARE DEFINED NETWORKS AND CONTROLLERS

I. Introduction

1.1 Background

Cyber warfare is present in the United States’ 2014 quadrennial defense review, and

the act of countering cyber attacks is paramount for investment [1]. The necessity of

network infrastructure parallels the requirement in ensuring a sufficient defense against

adversaries willing to exploit any vulnerability. From corporate entities losing sensitive

client information, money, and customer trust, to nation states capturing national defense

intelligence, cyber efficacy remains prevalent in today’s society. The threat of cyber attacks

and interest in securing our cyber borders continually increases as is shown in both current

events as well as from security analysts [2][3][4][5].

Enhancing cyber security starts with maintaining an inventory of authorized and

unauthorized devices considering attackers are constantly scanning for new unprotected

systems that join a potentially sensitive network [6]. In addition to new systems, new

technologies that join the network are also lucrative for attackers given any lack of

documented security testing may keep unknown vulnerabilities from discovery. New

technology presents new avenues for zero-day engineering, which allows an adversary

unmitigated capabilities during the life of the zero-day [7].

New technology currently growing in the network environment includes the use

of Software Defined Networking (SDN). SDN promises to remove the vendor-specific

requirements placed on a network administrator by transforming network switches into

simple packet forwarding devices, while placing the brains of the network into logically

centralized software [8]. From this centralized location, network administrators need

1



not concern themselves with the underlying vendor-specific implementations in order

to accomplish high-level abstract goals. Configuration is simplified. Considering the

technology is new, security implications for the increased flexibility have not been fully

tested. It is important to identify how the network changes with this radical shift in

network topology. Determining what the adversary gains from the network administrators‘

increased convenience allows defensive updates to guard against cyber threats.

1.2 Problem Statement

This research attempts to identify information that is unintentionally offered to

a network attacker when SDN is used within a small network, and demonstrates the

feasibility of uniquely identifying the software managing the SDN environment. With

positive identification of the software controlling the SDN environment (a process known

as fingerprinting), an attacker can then search for existing vulnerabilities or attempt to

develop custom attacks against the logically centralized software. Preventing an attacker’s

discovery of the network controller assists in thwarting the attacker’s reconnaissance,

ultimately inhibiting the attacker’s capabilities. If an attacker is unable to uniquely identify

a target, then the list of available vulnerabilities at the attacker’s disposal is limited, and the

attacker’s threat is minimized. Focusing on assessing whether fingerprinting is possible,

this research attempts to identify first when SDN is deployed, and then proceeds to gather

intelligence in the form of unique features that describe the SDN controller software.

The end of this collection of features occurs when the SDN software is successfully

fingerprinted.

The methods of collecting data are restricted to the methods available to an attacker.

An attacker is assumed to have a presence in the network in the form of a connection to

the network switching fabric. The attacker can also communicate to other end hosts on the

network, including a host that is another point of presence for the attacker (i.e., the attacker

can have two points of presence on the network to communicate between).

2



1.3 Goals and Hypothesis

The objective of this thesis is to develop and evaluate a process for extracting features

to uniquely identifying the controller supporting an SDN environment. The first goal of this

research is to construct a set of features extensive enough to uniquely identify each known

SDN controller. The next goal includes ensuring that each feature is obtainable by a client

connected to the SDN environment. It is hypothesized that a process can be created that

adds each new SDN controller into a table of SDN controller features, and that this table

can be used to identify an unknown SDN controller discovered in an SDN environment by

a client connected to that environment.

1.4 Approach

A simulation of a simple SDN environment is created using MiniNet [25]. Features

are programmed into the SDN controller software and then observed by a client connected

to the SDN environment. The observed features and true values are compared for accuracy.

The same process is performed using network equipment to validate the results obtained

from the simulated environment.

1.5 Assumptions

The experiments within this research assume a client has access to a port connected to

a network environment. Once an SDN software controller is uniquely identified, the action

of searching for documented vulnerabilities and exploiting the SDN controller is beyond

the scope of this research. Research is limited to information gathering.

1.6 Contributions

This thesis contributes to the body of research in SDN. Specific contributions include

a process for distinguishing SDN environments from traditional environments, the set of

features observable by a client within an SDN environment, as well as the process for

3



fingerprinting SDN controllers through the collection and categorization of features in a

feature table.

1.7 Thesis Overview

This thesis is organized into five chapters. Chapter 2 defines SDN and presents

relevant research needed to understand new threats created by the addition of SDN

technology. The methodology for evaluating the fingerprinting process for an SDN

environment is explained in Chapter 3. The experimental results and analysis of collected

data are presented in Chapter 4. Finally, Chapter 5 summarizes this research and concludes

with the results of each experiment, along with an explanation of the significance and

suggested future work.

4



II. Literature Review

This chapter defines SDN, and reviews the relevant bodies of research needed to

understand and implement an SDN environment. Section 2.1 introduces a high-level

concept of SDN. Section 2.2 defines each component that combine to make up a software-

defined network. Section 2.3 explains current uses, growth, and potential of future SDN

applications. Next, Section 2.4 provides relevant research in Software Defined Networking

specific to network security concerns, followed by Section 2.5, which describes current

research in security applications designed to mitigate various security concerns. Section 2.6

reviews research conducted on the latency effects of adopting SDN as well as the potential

for latency analysis in gathering information about the SDN environment. This chapter

concludes with an explanation of how SDN can be constructed within a network to apply

these mitigating techniques.

2.1 Software Defined Networking Defined

Within a computer network, switching devices contain three abstractly organized

services known as planes [9]. As shown in Figure 2.1, these planes consist of the

forwarding plane (also referred to as the data plane), the control plane, and the management

plane. Within Figure 2.1, the left portion shows a traditional network where each box

represents a switching device that independently contains all three previously described

planes. The software-defined network on the right shows three switches (which only require

forwarding capabilities) connected to a controller (which provides control/management

plane functionalities). It is the communication between these planes that results in the

internals of a network switch. The three planes are typically found within a single device.

SDN aims at separating the control plane (inclusive to the management plane) from the

5



forwarding plane, and placing this functionality within a separate device known as a

controller.

Figure 2.1: SDN Planes

2.1.1 The Forwarding Plane.

The forwarding plane of a switch receives incoming Ethernet frames, and forwards

those frames onto a port determined by rules created by the control plane. When a frame

is first received on the wire to a specific port of a switch, the forwarding plane calculates

various sanity checks for the incoming frame. Such sanity checks include sizing, alignment,

and checksum validation [9]. A response to a failed sanity check is implementation

dependent, but often results in the frame being dropped. A successful sanity check results

in the frame proceeding to the forwarding lookup process. This lookup process is known as

the “fast-path” for frames because the lookup process‘ purpose is specialized in moving the

frame to the correct destination quickly, needing only to extract the destination information

from the frame [9].

6



The forwarding lookup process can be implemented in many ways depending on a

vendor‘s proprietary design. The implementation possibilities include performing a lookup

within software, hardware-accelerated software (e.g., Graphic Processing Unit (GPU)s or

Central Processing Unit (CPU)s), commodity hardware (i.e., a network processor), and

specialized hardware (i.e., application-specific integrated circuits).

The forwarding process concludes with a set of specific actions. Actions include

forwarding the frame, replicating the frame, dropping the frame, modifying the frame,

counting the frame (i.e., keeping a record of frame information for statistical purposes),

and queuing the frame. The frame may also be destined for a process running locally on the

switch (e.g., for Link Layer Discovery Protocol (LLDP), or Spanning Tree Protocol (STP)

updates), in which case the frame will be “punted” from the forwarding lookup process

and processed by the route processor [9]. The act of moving a locally-destined frame is

accomplished through an internal communication channel.

In the event that a destination port does not match any forwarding rule entry for a

particular frame, SDN protocol dictates that the frame is then sent to the control plane for

further processing [9][10][11]. The communication between the forwarding plane and the

control plane is accomplished through a standardized protocol.

2.1.2 The Control Plane.

The control plane is responsible for creating the forwarding table that is utilized by the

forwarding plane to send a packet from source (ingress) port to destination (egress) port.

This table of entries is populated once a stable topology of the network is established.

Methods of informing the control plane about network topology include programming

the logic directly or through network protocols (such as link-state or distance-vector

algorithms). A packet arriving at the control plane from the forwarding plane is processed,

whereby the packet‘s information may result in a modification of the forwarding plane‘s

forwarding table.

7



2.1.3 The Management Plane.

The control plane is considered a superset of the management plane, which

is responsible for network administration that may result in control plane behavior

modification due to administrative policies (such as enforcing access control lists). While

the control plane modifies the forwarding table of the forwarding plane, the management

plane manages the policies that are enforced by the control plane.

2.1.4 Separation of Planes.

Separating the control plane from the forwarding plane allows control decisions of

forwarding behavior to exist on a logically centralized, and thus easily managed, location.

Instead of each network switch independently containing all three planes, the switches

specialize in performing forwarding-plane functions, leaving the decision of creating rules

to a separate controller running specific control-plane software. Having each switch only

perform forwarding-plane functions simplifies the processor logic and has the added benefit

of commoditizing the switching hardware [10].

Moving the control plane to a separate controller effectively reduces the number

of logical control planes within a network to one, rather than equal to the number

of switches in the network. By having a single control plane for multiple switches,

a network administrator can program flow-control capabilities (such as traffic-shaping)

from one logical location, rather than requiring that administrator to touch every switch

independently with disparate functionality.

Additionally, other benefits of separating the control and forwarding planes typically

result from the innovation allowed by modularity: each plane can be improved

independently. Independent improvements reduce complexity, also increasing stability

within a hardware design. Technological improvements also reduce the price per

performance.

8



The following sections break down software-defined networking into each of its

components: the protocol used between devices, the controller which coordinates network

activity, and finally the individual switches that implement actions specified by the

controller.

2.2 SDN Components

SDN incorporates four components that facilitate development of a programmable

network with physically-separate forwarding and control planes: the protocol, controller,

network switch, and network application. There may be one or many switches

communicating with one or many controllers, yet the protocol remains standardized and

consistent throughout communication.

2.2.1 SDN Protocol.

A traditional switch‘s control plane communicates with the forwarding plane directly

using proprietary communication as both planes are located on the same device. In order

for different switch forwarding planes in a software-defined network to communicate with

a controller, both a physical link to the controller, and a standard communication protocol

are needed. The physical link may be a point-to-point connection, or an indirect connection

through several hops. This communication exists within links labelled a, b, and c in Figure

2.1.

2.2.1.1 OpenFlow.

The de facto protocol in use today is OpenFlow [11]. OpenFlow is designed to

decrease the barrier to entry in experimenting with network protocols, with the additional

goal of preventing ossification of network infrastructure. OpenFlow allows protocol

experimentation by allowing the network administrator to separate production traffic from

experimental traffic. When a packet arrives at an OpenFlow compatible switch, the switch

will either forward the packet based on current flow rules (established by a controller and

programmed by an administrator), drop the packet, or will default to sending the packet to

9



the controller. When a controller receives a packet from an OpenFlow switch, the event is

known as a “packet-in” event [9].

Table 2.1: OpenFlow v1.3.4 Match Fields

Field Description

OXM OF ETH DST Ethernet destination address

OXM OF ETH SRC Ethernet source address

OXM OF ETH TYPE Ethernet type of the OpenFlow packet payload

OXM OF IP PROTO IPv4 or IPv6 protocol number

OXM OF IPV4 SRC IPv4 source address

OXM OF IPV4 DST IPv4 destination address

OXM OF IPV6 SRC IPv6 source address

OXM OF IPV6 DST IPv6 destination address

OXM OF TCP SRC TCP source port

OXM OF TCP DST TCP destination port

OXM OF UDP SRC UDP source port

OXM OF UDP DST UDP destination port

The application running on the controller dictates how to respond to a packet-in event.

The controller application informs the switch using an event known as a “packet-out”

event. Responses can include dropping the packet, forwarding the packet back to the switch

with information about where the packet should go, or installing a rule on the originating

switch. Each rule is known as a flow entry. A flow entry informs the switch about how to

handle future packets that match a set of specified fields. Installing flow entries prevents

the controller from intervening on every packet and thus prevents a bottleneck. Required

available matching fields for a switch to be OpenFlow compliant are included in Table 2.1.

10



These matching fields are parsed by the Openflow switch. An OpenFlow switch may be

capable of matching on additional fields other than the required list shown in Table 2.1.

Wildcards are available for certain matching fields. An example of using wildcard

matching includes aggregate flows, which are flows installed in an Openflow switch that

match on multiple IP addresses. Aggregate flows can dictate a switch to have a number of

ingress ports forward to a specified egress destination.

Each flow entry can be created with an idle timeout period, where the flow entry is

automatically removed if zero packets match the flow entry‘s headers for the duration of

the timeout period. Flow entry statistics can also be gathered by the switch as another

metric or input for programming. Available flow entry statistics depend on the network

switch‘s capabilities and are included in Table 2.2. When a set of fields from an inbound

packet matches a particular flow entry, a corresponding action is then applied to the packet.

An action can be anything within the OpenFlow specifications and includes anything from

packet-mangling to simply forwarding the packet to a specified port.

Table 2.2: OpenFlow v1.3.4 Available Flow Statistics

Statistic Description

duration sec The time the flow has been alive in seconds

duration nsec The time the flow has been alive in nanoseconds beyond duration sec

priority The priority of the flow entry

idle timeout The number of seconds idle before expiration

hard timeout The number of seconds before expiration

packet count The number of packets that have traversed the flow

byte count The number of bytes that have traversed the flow

11



Figure 2.2: SDN Packet-In and Packet-Out Events

Figure 2.3: SDN Packet-In and Packet-Out Events

12



An example of the flow of communication is depicted in Figure 2.2. Within this figure,

the left host creates a packet destined for the right host. The packet is sent to the switch.

Without any flow rules installed, the switch does not know how to handle the packet because

the packet matches no existing flow rule, and consequently the switch creates a packet-

in event destined for the controller. The structure of the packet-in event is depicted in

Figure 2.4 [12]. The packet-in event contains the entire Ethernet frame that was sent to the

switch, should the controller need to parse it. The controller application then responds to

the packet-in event and constructs a packet-out event destined for the switch. The structure

of the packet-out event is depicted in Figure 2.5 [12]. The switch, responding to the packet-

out event from the controller, forwards the original packet to the intended destination. If

a flow is installed on the switch from the packet-out event, then future packets originating

from the left host in Figure 2.2 that match the flow specification will forward to the right

host without any communication with the controller (as depicted in Figure 2.3).

Figure 2.4: OpenFlow v1.0 Packet-In Structure

13



Figure 2.5: OpenFlow v1.0 Packet-Out Structure

2.2.1.2 DevoFlow.

Curtis et al. develop DevoFlow, another SDN protocol [13]. DevoFlow is designed in

response to concerns about OpenFlow meeting the needs of high-performance networks.

The granularity of OpenFlow control and visibility over flow entries requires a high rate

of communication between the switch and the SDN controller, both for flow setups as

well as for statistics-gathering. Such overhead limits the scalability of OpenFlow for

high-performance networks. DevoFlow reduces the scalability concern by minimizing the

number of flows created by the control plane. Instead of requring the control plane for

every flow setup, all flows that can be determined locally by the data plane are set up by

the data plane without the control plane‘s awareness. Determining which flows are worth

sending to the controller, known as elephant flows (i.e., flows with high throughput and

long life) becomes a variable to optimize. Simulation shows that the DevoFlow method

improves throughput compared to equal-cost multi-path routing by up to 32% [13].

2.2.2 Controllers.

The network administrator programs the network control plane within the controller.

The network controller is considered the network operating system; the controller provides

an abstraction to the network topology much like an operating system abstracts the

management of processes and memory. Through the controller, network applications

14



provide the ability to both observe and manage network events. Several OpenFlow-

compatible controller platforms are available.

Gude et al. created NOX, the first SDN controller [14]. NOX facilitates developing

network applications, and thus satisfies the need of a network operating system. NOX

runs on a sever, and contains a single network view that applications utilize to manage

the state of the network. NOX works with the OpenFlow specification so that a standard

communication protocol exists between the controller and network switches. Applications

for NOX are written in Python or C++, with speed-critical core infrastructure written in

C++.

Erickson created Beacon, the open-source OpenFlow controller written in Java [15].

Beacon makes OpenFlow applications both easy to develop and performance capable, as

it bridges the gap between the ease of Python and the performance of C++. Beacon also

allows OpenFlow applications to start and stop at runtime, giving the controller more of an

operating system feel.

Zheng et al. propose an OpenFlow controller that overcomes the fact that NOX is

a single-threaded system [16]. The controller, called Maestro, incorporates parallelism to

address the concern that the controller could be a bottleneck. Maestro also takes advantage

of batched socket write operations. Writing to the socket in batches requires less overhead

than writing to the socket for each individual packet. Maestro also offers the ability to bind

a worker thread to a core, which removes the overhead of moving code and data between

cores, and results in increased throughput. Additionally, Maestro also allows binding an

input flow request to a single working thread, keeping each request within one processor

core, which reduces synchronization overhead.

A NOX controller with an input flow request rate of less than 20,000 requests per

second (rps) results in an average delay of 2 ms. Increasing the request rate to the maximum

throughput of NOX (i.e., 21,126 rps) increases the average delay to 17 ms. Increasing

15



beyond this upper-bound results in packet buffering, causing TCP to slow down, resulting

in an average delay of 4.11 seconds. This is due to the fact that the controller is only capable

of utilizing one CPU core. When Maestro utilizes seven threads, an input rate of 630,000

rps results in an average delay of 76 ms. An input rate exceeding the maximum throughput

of Maestro (i.e., 633,290 rps) causes an average delay of 163 ms. Under loads less than

16,000 rps the average delay is 2 ms. A NOX controller has a lower packet-handling delay

for requests rates lower than 16,000 rps as compared to Maestro considering the overhead

applied by Maestro to allow parallelism. Maestro‘s benefits are shown when the number of

requests increases, allowing flexible scalability.

Tootoonchian et al. present cbench, a tool to quantify controller performance [17].

Cbench focuses on latency when a flow is first installed on a switch, as that is the likeliest

source of a performance bottleneck. Cbench emulates OpenFlow switches which then

send a custom number of OpenFlow packet-in messages. When a response arrives from

the controller, cbench records the delay between request and response. In addition to

cbench, Tootoonchian et al. creates a multi-threaded version of NOX known as NOX-

MT to test NOX, Beacon, and Maestro using the cbench tool. Similar to Maestro, NOX-

MT also performs batched socket write operations to minimize the overhead of writing

to a socket. Unlike Maestro, which is implemented in Java, NOX-MT is a modification

of NOX written in C++. NOX-MT also uses a modified malloc implementation that is

designed specifically for multiprocessors. The use of a multiprocessor-aware malloc allows

scalability within multi-core systems. When comparing maximum throughput, NOX-MT

is capable of handling greater than one million rps when utilizing four CPU cores, while

Maestro and Beacon both handle less than 500 thousand rps when using four CPU cores.

Floodlight is a self-proclaimed leader of the open source SDN controllers [18].

Written in Java, Floodlight introduces a modular loading system which simplifies updates

and extensions. Floodlight is developed by an open community of developers including

16



developers from Big Switch Networks [19]. Floodlight uses OpenFlowJ-Loxigen, a Java

library generated by Loxigen [20]. Loxigen abstracts away low-level protocol details

allowing an OpenFlow version to be easily defined. Any update to the OpenFlow version

requires only a new Loxigen file defining the OpenFlow version through a common

Application Programming Interface (API). The use of Loxigen by Floodlight prevents

obsolescence due to OpenFlow version updates.

Lee et al. create Iris, a controller designed specifically to address the requirement

of availability while allowing network scalability [21]. The architecture of IRIS allows

multiple servers benefiting a controller cluster, using server resources on demand. Iris

splits a network into independent “unit SDN networks” that are interoperable through a

mechanism operated by a controller. Each unit SDN network has a scalable middleware

the operates on top of the Openflow protocol, and can be controlled by a separate controller

instance, providing horizontal scalability. Using cbench, Lee et al. model 100,000 hosts

on an Intel server with a Xeon X5690 processor (having 3.47 GHz and 6 physical cores)

and 64GB of RAM [17]. Analyzing flow processing performance demonstrates that the Iris

controller outperforms Floodlight by a factor of 2.5 (i.e., the maximum number of flows

maintainable is greater by a factor of 2.5). Floodlight is chosen for comparison as it is the

most popular Java-based open-source Openflow controller [18].

While various research attempts to increase the efficiency of logically and physically

centralized SDN controllers, other research has proposed physically distributing the

controller while maintaining logical centralization. Tootoonchian et al. propose

HyperFlow, an application designed for NOX controllers that creates a distributed event-

based control plane for OpenFlow applications [22]. HyperFlow pushes state information

to other controllers, allowing all controllers to have the same view of the network.

Considering each controller has a uniform view of the network, each controller is locally

able to make decisions for new flow requests. HyperFlow uses a publish/subscribe

17



messaging paradigm to allow cross-controller communication. The publish/subscribe

system is implemented using WheelFS, a distributed file system. Using WheelFS, channels

between controllers are represented using directories, and messages are represented using

files. HyperFlow polls directories to update changes made by other controllers.

Evaluation of HyperFlow performance is based on the window of inconsistency (i.e.,

the amount of time for controllers to agree on a view of the network) as load increases. The

window of inconsistency is dependent on how fast HyperFlow and WheelFS are together

capable of reading and writing files. HyperFlow is able to achieve a bounded window of

inconsistency among controllers so long as fewer than 1000 link state changes occur per

second (i.e., fewer than 1000 switches or hosts join or leave the network per second).

With the number of controller platforms increasing, it becomes necessary to compare

various controllers. Shalimov et al. present an analysis of efficiencies of various open

source SDN controller platforms using a new framework called hpcprobe [23]. The

efficiency metric is determined by factors including performance (i.e., throughput and

latency), scalability, reliability (measured through number of failures), and security (tested

through the use of malformed Openflow packets). Hcprobe emulates an SDN environment,

and allows custom tests through the use of its API written in Haskell. The SDN controllers

tested include NOX, POX, Floodlight, Beacon, MuL, Maestro, and Ryu. In testing

throughput, 32 switches are emulated with 105 hosts per switch. Beacon achieves the

highest average number of flows per second as the number of threads increases. When

testing reliability, MuL and Maestro drop controller-bound packet-in messages under the

test load. When testing security through the use of a malformed Openflow header, Maestro

and NOX crash upon receiving messages with incorrect length field values.

2.2.3 Switches.

Greenhalgh et al. describe two trends within network topologies: an increase in

the proliferation of middle-boxes, and the commoditization of servers and switches [24].

18



Middle-boxes include any device sitting between switches, often providing transport-

layer functions up to application-layer functions (e.g., web proxies, firewalls, intrusion

detection/prevention, load balancers, etc.). The increase in switch capabilities combined

with a reduction in cost leads to the consolidation of middle-box capabilities. This

consolidation replaces middle-boxes with a single device: the programmable switch.

The benefits of consolidation include a reduction in equipment and maintenance

costs, dynamic resource allocation, and an increased tolerance of failures. Rather than

having separate hardware with dedicated (and thus rigid) functionality, the increased switch

performance allows that functionality to be programmed dynamically into the switch at

the network administrator‘s discretion, preventing the need for separate dedicated devices.

Tolerance of failures comes from the fact that cheaper commodity hardware can be made

redundant and easily hot-swapped. In order for switches to contribute to a software-

defined network, they must be compliant with the protocol utilized by the controllers. The

requirement for SDN-capable switches limits the availability of switches to those compliant

with the OpenFlow specification.

2.2.4 Applications.

An SDN application runs locally on the controller and dictates either proactively

or reactively how forwarding tables are populated. An emulated environment for

SDN applications allows a network administrator to test whether a network application

fulfills specific requirements. Additionally, an emulated environment allows a network

administrator to test the SDN application before installing it onto production controllers.

Lantz et al. developed Mininet, a system that generates an emulated environment which

allows rapid prototyping for large networks [25]. Mininet addresses the problem of a high

barrier to entry for designing a new network architecture. Mininet is designed to be flexible,

deployable, interactive, scalable, realistic (i.e., the behavior observed in the emulated

19



environment should represent what would be expected in a production environment), and

shareable (i.e., easily encapsulated and installed).

Mininet offers a Command-Line Interface (CLI) that allows the user to easily create

an arbitrary network with virtual hosts attached to any number of OpenFlow switches and a

controller of any type. Mininet also contains a Python API which allows custom scripting

for experimentation. One notable limitation of Mininet is the fact that software forwarding

speeds cannot match the O(1) forwarding time of hardware lookup tables, which may skew

packet forwarding-rate statistics.

Gupta et al. developed a simulation tool known as fs-sdn, which is designed for greater

scalability than Mininet [26]. Rather than basing the simulated network abstraction around

each packet, fs-sdn‘s unit of measure is a flowlet. A flowlet represents the number of flows

emitted over a period of time (e.g., within a period of 150 milliseconds, 1 or more packets

traversed the emulated device). The higher level of abstraction allows greater speed and

accuracy than current packet-level simulators (e.g., ns-2 and ns-3) [27][28]. Results show

that fs-sdn remains consistent across various topologies and rate configurations, while

Mininet loses accuracy as both load increases from 10 Mb/s to 100 Mb/s, and with an

increase in the number of nodes within the emulated network. Accuracy is determined by

comparing byte, packet, and flow counts recorded by each platform.

2.3 SDN Growth

Increasing interest in SDN capabilities among SDN researchers as well as growing

applications of SDN environments emphasizes the importance of security as its widespread

adoption presents a more lucrative target for network attackers. Google is one example

of a major corporation taking advantage of SDN capabilities. Jain et al. present B4,

a software-defined network connecting Google‘s data centers together across continents

[29][30]. Specific needs inclusive to high bandwidth, dynamic traffic demands, and full

control over edge servers, led to the choice in adopting Openflow with an SDN environment

20



to accomplish the needs of B4. In addition to Google, the SDN market is expected to grow

beyond $35 billion by April 2018 [31]. The rate of growth is shown by the fact that SDN

technology sales have increased from $10 million in 2007 to $252 million in 2012 [31].

2.4 SDN Security Concerns

Considering the age of SDN, concerns exist regarding the security implications

imposed by the transformation of an entire networking paradigm. Klöti et al. use

STRIDE and attack tree modeling methods to evaluate the security of an emulated SDN

network [32][33][34]. When testing the potential for denial of service, the POX-controlled

MiniNet simulated SDN environment is utilized with an increased timeout value to allow

greater flow entries. The number of lost packets increases consistently with an increasing

flow timeout value (and consequently an increase in table overflows). When testing for

information disclosure, Klöti et al. compare the time it takes for an initial connection of

a server to the time it takes for a subsequent connection with the same network server.

A drastic difference in delays denotes a new flow entry, which suggests no other client

already has an established session with the service of interest. This type of information

disclosure only exists when flow aggregation is utilized. Klöti et al. suggest rate limiting,

flow aggregation, attack detection, and access control mechanisms to mitigate any Denial

of Service (DoS) vulnerabilities. Klöti et al. also suggest proactive strategies inclusive

to randomizing response times as well as attack detection methods in order to mitigate

potential information disclosure vulnerabilities.

Scott-Hayward et al. present an in-depth survey on research related to security

implications of SDN [35]. Within the survey, two schools of thought regarding security in

SDN environments exist. The first states that the programmability of the new technology

allows a more secure environment as well as a centralized view of the network security

posture. The second states that the centrality and other new features of SDN expose the

network to a new vector of attacks.

21



Shin and Gu propose a feasibility study in attacking SDN environments [36]. The

attacks include fingerprinting an SDN environment as well as using a DoS attack against

an SDN environment. Fingerprinting involves the use of SDN Scanner, which changes

the header field in two packets, and collects the RTT values for these packets. From the

RTT values, Shin and Gu can determine whether an externally-located network is an SDN

environment with a success rate of 85.7%. The DoS analysis tests against Open VSwitch

installed on a separate Linux host, with a switch flow table capacity of 1500 flows entries.

Shin and Gu show with the emulated SDN environment that it takes ten seconds with 200

packets per second at a bandwidth of 0.75 Mbps to effectively consume the resources of

the control plane and the data plane.

Documented vulnerabilities already exist with current SDN controllers. Dover

presents two, both targetting the Floodlight SDN controller [37][38]. The first vulnerability

is a switch table vulnerability, where malformed Openflow messages allow an attacker to

cause full CPU utilization on the controller, ultimately denying controller functionality. The

second vulnerability is another DoS vulnerability that involves tearing down the connection

between the targeted switch and controller. Without communication between the controller

and the switch, the implementation of the switch dictates whether the network switch falls

back to traditional forwarding techniques or follows another response to the DoS attack.

Diego et al. present seven threat vectors regarding the introduction of the SDN

environment [39]. The first threat vector includes forged or faked traffic flows, which

target switches and controllers in an SDN environment. The second threat vector includes

attacks on vulnerabilities specific to Openflow network switches. The third threat vector is

an attack on the control plane communication (i.e., the link between the network switch

and the SDN controller). The fourth threat vector includes vulnerabilities existing in

the SDN controller, given the controller is software potentially consisting of numerous

faults. The fifth threat vector is the lack of verification between the controller and the

22



management applications written on them. The sixth threat vector includes vulnerabilities

within administrative stations that exist within an exploitable network. The final threat

vector is the lack of trusted resources for forensics and remediation for when an attack is

detected.

2.5 SDN Security Applications

Numerous applications have been created that apply the SDN architecture towards

providing security to an existing network. The logically centralized nature of the

control plane allows an additional component that is taken advantage of through security

applications: a view of the entire network. Not only does SDN allow a singular view of the

entire network, but SDN also allows a controller to change that view, lowering the barrier

to creativity in network programming. Security applications include anomaly detection,

Distributed Denial of Service (DDoS) prevention, Intrusion Prevention System (IPS),

modular security, and a moving target defense.

2.5.1 Traffic Anomaly Detection using SDN.

Mehdi et al. utilize SDN to revisit Anomaly Detection Systems (ADS), a security

application that was explored “rather unsuccessfully” in the past [40]. Mehdi et al.

differentiate between the network core and the network edge. The network core consists

of hardware that makes up the backbone of the Internet. The core does not directly touch

the end devices, but rather facilitates the end device communication by connecting sub-

networks to each other. The network edge includes switching hardware that directly

connects to an endpoint device or endpoint network. The method explained in [40]

involves moving four different ADS algorithms from the network core to the network

edge. Before SDN, this was difficult as switching hardware ran proprietary software that

was not modifiable. By replacing proprietary switches at the network edge with openly-

programmable switches adherent to the OpenFlow specification, ADS can be moved closer

to the anomalous sources (i.e., the network edge).

23



Moving ADS closer to the anomalous sources offers different magnitudes of benefits

depending on the ADS algorithm implemented. One ADS algorithm implemented was the

Threshold Random Walk with Credit Based rate limiting (TRW-CB) algorithm. TRW-CB

is based on the notion that connection attempts are more likely to succeed when originating

from benign hosts rather than from malicious hosts. Implementing the TRW-CB algorithm

at the network edge (using a home network dataset) with SDN was shown to achieve a 90%

accuracy of detection, with a false positive rate of 0% to 4%. Moving this algorithm to the

network core (using an Internet Service Provider (ISP) dataset) resulted in an accuracy of

85% detection rate with a false positive rate of 11%.

2.5.2 DDoS Flooding Attack Detection.

Braga et al. use the per-flow statistics already stored by OpenFlow compliant switches

to detect a DDoS [41]. The detection process involves three modules: the flow collector

module, the feature extractor module, and the classifier module. The flow collector module

requests flow statistics from OpenFlow switches at an interval specified by the controller

application. Using flow statistics rather than packet header information decreases overhead.

The feature extractor module grabs data relevant in detecting a DDoS flooding attack. The

classifier module uses a Self-Organizing Map (SOM), a type of neural network, to classify

whether the polled data consists of a DDoS flooding attack.

The features worth extracting from flow statistics include the Average Packets per

flow (APf), the Average Bytes per flow (ABf), the Average Duration of the flow (ADf)

(i.e., the flow‘s lifetime), the Percentage of Pair-flows (PPf), the Growth rate of Single-

flows (GSf), and the Growth rate of Different Ports (GDP). All flow statistics are natively

logged by OpenFlow switches, preventing the need to install custom software for traffic

statistic logging. Using flow statistics resulted in a detection rate greater than 98%, while

taking a CPU time of 154 seconds to extract 6 flow features on a 1.8 GHz, dual core CPU

with 2 GB of RAM. Feature extraction methods using packet header information required

24



9 features (taking a CPU time of 237 seconds to extract on a 2.66 GHz, dual core CPU with

3.5 GB of RAM).

2.5.3 Intrusion Prevention System with SDN.

Xing et al. propose an IPS that uses OpenFlow to perform countermeasures on

flows identified by Snort‘s Intrusion Detection System (IDS) engine [42]. Working in

tandem with an iptables firewall, an IDS effectively becomes an IPS. Such an IPS system

suffers from latency issues, accuracy issues (in terms of the number of false positives), and

flexibility. While [42] claims to compare SnortFlow with an iptables-based IPS, no data is

shown directly comparing these two IPS systems.

2.5.4 Modular Security Services.

Shin et al. present FRESCO, an OpenFlow application development framework that

utilizes standardized modules to facilitate security detection and mitigation development

[43]. FRESCO overcomes an information deficiency challenge through the use of a

database module (FRESCO-DB) that simplifies storage of key state tracking information.

Such state tracking information is normally not collected by OpenFlow controllers, yet is

often required to develop security applications. Example data that exists in the FRESCO-

DB module includes a TCP connection status as well as IP reputation. Replicating open-

source network security applications using FRESCO results in an order of magnitude fewer

lines of code. FRESCO also deploys garbage collection, which checks if an OpenFlow

switch is nearing the capacity of flow entries for the switch, and evicts the least active flow.

Garbage collection in FRESCO minimizes resource utilization by reducing the number

of flow entries within each OpenFlow switch. One drawback to FRESCO exists in the

setup time required to install flows. FRESCO applications require additional setup time to

install a flow entry ranging from 0.5 milliseconds to 10.9 milliseconds more than the time

it takes for the default NOX controller to install a flow entry. The additional setup time was

25



credited to using an emulated environment running on a virtual machine, but this theory

was not tested.

2.5.5 Moving Target Defense using SDN.

Jafarian et al. take advantage of the fact that the controller monitors and manipulates

the entire network from a central vantage point, and use the centralized controller to

provide a moving target defense against network attacks [44]. The technique, called

OpenFlow Random Host Mutation (OF-RHM), assigns a random virtual Internet Protocol

address (vIP) for each end hosts within a network, while maintaining a map of vIP to

a real Internet Protocol addresses (rIP) handled by the controller. The controller then

installs flows necessary for OpenFlow switches to forward a given packet to the correct

destination. Each connection is associated with an installed flow, allowing a new vIP to be

assigned to a host in the middle of an established session between two hosts. Performing

an Nmap scan targeting a class B network with 216 hosts results in a list of hosts believed

to be active. Performing multiple Nmap scans reveals that not more than 1% of the vIP

addresses obtained from the initial scan remain consistent. Analysis on worm propagation

effectiveness reveals that OF-RHM saves up to 90% of hosts against being caught through

known worm propagation techniques (e.g., divide-and-conquer worms that cooperate with

each other to ensure no host is scanned twice).

2.6 SDN and Latency Analysis

Within the Openflow protocol, two fields exist dictating the length of time for a

switch‘s flow entry to remain active. These fields include the flow inactivity timeout,

and the flow hard timeout values. When a controller sends an Openflow message to a

switch, informing the switch of a flow action, this Openflow message also contains both

the inactivity and hard timeout values. An inactivity timeout value directs a flow to expire

when an amount of time passes without any packet matching the flow. A hard timeout value

directs a flow to expire after an amount of time passes since the flow‘s creation, regardless

26



of matching packet traffic. Both the inactivity and hard timeout values can be set to zero,

indicating an infinite value.

Zarek et al. explore the effect these timeout values have on performance measured

through the flow miss rate, and table occupancy [45]. Zarek et al. find that an increase in the

flow timeout value allows the flow to reside within the switch longer, decreasing the miss

rate exponentially, while also growing the table size linearly. Zarek et al. also observe an

optimal point at which any increase in the flow timeout value results in negligible miss rate

benefit, while also unnecessarily adding to the table occupancy, leading to a potential upper-

limit in the number of flows. Zarek et al. propose two flow table management methods that

combine optimal flow timeout values with explicit messages from the controller. These

explicity messages request the switch to evict specified flow table entries. Applying these

two flow table management methods to two different data sets, Zarek et al. discover that the

use of the explicit eviction method and optimal flow timeout values result in large savings

in flow table size as the number of table entries increases into the tens of thousands.

Vishnoi et al. propose SmartTime, an Openflow controller that also uses varying

timeout values combined with explicit flow eviction messages to optimize controller load as

well as internal switch memory [46]. SmartTime‘s adaptive idle timeout strategy is applied

to determine the effect on both flow table misses and flow entry drops. The adaptive strategy

improved the current static inactivity timeout policy‘s performance in terms of both flow

table misses and dropped flow entries.

Kim et al. attempt to help controller scalability by recognizing that reducing the

number of flow setup requests reduces the load placed on controllers [47]. The method in

which Kim et al. reduce the number of flow setup requests includes minimizing the number

of flow entry evictions. Dynamically setting flow timeout values allows common flows to

have a longer timeout value, reducing the flow‘s chance of eviction. With fewer evictions,

the Openflow switch makes fewer flow requests, reducing the load on the controller. The

27



dynamic flow timeout algorithm reduces the number of packets sent to the controller by

9.9%.

2.7 SDN Applied to Network Security

The research presented in this thesis involves gathering information about an unknown

network, and then from that reconnaissance, if the network is identified as an SDN

environment, determining the controller supporting the SDN environment. The information

gathered includes features of each controller inclusive to both inactivity and hard flow

timeout values. Populating a table, an increasing number of controller features allows

unique identification of both the controller instance as well as potentially the version of

the controller software. From discovering the type of controller active within the SDN

environment, documented vulnerabilities pertaining to the controller may exist that allow

an attacker unmitigated access to a network.

28



III. Methodology

T his chapter presents the methodology for evaluating the process of fingerprinting the

SDN controller. Section 3.1 lists the specific questions that are addressed by each

experiment. Section 3.2 describes the objective and hypothesis of this thesis, while Section

3.3 explains the approach to accomplish the stated objective. Finally, Section 3.4 describes

each experiment in detail, including the assumptions, parameters, hypothesis, and design

for each experiment.

3.1 Problem Definition

Traditional networks consist of switches and routers that contain static protocols,

removing any ability to create custom network protocols. In order for a network

administrator to define a custom routing protocol, they are not able to considering the

device‘s firmware is static. The network administrator is then left to requesting the device

vendor for a specific feature [9]. SDN moves the decision-making logic within a network

from a distributed set of switches and routers, to a logically-centralized controller. The

SDN controller communicates to each network switch through the OpenFlow protocol.

Shifting from a traditional network to an SDN environment brings changes observable

by a client in the SDN environment. While the end result allows a packet to reach

an intended destination, the following process is designed to determine the underlying

controller that is controlling the SDN environment. Identifying the controller (a process

referred to as fingerprinting) allows a malicious client to tailor a specific attack and can

lead to a discovery of vulnerabilities to exploit. Additionally, experiments show that a client

can obtain information programmed into the controller. Determining what information an

attacker can glean contributes to a broader understanding of attacker capabilities available

29



in an SDN environment. Further, any security postures that depend on the assumption of

an attacker’s lack of information are shown invalid.

3.2 Goals and Hypothesis

The objective of this thesis is to develop and evaluate a process for uniquely

identifying the controller supporting an SDN environment. The proposed process includes

extracting features from a new SDN controller and adding the new feature set to a table

of features. A network client can then retrieve features of an unknown SDN controller

and query the retrieved features against the table of known controllers. The first goal

of this research is to construct a set of features extensive enough to uniquely identify

each known SDN controller, and demonstrate that the table of features reliably identifies

each SDN controller. The next goal includes ensuring that each feature is obtainable by

a client connected to the SDN environment. With both of these goals achieved, a client

will successfully be able to add a new SDN controller to a feature table, and subsequently

identify that controller in an SDN environment.

It is hypothesized that a process can be created that adds each new SDN controller

into a table of SDN controller features, and that this table can be used to identify an

unknown SDN controller discovered in an SDN environment by a client connected to that

environment.

3.3 Approach

This section provides a high-level view of the process for extracting and using SDN

features to fingerprint an unknown SDN controller, and describes how this approach fulfills

the goals mentioned in Section 3.2.

3.3.1 Overview.

The abstract design of the fingerprinting process is shown in Figure 3.1. The

right box in Figure 3.1 shows an unknown controller in an SDN environment. The

30



controller represents a company or entity using a controller that adheres to the OpenFlow

specifications and is not in any table of features. As a client seeking to fingerprint the

known controller of an SDN environment (shown as a red circle), the client downloads a

copy of the publicly available SDN controller and adds the SDN controller’s features to the

table of features through feature extraction. Next, the client observes the features of the

unknown SDN controller and determines whether they match a set of features in the table.

Figure 3.1: SDN Controller Fingerprinting Process

With access to a new SDN controller, an administrator can extract any and all

features by examining the source code (provided the SDN controller’s source code is

available), reverse engineering the SDN controller, or using the SDN controller in a

network environment and discovering features. It is important to note that the set of

features observable by the client is limited compared to the set of features extractable by an

administrator of that SDN controller. Emphasis is placed on the fact that administrators can

31



extract features, while clients can observe features. A network administrator, as depicted

in Figure 3.2, has complete control over the SDN controller, while the client can only

communicate with the SDN controller through the provided network interface. The client’s

limited visibility of the SDN controller provides a requirement that must be fulfilled by

each feature extracted into the table: each feature must be observable by a client connected

to the network. If a feature inserted into the table is not observable by a client, then that

feature cannot be used by the client to uniquely identify the SDN controller.

Figure 3.2: Client versus Administrator SDN Controller Visibility

During the feature extraction process, a client assumes the role of an administrator

by downloading a copy of publicly available SDN controllers. By assuming the role of

an administrator, the client is able to extract any feature and populate the feature table.

After extracting the features of a new SDN controller, the client can then use the feature

table while connected to an SDN environment and test whether the observed features of the

environment’s controller match the previously extracted features.

32



3.3.2 Features.

The choice of features is based on the principle of observing the response after

any provided input. Figure 3.3 shows the OpenFlow protocol communication, and

provides locations of where features can be extracted within the protocol. The left

device in Figure 3.3 represents an OpenFlow switch, however the SDN controller does

not distinguish between host and switch, so long as the device is communicating using

the OpenFlow protocol. Point A represents the time just after the TCP 3-way handshake

has concluded. Observing what the controller communicates immediately after point A

may reveal unique messages that constitute a unique feature of the controller. An example

feature at Point A is whether the controller begins sending the symmetric OpenFlow Hello

packet, or if the SDN controller waits for a received OpenFlow Hello packet first. Point

B represents the time just after the client sends the OpenFlow Hello packet. An example

of an observable feature at point B includes the very next packet received from the SDN

controller, which may be an OpenFlow Feature Request packet, adhering to the OpenFlow

specification, or some other packet depending on the SDN controller implementation. The

very next input provided by the client is a response to the OpenFlow Feature Request

packet. Point C represents the time just after the OpenFlow Feature response is transmitted.

Any future input by the client creates a new point in Figure 3.3, and thus adds a new feature

to the feature table.

The list of features used for the current SDN controller fingerprint process is shown

in Table 3.1. The time column represents the most recent action completed by the client,

while the feature column shows the response observable from the SDN controller. A time of

“any” signifies that the feature can be collected at any time during the connection between

the client and controller, and does not follow any event listed in Figure 3.3. Adding a new

SDN controller to the feature table may require finding new features that distinguish the

new SDN controller from the SDN controllers already within the table. Finding a new

33



Figure 3.3: OpenFlow Protocol Feature Extraction Points

feature requires that the new feature’s value be determined for each SDN controller already

in the table. If a feature is obtainable by one SDN controller, but not another, then that lack

of availability of a feature serves as identifiable information that is still populated within

the feature table. Section 3.4 contains experiments verifying each feature as observable

from the perspective of a client connected to the SDN environment.

34



Table 3.1: List of Features and Collection Times

# Time Feature

1 Any Default Flow Inactivity-Timeout Period

2 Any Default Flow Hard-Timeout Period

3 After TCP Handshake Does the SDN controller transmit an OF Hello packet?

4 After TCP Handshake Does the SDN controller transmit an Echo Request?

5 After TCP Handshake Does the SDN controller transmit a Feature Request?

6 After Client Sends Hello The set of packets sent by the SDN controller

7 After Client Sends Feature Response The set of packets sent by the SDN controller

3.4 Experiments

This section provides specific details regarding each experiment conducted throughout

this thesis. Each experiment begins with the reasoning for the experiment, a list of

assumptions pertaining to the experiment, the parameters, the hypothesis, and finally the

experimental design. Experiment 1 demonstrates that a client can accurately determine

whether the connected network environment is a traditional environment or an SDN

environment. Experiment 2 verifies that the first feature, the SDN controller’s flow

inactivity timeout period, can be accurately determined by a client connected the SDN

environment. Experiment 3 verifies that the second feature, the SDN controller’s hard

timeout period, can be accurately determined as a client connected to the SDN environment.

Experiment 4 shows that these features can combine to form a table of SDN controller

features able to fingerprint the controller software.

3.4.1 Experiment 1: Verify SDN Environment.

The goal of Experiment 1 is to determine whether a client within a network

environment can accurately determine if that network environment is an SDN environment

or a traditional environment. Experiment 1 is required for fingerprinting the SDN controller

35



as it is the first step of discovering whether the client is in an SDN environment and

thus whether an SDN controller exists. Determining the network environment, as well

as determining the specific controller supporting the environment (if that environment is

determined to be an SDN environment) allows the client to glean information that increases

the viability of a network attack.

3.4.1.1 Experiment 1 Background.

As a client connected to a computer network with an unknown architecture (i.e., the

client does not know whether the network is a traditional or an SDN environment) it may

be possible to distinguish the network as an SDN environment. Considering each packet

incurs a packet-in event (see Section 2.2.1 for information about packet-in events) from the

switch to the controller before a flow rule becomes installed, latency for the first packet

exists that is not observed by subsequent packets of similar type (i.e., subsequent packets

that match the same flow rule). This latency is observed by comparing the path of a ping

(i.e., Internet Control Message Protocol (ICMP) echo) packet in Figure 3.4 with the path

of a subsequent ping packet in Figure 3.5.

Figure 3.4 shows a ping request packet created by Host A, destined for Host B, sent

to the network switch. The switch, having never installed a flow for the ICMP packet,

sends a packet-in request to the controller, which responds with a packet-out event sent to

the switch. The packet-out event contains a flow modification request from the controller

telling the switch to install a flow based on the initial ping request created by Host A. The

packet-out event also tells the switch to forward the ping packet originating from Host A to

the port occupied by Host B. At this point, all ping request packets matching the initially

transmitted ping request packet (i.e., originating from Host A, at Host A’s current port on

the switch, destined to Host B), will forward to Host B’s port on the switch without any

negotiation with the controller. Host B responds with a ping response packet destined for

36



Host A, which repeats the process of the network switch negotiating with the controller and

installing another flow.

Figure 3.5 shows a second ping request created by Host A, destined for Host B. This

process is different than the process shown in Figure 3.4 because flow entries in the switch

are already installed, so no packet-in events are required for the switch to correctly forward

the ping packets. The difference in latencies between the processes shown in Figures

3.4 and 3.5 can be calculated from a client by recording a ping packet’s RTT, and is

consequently observable to a client connected to the SDN environment.

The difference in latency between the first packet and subsequent packets is not

observed for traditional networks as there is no flow-installation process. Without a flow-

installation process, both initial and subsequent ping requests and responses are treated

as shown in Figure 3.5. Because of the latency difference between SDN and traditional

networks, a distinction can be gleaned from analyzing packet latencies. This distinction

can also be used to determine whether a flow is still active within the switch, as added

latency is a result of a non-existent flow. Experiments 2 and 3 rely on this process of

determining whether a flow is still active within the switch.

37



Figure 3.4: Path of an Initial ICMP Echo Request and Response

Figure 3.5: Path of a Subsequent ICMP Echo Request and Response

38



3.4.1.2 Assumptions.

The assumptions for Experiment 1 are as follows:

1. The client has access to a port on a switch connected to the SDN environment.

2. ICMP echo packets are not blocked by the sending, receiving, or intermediary node.

3. Aggregate flows are not installed on the switch.

4. Aggregate flows are not used by the SDN controller for communication between Host

A and Host B.

5. The client knows the IP address of a live host that responds to ICMP echo requests.

3.4.1.3 Parameters.

Table 3.2 shows the parameters which define the treatment levels for both the

simulated MiniNet test environment and the emulated test environment. The SDN

controller parameter is none when the environment is a traditional environment because

no controller is present. The emulated test environment has fewer SDN controllers because

the hardware switch is compatible only with OpenFlow version 1.3, and fewer open-source

SDN controllers exist that support this version. Table 3.3 shows the various parameters held

constant to reduce the number of covariates. The response metrics include the ping RTT and

the difference between the first ping RTT and the second ping RTT. The elapsed runtime for

determining the predicted inactivity timeout value is also recorded. Recording the runtime

allows future research to compare the speed in determining the inactivity timeout value, if

a supposed faster process needs comparing.

3.4.1.4 Hypothesis.

The expected output for Experiment 1 will show two things: first, that within an SDN

environment, the first ping latency is significantly greater than the second ping latency, and

39



Table 3.2: Experiment 1 Parameters

Test Environment Parameter Setting

Simulated (MiniNet)

Environment
SDN

Traditional

SDN Controller

NOX

POX

Beacon

Maestro

Floodlight

NodeFlow

OpenDaylight

None

Emulated (Hardware)

Environment
SDN

Traditional

SDN Controller

Ryu

Iris

None

second, that this difference in latencies is significantly greater in SDN environments than

in traditional environments.

3.4.1.5 Experiment Design.

Experiment 1 uses Mininet to simulate the SDN environment [25]. Within Mininet,

a simple network consisting of two hosts connected to one switch with one controller (the

control parameter) is used [14]. The simple network is depicted in Figure 3.6. Within

Figure 3.6, the network switch, Hosts A and B are all Linux kernel version 3.8.0 emulated

in a MiniNet virtual machine. The network switch is compatible with the OpenFlow

40



Table 3.3: Experiment 1 Parameters Held Constant

Parameter Value

Number of Clients 2

Number of Switches 1

Number of Controllers 1

Number of Hops between Host A and Host B 2

standards [11]. The controller is hosted on a separate virtual machine running Ubuntu

version 12.04 with Linux kernel version 3.8.0. Considering Mininet requires the use of an

SDN environment, the traditional environment was constructed using two Ubuntu 12.04

virtual machines connected by VMWare‘s virtual network interfaces.

A bash script runs on Host A, pinging Host B three times with a one second delay

between each ping. After three pings, the script waits thirteen seconds, and repeats 100

times. A pause of thirteen seconds is chosen to allow sufficient time for flow entries within

the switch to expire due to inactivity. The default inactivity timeout for flow entries is

dependent on the implementation of the controller, and thirteen seconds is greater than

the default inactivity timeout available for every controller tested. While the bash script

executes, tcpdump is running in the background on Host A, recording timestamps for each

ping transmission and response. The first ping is sent to record a flow-setup time, as this

ping will incur a packet-in and packet-out delay between the switch and controller. The

second ping is sent to record a ping traversal time after a flow setup occurs. The third ping

is used for a cursory comparison with the second ping and starts the thirteen-second wait

period. When the flow entry expires due to inactivity, the very next ping requires a new

flow installation for the switch. Repeating the 3-ping process 100 times is done to increase

the sample size.

41



Figure 3.6: Mininet Simple Network

It is important to note that tcpdump is required for an accurate reading of timestamps.

The ping application informs the user of the RTT for each ping request, however this RTT

does not accurately reflect the moment an ICMP echo request packet was placed on the wire

to the moment an ICMP echo reply packet was received on the wire. The ping application

sets a timestamp as soon as a ping request is constructed by the application, but after this

timestamp is recorded, Address Resolution Protocol (ARP) packets are sent and received to

determine the next-hop path for the ping packet. These ARP packets incur delays that are

included in the ping application’s calculation of RTT, yet are of no interest for Experiment

1. Using tcpdump effectively allows the experimenter to record more precisely when the

ping request is placed on the wire by observing when an ICMP echo packet is transmitted.

The tcpdump output is parsed using a python script that takes the difference between

each ICMP echo request timestamp and the corresponding ICMP echo response timestamp.

The python script outputs this difference, along with the corresponding ping number (first,

second, or third) in a comma-separated values (csv) file that can be analyzed using R

statistical programming. Multiple csv files are generated (one for each controller used,

42



as well as one for a traditional environment not containing a controller) and are compared

using the R programming language.

Experiment 1 is also conducted on separate hardware to compare real-world results

against the simulation in MiniNet. The structure of the new environment is similar to

the MiniNet structure, in that there are 2 hosts, 1 OpenFlow compatible switch, and 1

controller. The hardware structure is depicted in Figure 3.7, where both hosts and the

SDN controller exist as separate virtual machines on the same physical server. From

Figure 3.7, the top row with the light green background represents 1 physical device: an

HP 5900 Series switch (model JG336A)[48]. The HP switch has 48 1G/10GBase-T ports

and is OpenFlow compatible (OpenFlow version 1.3 only). The bottom row with the light

orange background represents 1 physical device: a SuperMicro SuperServer 8027R-TRF+.

The SuperServer has an Intel Xeon processor E5-4600 v2 (12-Cores) with 8 individual

1000BASE-T RJ45 network interfaces. VMware ESXi communicates with the server

hardware, and hosts the host virtual machines as well as the controller virtual machine.

The host virtual machines have a Debian net install with basic python, ping, and tcpdump

software.

Two controller VMs are made to host the controller software (representing the two

parameters shown in Table 3.2). The Ryu controller offers a tutorial that recommends

use of a saved VM image [49]. This image is used on the server to host Ryu. Ryu was

selected because of its OpenFlow version 1.3 capability. Iris is another controller that is

used because it can communicate using OpenFlow version 1.3 [21]. Iris is installed on an

Ubuntu 12.04 Linux distribution virtual machine. Ryu and Iris alternate in suspended or

active mode depending on which one needs to be running for a given collection of data.

As shown in Figure 3.7, 3 ports are connected from the HP switch to the server using 3

separate Ethernet cables, allowing a communication path that emulates a real network. The

43



same communication occurs from end host to end host as is conducted within the MiniNet

simulator.

Figure 3.7: Hardware Simple Network

3.4.2 Experiment 2: Determine Flow Inactivity Timeout.

The goal of Experiment 2 is to determine whether a client within an SDN environment

can accurately determine the inactivity timeout period for a particular flow. Determining

the inactivity flow timeout period can assist in fingerprinting the SDN controller that is

maintaining the SDN environment because it is another observable feature of the SDN

controller. Experiment 2 uses the same latency technique described in Experiment 1 of

determining whether a flow is still active within a switch.

3.4.2.1 Experiment 2 Background.

From Experiment 1, a client determines whether they are connected to an SDN or

traditional network environment. After determining with 95% certainty that the network

environment is an SDN environment, Experiment 2 determines the flow inactivity timeout

period by systematically checking whether a flow is still installed after incremental periods

44



of time. Controllers have different default flow inactivity timeout periods, and consequently

may be uniquely identifiable based on that inactivity timeout period. Additionally, if a

malicious client were able to determine that the flow installed was never removed (or

removed after a lengthy delay), that client may be able to target the specific type of flow

as a means for denial of service by resource exhaustion of the network switch. The use of

Experiment 2 for the purpose of a Denial of Service attack goes beyond the scope of this

research and is suggested for future work.

3.4.2.2 Assumptions.

The assumptions for Experiment 2 are as follows:

1. The client has access to a port on a switch connected to the SDN environment.

2. ICMP echo packets are not blocked by the sending, receiving, or intermediary node.

3. Aggregate flows are not installed on the switch.

4. Aggregate flows are not used by the SDN controller.

5. The client is in an SDN environment.

6. The client knows the IP address of a live host that responds to ICMP echo requests, or

has connected two devices that can successfully request and respond to ICMP echo

packets.

7. The client has a reliable method for determining whether a flow is still active within

an Openflow compliant switch (as demonstrated by Experiment 1).

3.4.2.3 Parameters.

Table 3.4 shows the parameters which define the treatment levels for both the

simulated MiniNet test environment and the emulated test environment. The SDN

controller parameter is none when the environment is a traditional environment because

45



no controller is present. The hardware test environment has fewer SDN controllers because

the hardware switch is compatible only with OpenFlow version 1.3, and the open-source

SDN controllers listed in the simulated test environment use OpenFlow version 1.0. Table

Table 3.5 shows the various parameters held constant to reduce the number of covariates.

The response metric includes the difference between the predicted inactivity timeout value

and the actual inactivity timeout value.

Table 3.4: Experiment 2 Parameters

Test Environment Parameter Setting

Simulated (MiniNet)

Environment
SDN

Traditional

SDN Controller

NOX

POX

Beacon

Maestro

Floodlight

NodeFlow

OpenDaylight

None

Emulated (Hardware)

Environment
SDN

Traditional

SDN Controller

Ryu

Iris

None

46



Table 3.5: Experiment 2 Parameters Held Constant

Parameter Value

Number of Clients 2

Number of Switches 1

Number of Controllers 1

Number of Hops between Host A and Host B 2

3.4.2.4 Hypothesis.

The expected output for Experiment 2 will show that the predicted value for the flow

inactivity timeout period is within one second from the actual value of the flow inactivity

timeout period.

3.4.2.5 Experiment Design.

Experiment 2 uses Mininet to simulate the SDN environment [25]. Within Mininet,

a simple network consisting of two hosts attached to one switch with one controller (the

control variable) is used. The simple network is the same network used in Experiment

1 and is depicted in Figure 3.6. Within Figure 3.6, The network switch, Hosts A and B

are all Linux kernel version 3.8.0 emulated in a MiniNet virtual machine. The controller

is hosted on a separate virtual machine running Ubuntu version 12.04 with Linux kernel

version 3.8.0.

Host A represents the client that has no knowledge of the network environment.

I deally, Host A first determines whether the environment is an SDN or traditional

environment by utilizing the latency analysis methods discussed in Experiment 1. For

the purposes of Experiment 2, the type of environment was known. Host A gathers a

baseline mean and standard deviation of ICMP echo RTTs. Host A transmits 50 ICMP

echo requests to Host B, and records the RTT for each request/response pair. The use of

50 is to gather a mean and standard deviation of RTTs, and the only requirement for this

47



number is that it is greater than two (where the first RTT represents the flow installation

latency, the second RTT represents the flow already installed, and subsequent RTTs allow

calculations of a mean and standard deviation). Host A discards the first RTT collected,

and calculates the mean and standard deviation of the remaining 49 RTTs. The calculated

results are referred to as the baseline mean (RB) and baseline standard deviation (σB), and

are shown in (3.1) and (3.2) respectively [50]. In both (3.1) and (3.2), R is the RTT of an

ICMP echo request/response pair, and n is the number of RTTs recorded. The first RTT is

discarded as it represents a flow-installation event, and would skew a baseline for when the

flow is already installed.

RB =

∑
(R)
n

(3.1)

σB =

√∑
(R − RB)2

n − 1
(3.2)

After recording a baseline mean and standard deviation, the inactivity timeout period is

determined by first setting an estimate value of 2 seconds. Host A incurs a flow-installation

event by sending an ICMP echo packet, then waits the estimate value of 2 seconds, then

sends another ICMP echo packet, recording the RTT for this second packet. The recorded

RTT is referred to as the new RTT (RN). The ZS core for the new RTT is

ZS core = |RN − RB|/σB (3.3)

The meaning of the ZS core response variable is shown in Table 3.6. If the calculated

ZS core is above a threshold value, then the observed RTT is significantly greater than the

baseline mean, and likely represents a new flow installation event, which means the flow

expired during the duration of the estimate value of two seconds. If the calculated ZS core

is below the threshold value, then the observed RTT is not significantly greater than the

baseline mean, and indicates no new flow installation taking place, which means that the

48



flow did not expire during the duration of the estimate value of two seconds. The threshold

ZS core value is experimentally set through trial and error to 50.

Table 3.6: Interpretation of ZS core Values

Expression Interpretation

ZS core > ZS coreThreshold The estimate timeout is greater than the actual value

ZS core <= ZS coreThreshold The estimate timeout is less than the actual value

Once the estimate timeout value is determined to be greater or less than the actual

timeout value, the estimate is adjusted, and the process for calculating the ZS core is repeated

with the new estimate value. An example of adjusting the estimate value and repeating the

ZS core calculation is shown in Table 3.7.

Within Table 3.7, the initial minimum boundary for the estimate is zero (non-

inclusive), and the maximum boundary for the estimate is infinite (∞). An initial estimate

of 1 second is tested and found to be below the actual timeout value. The minimum

boundary for the estimate is doubled from 1 to 2, and found to still be below the actual

value. The estimate is doubled repeatedly until a ZS core response indicates that the flow

is absent, and thus the estimate is greater than the actual inactivity timeout value. When

estimating 16 seconds, the flow is no longer present, indicating that the flow expired within

16 seconds, and therefore the flow inactivity timeout is less than 16 seconds. Because

the flow timeout is less than 16 seconds, the estimate maximum boundary is decreased

from infinity to 16 seconds. The estimate is adjusted from 16 seconds to halfway between

the current value and the estimate minimum boundary of 8 seconds. The new estimate of

12 seconds is found to be greater than the actual inactivity timeout value, so the estimate

maximum boundary is decreased from 16 seconds to 12 seconds and the estimate is again

adjusted to halfway between the current value and the estimate minimum boundary of 8

49



seconds. The new estimate of 10 seconds is found to be below the actual value, so the

estimate minimum boundary is increased from 8 to 10 and the estimate is adjusted to be

halfway between the current value and the estimate maximum boundary of 12 seconds.

The process continues until the difference between the estimate minimum boundary and

estimate maximum boundary is less than or equal to the desired precision value.

It is important to note that this method of obtaining the inactivity timeout assumes

there will not be a flow installation event due to a flow hard timeout. If the flow is found to

be absent, but that absence is due to a hard timeout rather than an inactivity timeout, then

the resulting inactivity timeout value may be incorrect. For Experiment 2, the hard timeout

values were set to infinity to avoid this inconvenience. Given a hard timeout may exist on

the SDN controller, a way to avoid an incorrect response is to wait N seconds between each

inactivity test value, where N is the length of time determined to always cause a flow to

expire (whether due to inactivity or a hard timeout). Waiting between each test case allows

the flow to expire and thus resets the hard timeout counter.

Table 3.7: Discovering Inactivity Timeout (With Precision of 0.5 Seconds)

Estimate (seconds) Result Known Timeout Range (Seconds)

1 Flow is still installed 1 < x < ∞

2 Flow is still installed 2 < x < ∞

4 Flow is still installed 4 < x < ∞

8 Flow is still installed 8 < x < ∞

16 Flow is absent 8s < x < 16

12 Flow is absent 8s < x < 12

10 Flow is still installed 10 < x < 12

11 Flow is absent 10s < x < 11

10.5 Flow is absent, precision met 10 < x < 10.5

50



Experiment 2 utilizes the process shown in Table 3.7, and analyzes the resulting

estimates compared with their true-values. Each controller is compiled with different flow

inactivity timeout values. The set of flow inactivity timeout values includes 2, 25, 30, and

60 seconds. The upper-bound test value of 60 seconds was chosen because it is double

the current largest known default inactivity timeout period (the Maestro SDN controller

has a default timeout period of 30 seconds), and consequently provides a large range to

interpolate for future SDN controller inactivity values.

Wireshark is used to ensure that the flow-modification packet sent from the SDN

controller to the client contains the inactivity timeout field with the correctly set test value.

The response data collected is then used to show a statistically significant correlation

between the test inactivity timeout period and the response estimated inactivity timeout

period. A statistically significant correlation combined with a difference of less than one

second indicates that the method of estimating the inactivity timeout period is reliable for

the timeout range.

The same experiment is conducted using the hardware environment previously

described and depicted in Figure 3.7, where Hosts A and B perform the same actions

as Host A and B respectively in the simulated Mininet environment, and the controller in

Figure 3.7 performs the same action as the controller in the simulated Mininet environment.

The hardware data collected is used to further support the conclusions obtained from the

simulated experiments.

3.4.3 Experiment 3: Determine the Flow‘s Hard Timeout.

The goal of Experiment 3 is to determine whether a client within an SDN environment

can accurately determine the hard timeout period for a particular flow. Determining a flow‘s

hard timeout period can assist in fingerprinting the SDN controller that is maintaining the

SDN environment as it is another observable feature within the feature table. Experiment

51



3 uses the same technique shown in Experiments 1 and 2 of determining whether a flow is

still active within a switch.

3.4.3.1 Experiment 3 Background.

Experiment 3 is similar to Experiment 2, with the main difference being the value of

interest. Experiment 3 shows that the flow hard timeout period can be reliably determined

from the perspective of a client on an SDN network. The flow hard timeout period is

determined by examining how long it takes for a flow to expire when constantly refreshed.

A flow expires due to a hard timeout when the life of a flow exceeds the set hard timeout

value. Unlike the inactivity period, the life of a flow cannot be reset by any packet-in event.

3.4.3.2 Assumptions.

The assumptions for Experiment 3 are as follows:

1. The client has access to a port on a switch connected to the SDN environment.

2. ICMP echo packets are not blocked by the sending, receiving, or intermediary node.

3. Aggregate flows are not installed on the switch.

4. Aggregate flows are not used by the SDN controller.

5. The client is in an SDN environment.

6. The client knows the IP address of a live host that responds to ICMP echo requests.

7. The client has a reliable method for determining whether a flow is still active within

a switch (as demonstrated by Experiment 1).

3.4.3.3 Parameters.

Table 3.8 shows the parameters which define the treatment levels for both the

simulated MiniNet test environment and the emulated test environment. The SDN

controller parameter is none when the environment is a traditional environment because

52



no controller is present. The hardware test environment has fewer SDN controllers because

the hardware switch is compatible only with OpenFlow version 1.3, and the open-source

SDN controllers listed in the simulated test environment use OpenFlow version 1.0. Table

Table 3.9 shows the various parameters held constant to reduce the number of covariates.

The response metric includes the difference between the predicted hard timeout value and

the actual hard timeout value.

Table 3.8: Experiment 3 Parameters

Test Environment Parameter Setting

Simulated (MiniNet)

Environment
SDN

Traditional

SDN Controller

NOX

POX

Beacon

Maestro

Floodlight

NodeFlow

OpenDaylight

None

Emulated (Hardware)

Environment
SDN

Traditional

SDN Controller

Ryu

Iris

None

53



Table 3.9: Experiment 3 Parameters Held Constant

Parameter Value

Number of Clients 2

Number of Switches 1

Number of Controllers 1

Number of Hops between Host A and Host B 2

3.4.3.4 Hypothesis.

The expected output for Experiment 3 will show that the predicted value for the flow‘s

hard timeout period is consistently within one second from the actual value of the flow‘s

hard timeout period.

3.4.3.5 Experiment Design.

Experiment 3 uses Mininet to simulate the SDN environment [25]. Within Mininet,

a simple network consisting of two hosts attached to one switch with one controller (the

control variable) is used. The simple network is the same network used in Experiment 1

and 2, and is depicted in Figure 3.6. Within Figure 3.6, the network switch, Hosts A and

B are all Linux kernel version 3.8.0 emulated in a MiniNet virtual machine. The controller

is hosted on a separate virtual machine running Ubuntu version 12.04 with Linux kernel

version 3.8.0.

Host A represents the client that has no knowledge of the network environment.

Host A first determines whether the environment is an SDN or traditional environment by

utilizing the latency analysis methods discussed in Experiment 1. As soon as the first ICMP

echo request is sent to Host B from Experiment 1, Host A records a timestamp known as the

first flow timestamp ( f0). After verifying that the environment is an SDN environment, Host

A gathers a baseline mean and standard deviation of ICMP echo RTTs. Host A transmits

50 ICMP echo requests to Host B, and records the RTT for each request/response pair. The

54



use of 50 is to gather a mean and standard deviation of RTTs, and the only requirement for

this number is that it is greater than 2 (where the first RTT represents the flow installation

latency, the second RTT represents the flow already installed, and subsequent RTTs allow

calculations of a mean and standard deviation). Host A discards the first RTT collected,

and calculates the mean and standard deviation of the remaining 49 RTTs. The calculated

results are again referred to as the baseline mean (RB) and baseline standard deviation (σB),

as was used during Experiment 2 as (3.1) and (3.2) respectively.

After recording a baseline mean and standard deviation, the hard timeout period is

determined by sending an ICMP echo request every N seconds, where N represents the

desired precision. N must be smaller than the inactivity timeout period determined from

Experiment 2. If the inactivity timeout value has not been determined, any value that is

known to be smaller than the inactivity timeout period results in the same outcome. For

Experiment 3, N was set at 0.5 seconds. For each ICMP packet sent, the RTT for the

ICMP packet is recorded. Using the same method in Experiment 2, if the RTT of the recent

ICMP request compared to the previously recorded 49 RTTs results in a ZS core (Equation

3.3) greater than a threshold ZS core value, then a flow installation took place, indicating an

expired flow entry. Given an ICMP packet is sent every 0.5 seconds, the flow expiration is

not due to an inactivity timeout, but rather due to a hard timeout. When a hard timeout is

observed, a new timestamp known as the flow expiration timestamp ( fE) is recorded. The

hard timeout period (Th) is calculated using

Th = fE − f0 (3.4)

The threshold ZS core value is experimentally set through trial and error to 50 as it was in

Experiment 2. Table 3.10 shows an example process for determining a hard timeout period

using a precision of 0.5 seconds (i.e., 0.5 second delay per ICMP echo request). Every 0.5

seconds, an ICMP RTT is recorded and used to determine whether the flow still resides in

55



the switch. The process continues until a flow is determined to have expired, or an upper

boundary is met. For Experiment 3, the upper boundary is six minutes (i.e., 360 seconds).

If the flow does not expire after six minutes, the feature in the table is recorded as simply

greater than six minutes. Six minutes is chosen as it is double the current longest known

default hard timeout value in use by a controller (the Maestro controller has a default hard

timeout value of 180 seconds), and consequently provides a large range to interpolate for

future SDN controller hard timeout values. A value greater than six minutes is not used

as an SDN controller may not have a hard timeout value, making the flow’s hard timeout

period effectively infinite, causing the experiment to take longer than necessary for testing

values that may be infinite.

Table 3.10: Discovering Hard Timeout (With Precision of 0.5 Seconds)

Estimate (Seconds) Result Known Timeout Range (Seconds)

1.0 Flow is still installed 1.0 < x < ∞

1.5 Flow is still installed 1.5 < x < ∞

2.0 Flow is still installed 2.0 < x < ∞

2.5 Flow is still installed 2.5 < x < ∞

... ... ...

9.0 Flow is still installed 9.0 < x < ∞

9.5 Flow is still installed 9.5 < x < ∞

10.0 Flow is absent 9.5s < x < 10.0

Experiment 3 utilizes the process shown in Table 3.10, and analyzes the resulting

estimates compared with their true values. Each controller is compiled with a flow hard

timeout value from the set of test cases. The set of flow hard timeout values includes 10,

180, 200, and 360 seconds. The test scenarios are shown in Table 3.11. Ten seconds is

56



less than half of the shortest default hard timeout value for all SDN controllers used in

Experiment 3 (i.e., Maestro has the shortest default hard timeout value of 30 seconds); 360

seconds is more than twice as long as the longest default hard timeout value for all SDN

controllers used in Experiment 3.

Table 3.11: Experiment 3 Test Cases

Controller Hard Timeout Test Cases (s)

POX 10, 180, 200, 360

Beacon 10, 180, 200, 360

Maestro 10, 180, 200, 360

Floodlight 10, 180, 200, 360

NodeFlow 10, 180, 200, 360

Wireshark is used to ensure the flow-modification packet sent from the SDN controller

to the client contains the hard timeout field with the correctly set test value. The response

data collected is then used to show a statistically significant correlation between the

selected hard timeout period and the response estimated hard timeout period. A statistically

significant correlation combined with a difference of less than one second indicates that the

method of estimating the hard timeout period is reliable for selected timeout range.

The same experiment is conducted using the hardware environment previously

described and depicted in Figure 3.7, where Hosts A and B perform the same actions

as Host A and B respectively in the simulated Mininet environment, and the controller in

Figure 3.7 performs the same action as the controller in the simulated Mininet environment.

The collected hardware data is used to further support the conclusions obtained from the

simulated experiments.

57



3.4.4 Experiment 4: Fingerprint SDN Controller.

The goal of Experiment 4 is to show that an unknown SDN controller can be identified

by a client connected to the SDN environment. Experiment 4 uses the features collected in

Experiment 2 and 3, along with other features of an SDN controller observable by a client

of the SDN environment, to reliably distinguish different SDN controllers from each other.

3.4.4.1 Assumptions.

Considering Experiment 4 relies on all previous experiments in this thesis, all

assumptions of Experiments 1-3 apply. For completeness, these assumptions are listed

as follows:

1. The client has access to a port on a switch connected to the SDN environment.

2. ICMP echo packets are not blocked by the sending, receiving, or intermediary node.

3. Aggregate flows are not installed on the switch.

4. Aggregate flows are not used by the SDN controller. By default, all controllers

used in this thesis do not use aggregate flows as aggregate flows require tailored

administrative overhead, and are highly specialized for the network in which they are

used.

5. The client is in an SDN environment. This assumption can be shown through

Experiment 1.

6. The client knows the IP address of a live host that responds to ICMP echo requests. A

live host responding to ICMP echo requests is required in order to determine packet

RTTs.

7. The client has a reliable method for determining whether a flow is still active within

a switch (as demonstrated by Experiment 1).

58



8. The SDN controller is listening on the default OpenFlow port of 6633.

9. The client knows the IP address of the SDN controller through the use of a successful

TCP SYN scan for hosts with port 6633 active, and can communicate directly to the

SDN controller.

Assumptions eight and nine were not included in Experiments 1-3 because those

experiments involved communicating with another host connected to the network

environment. Experiment 4 requires communicating directly with the SDN controller,

making assumptions eight and nine necessary.

3.4.4.2 Parameters.

Table 3.12 shows the parameters which define the treatment levels. Table 3.13 shows

the parameters held constant to reduce the possibility of covariates.

Table 3.12: Experiment 4 Parameters

Parameter Setting

SDN Controller

NOX

POX

Beacon

Maestro

Floodlight

NodeFlow

OpenDaylight

3.4.4.3 Hypothesis.

The expected output for Experiment 4 will show that the controller behind an SDN

environment can be determined from the perspective of a client connected to the SDN

59



Table 3.13: Experiment 4 Parameters Held Constant

Parameter Value

Number of Clients 2

Number of Switches 1

Number of Controllers 1

Number of Hops between Host A and Host B 2

environment. Additionally, Experiment 4 will show that additional SDN controllers can

be added to the feature table for querying which expands the fingerprint process to future

controllers.

3.4.4.4 Experiment Design.

Similar to Experiments 1-3, Experiment 4 uses Mininet to simulate the SDN

environment [25]. Within Mininet, a simple network consisting of two hosts attached to one

switch with one controller (the control variable) is used. The simple network is the same

network used in Experiments 1-3, and is depicted in Figure 3.6. Within Figure 3.6, the

network switch, Hosts A and B are all Linux kernel version 3.8.0 emulated in a MiniNet

virtual machine. The controller is hosted on a separate virtual machine running Ubuntu

version 12.04 with Linux kernel version 3.8.0.

The controller for the SDN environment is chosen at random from a list of controllers

and is started with its default installation configurations. The SDN controller listens on the

default OpenFlow port (i.e., port 6633). After the OpenFlow compatible switch establishes

a connection to the OpenFlow controller, the client at Host A in Figure 3.6 determines

the IP address of the controller by performing a TCP SYN scan for the default OpenFlow

port. Host A has a feature table that is populated with a list of SDN controllers. Host A‘s

feature table is shown in Table 3.15. Within Table 3.15, the left-most column references

the numerical entry found in the table of referenced keys shown in Table 3.14. The list of

60



numbers shown in rows six and seven (corresponding to feature six and feature seven) of

Table 3.15 represent different OpenFlow packet types, and are defined by Table 3.16. Each

feature shown in Table 3.15 is described further in the following list.

1. The flow inactivity timeout period is the value shown observable by Experiment 2.

2. The flow hard timeout period is the value shown observable by Experiment 3.

3. After the TCP handshake is completed, but before the client sends any OpenFlow

packets to the SDN controller, does the SDN controller send an OpenFlow Hello

packet to the client? Given the OpenFlow Hello packet is a symmetric packet per

the OpenFlow specification, the SDN controller implementation may wait for an

initial OpenFlow Hello packet from the client before sending its own OpenFlow

Hello Packet. This feature is a boolean value.

4. After the TCP handshake is completed, but before the client sends any OpenFlow

packets to the SDN controller, does the SDN controller send any OpenFlow Echo

requests? The OpenFlow specification uses OpenFlow Echo packets as keep-alive

messages for the connection to remain persistent. These keep-alive messages occur

after the Feature Response, yet SDN controller implementations may send them

throughout the life of the connection, even before the symmetric OpenFlow Hello

packets are received. This feature is a boolean value.

5. After the TCP handshake is completed, but before the client sends any OpenFlow

packets to the SDN controller, does the SDN controller send an OpenFlow Feature

request? The OpenFlow Feature request is initiated after the symmetric OpenFlow

Hello exchange, yet SDN controller implementations may send the request before

the exchange of OpenFlow Hello messages. This feature is a boolean value.

61



6. What packets are sent from the SDN controller after the client sends an OpenFlow

Hello packet, but before any other packets from the client are sent? This feature in the

table is stored as a list of numbers, with each number representing the packet type.

The list of packet types is shown in Table 3.16 and is taken directly from the “type”

field of the OpenFlow specification [12]. As an example shown in Table 3.15 row 6,

after receiving an OpenFlow Hello packet, the NOX controller sends three OpenFlow

packets (shown as 0, 5, 9): an OpenFlow Hello packet, followed by an OpenFlow

Feature Request packet, followed by an OpenFlow Set Configuration packet.

7. What packets are sent from the SDN controller after the client sends an OpenFlow

Hello packet, then a Feature Response packet, but before any other packets from

the client are sent? This feature’s value may depend on the contents of the feature

response, thus a static feature response packet must be used that is the same for every

SDN controller table entry.

Table 3.14: List of Keys

# Key

1 Default Flow Inactivity-Timeout Period

2 Default Flow Hard-Timeout Period

3 Does the SDN controller initiate an OF Hello packet?

4 Does the SDN controller initiate an Echo Request?

5 Does the SDN controller initiate a Feature Request?

6 The set of packets sent by the SDN controller just after the Hello exchange

7 The set of packets sent by the SDN controller just after the Feature Response

62



Table 3.15: SDN Controller Features

# NOX POX Beacon Maestro Floodlight NodeFlow OpenDaylight

1 5s 10s 5s 30s 5s 5s ∞

2 ∞ 30s ∞ 180s ∞ ∞ ∞

3 False True True True True False True

4 False False True False False False False

5 False False False False False False False

6 0, 5, 9 5 5, 2, 2 5 5 0, 5 5, 5, 5

7 None 9, 14, 18 16, 2, 2 13, 13, 13 9, 18, 7 None 9, 7, 14

Each new feature added to the feature table is a key-value pair. The key is the set

of actions that the client must perform, such as establishing a TCP connection followed

by sending an OpenFlow Hello packet. The value is the expected response from the SDN

controller, such as responding with a specific set of OpenFlow packets. Within Table 3.15,

the key is the feature number (i.e., the left-most column) combined with the SDN controller

type, while the value is the corresponding cell entry. The features shown in Table 3.15 were

collected by downloading and installing each controller onto an Ubuntu 12.04 Linux Virtual

Machine and connecting to them from the host machine using the python library.

Host A collects every feature of an unknown SDN controller and then compares that

feature set to each known SDN controller in the table to determine a match. Features one

and two are determined through methods described in Experiment 2 and 3 respectively.

Features three through five are determined by establishing a TCP connection to the SDN

controller and observing the response packets received. A python library of OpenFlow

structures is created to communicate with SDN controllers directly. After establishing a

TCP connection, Host A listens for 15 seconds and records any OpenFlow packets received

by the SDN controller in the feature table (recorded as boolean features three, four, and five

63



Table 3.16: Partial List of OpenFlow Packet Types

Type Descriptor

0 Hello

1 Error

2 Echo Request

5 Feature Request

7 Get Configuration

9 Set Configuration

10 Packet Input Notification

13 Packet Output

14 Flow Modification

15 Port Modification

16 Flow Statistics Request

18 Barrier Request

in Table 3.15). Fifteen seconds is chosen to allow a stopping point in the case where an SDN

controller continuously sends OpenFlow packets. After collecting any desired feature, Host

A begins collecting the next feature by killing the TCP connection and following the next

key of actions. In the case of Experiment 4, Host A collects feature six by re-establishing a

new TCP connection and then sending an OpenFlow Hello packet, observing any response.

Host A records the response as feature six in the feature table. Host A again kills the

TCP connection, and repeats the process of following a key of actions and recording the

value responses in the feature table until every feature of the unknown SDN controller is

collected.

64



Figure 3.8: Ensuring Value Uniqueness

A value (i.e., set of features) uniquely identifies each SDN controller. A new SDN

controller must have a unique value in order to be identified apart from another SDN

controller. If two controllers have identical values, then adding the SDN controller to the

table requires extracting a new feature that differentiates the new SDN controller from

the similar SDN controller. Additionally, this new feature must be observable from the

perspective of a client connected to the SDN environment, and must also be extracted from

each SDN controller already existing in the table (avoiding null cells within the table).

Figure 3.8 shows the abstract process for extracting a new feature in order to ensure that the

set of features for each SDN controller is unique. The top of Figure 3.8 shows the Beacon

SDN controller being added to the table, but its features are exactly the same as the NOX

SDN controller, making them indistinguishable. As shown at the bottom of Figure 3.8, a

65



third feature is extracted from the Beacon SDN controller (and consequently from every

other SDN controller) in order to maintain uniqueness among table values.

The process for extracting new features requires using and experimenting with the

new SDN controller, and may involve fuzzing the OpenFlow protocol. When a response

is obtained that is not standard among all SDN controllers, the response is considered an

identifying feature of the new SDN controller and can be added to the table of features.

Experiment 4 begins with a feature table containing only the SDN controllers NOX,

POX, Maestro, Beacon, OpenDaylight, Floodlight and Nodeflow. With the simple network

used in Experiment 1, a controller is selected at random and each feature of the network is

observed by a client connected to the network. A controller from the table is then selected

as matching the unknown randomly selected controller observed by the host. The selection

process involves choosing the SDN controller from the table for which the most number

of features is similar to the observed controller. The process is repeated sixteen times to

determine the feasibility of correctly determining an unknown SDN controller. Sixteen is

selected to allow each of the eight controllers a high chance of being selected at least once.

The process continues if not every controller is selected through the first sixteen iterations.

66



IV. Results and Analysis

This chapter presents and analyzes the results from the experiments described in

Chapter 3. Section 4.1 explains and analyzes the results of Experiment 1. Next,

Section 4.2 and Section 4.3 describe the results of Experiments 2 and 3 in detail. Finally,

Experiments 4 results are shown and analyzed in Section 4.4.

4.1 Experiment 1 Results and Analysis

The purpose of Experiment 1 is to determine whether it is possible to distinguish

between a traditional network environment, and an SDN environment. Section 4.1.1

presents the data collected using the MiniNet simulation, while Section 4.1.2 presents the

data collected using the hardware switch and controller.

4.1.1 Simulation Data.

Table 4.1 shows a subset of the ping RTTs captured. The first column is the controller,

where a “Traditional” controller represents no controller present, and thus a traditional

network environment without a controller. The second and third columns are the first

and second ping RTTs in seconds respectively. The ratio column is the first ping RTT

column divided by the second ping RTT column. The script that generates the data shown

in Table 4.1 repeats the process 300 times for each controller, leading to the boxplots shown

in Figure 4.1. Table 4.1 shows only the first iteration of each controller.

Table 4.2 lists the summary of the 300 RTT ratios collected and presented in

Figure 4.1. The summary data in Table 4.2 includes outliers, and shows the ratio‘s

minimum, maximum, mean (xratio), and standard deviation (δratio) values. From the

summary data, the traditional network environment has a mean RTT ratio near one, which

indicates that the first ICMP echo RTT and the second ICMP echo RTT are similar in value.

The mean RTT ratio of other SDN controllers is greater than one, with larger standard

67



deviations, indicative of the delay incurred by a packet-in and packet-out event for flow

modifications.

Table 4.1: Experiment 1 Sample Data

Controller First Ping RTT (s) Second Ping RTT (s) Ratio

NOX 0.002452 0.000051 48.07844

Maestro 0.000418 0.000017 24.58824

Beacon 0.005686 0.000040 142.1500

POX 0.005661 0.000041 138.0732

Floodlight 0.003026 0.000030 100.8667

NodeFlow 0.026531 0.000041 647.0976

Traditional 0.001122 0.000557 2.014363

In order to distinguish between a traditional network environment and an SDN

environment, it must be shown that the RTT ratio shown in Table 4.1 is significantly less

in a traditional network environment than in any SDN environment. Before determining a

statistical test to answer whether the RTT is significantly less in a traditional network, it is

important to view a graphical summary of data to validate assumptions for each available

statistical test. Figure 4.1 contains a box plot for the traditional network environment data,

as well as an individual box plot for each controller used in Experiment 1. Figure 4.1 shows

that each box plot has a very different distribution of RTT ratios.

4.1.1.1 Analysis.

It is difficult to determine whether the traditional network RTT ratios are significantly

less than the SDN RTT ratios from Figure 4.1 because the range of RTT ratios

corresponding to the NodeFlow controller increases the y-axis scale to the thousands,

68



Table 4.2: Experiment 1 Summary Data

Controller ratiomin ratiomax xratio δratio

NOX 26.85714 158.077 68.65388 20.86483

Maestro 0.009978617 2205.864 38.04614 141.9836

Beacon 1.534444 534.122 140.4314 67.81956

POX 2.928572 1452.731 187.9344 364.5844

Floodlight 76.02439 458.500 146.878 49.98321

NodeFlow 301.2093 3878.609 1352.519 484.2968

Traditional 0.2880355 2.790476 0.9755106 0.3718565

shrinking the traditional environment boxplot. Comparing the RTT ratios requires a

statistical test.

The analysis of variance F-test allows comparing data from several means. With the

F-test, data is compared to answer whether there exists differences between any means.

Ideally, the F-test is applied across all groups of data (traditional, NOX, Maestro, etc.), and

shows that a difference exists. The F-test is applied across only the groups of controllers

(all groups of data except data from the traditional network environment), and used to show

that no difference exists. If a difference is observed with the traditional data set included,

and then no difference observed when the traditional data set is excluded, a conclusion

can be made declaring that the traditional network RTT ratios deviate from the SDN RTT

ratios.

While the F-test is not sensitive to the normality of data (so long as the sample size is

sufficiently large), there is an assumption of uniform standard deviations between groups.

Figure 4.1 presents highly non-uniform standard deviations of the RTT ratios for each

controller. The appearance is further verified in Table 4.2, where δratio represents the sample

standard deviation of the corresponding controller RTT ratios. Because of the non-uniform

69



standard deviation, an assumption of the F-test is violated, and the analysis is reduced to

comparing each group independently.

While the F-test is not sensitive to the normality of data (so long as the sample size is

sufficiently large), there is an assumption of uniform standard deviations between groups.

Figure 4.1 presents highly non-uniform standard deviations of the RTT ratios for each

controller. The appearance is further verified in Table 4.2, where δratio represents the sample

standard deviation of the corresponding controller RTT ratios. Because of the non-uniform

standard deviation, an assumption of the F-test is violated, and the analysis is reduced to

comparing each group independently.

Figure 4.1: Ping Ratios with Simulated SDN Controllers

70



The Student’s t-test is used to quantify the difference between the traditional network

environment’s RTT ratios and the SDN environment’s RTT ratio [50]. With the t-test, the

sample mean and standard deviation of a population of interest are recorded. A new sample

of a different population is taken, where the new mean is compared with the original mean.

The difference between the two means, in units of standard deviations of the former sample,

represents the parameter used in the t-test. The parameter is the Zscore and is

ZS core =
xS DN − xtraditional

straditional
(4.1)

where xS DN represents the mean RTT ratio of the selected SDN controller, xtraditional

represents the mean RTT ratio of the traditional environment, and straditional represents the

sample standard deviation of the RTT ratios for the traditional environment.

In terms of Experiment 1, the null hypothesis states that the traditional network

environment RTT ratios are the same as the SDN environment RTT ratios. When

performing the Student’s t-test, the p-value represents the probability of collecting a sample

with the resulting mean through random chance alone. A p-value less than 0.05 is sufficient

to reject the null hypothesis. Table 4.3 shows the resulting p-values from applying the

Student’s t-test to each SDN environment.

Table 4.3: Experiment 1 T-Test Results

Controller ZScore P-Value

NOX 182.001 0

Maestro 99.691 0

Beacon 375.026 0

POX 502.772 0

Floodlight 392.026 0

NodeFlow 3634.583 0

71



From Table 4.3, every controller results in a ping RTT ratio greater than 90 standard

deviations (i.e., a ZS core greater than 90) away from the mean value of the traditional

environment ping RTT ratio. The ZS core values applied to the Student’s t distribution result

in a p-value very near zero, providing strong evidence to reject the null hypothesis.

4.1.1.2 Other Observations.

An interesting observation to note involves the Maestro controller data. In Table 4.2,

the Maestro controller has a ratiomin value of 0.00998, which is less than the Traditional

environment’s ratiomax value of 2.79048. The fact that an SDN controller’s RTT ratio value

at one point is less than the traditional environment‘s ratiomax value indicates the potential

for false positives. For instance, if a host is attempting to identify whether the network

is a traditional or an SDN environment, collection of an RTT ratio of 0.00998 leads to

the false conclusion that the Maestro-controlled SDN network is a traditional network.

The idea of false positives is depicted in Figure 4.2, which displays hypothetical data.

Within Figure 4.2, the range of minimum and maximum RTT ratios are displayed with an

arrow between both values. The ratiomax of the traditional network environment creates the

threshold where ideally all SDN environment RTT ratios do not fall below. The potential

for false positives exists when the traditional ratiomax value is greater than the SDN ratiomin

value, as is the case for SDN 3. The probability of false positives increases when the former

potential exists, and the difference (depicted as δ in Figure 4.2) between the traditional

ratiomax value and any SDN ratiomin value increases.

While the ratiomin value for the Maestro controller is an outlier, an analysis is

performed to determine the robustness of the method for distinguishing SDN environments

from traditional environments. The analysis is the percentage of SDN RTT values that

exist below the traditional environment’s maximum RTT ratio value. These percentages

are shown in Table 4.4. From Table 4.4, only controllers Maestro and Beacon exhibit

RTT values that fall below the traditional environment‘s RTT threshold. Between Maestro

72



Figure 4.2: Example Ping Ratios

and Beacon, less than 2 percent of their RTT values fall below the traditional environment‘s

RTT threshold, providing a strong indication that the potential for false positives is minimal.

Table 4.4: Experiment 1 RTT Values Below Maximum Traditional RTT Value

Controller % Below Threshold

NOX 0.00%

Maestro 1.67%

Beacon 1.01%

POX 0.00%

Floodlight 0.00%

NodeFlow 0.00%

The data from Experiment 1 strongly indicate that it is possible for a host connected

to a network to distinguish between an SDN and traditional network environments.

73



4.1.2 Hardware Data.

Table 4.5 shows a subset of the ping RTTs captured. The first column is the controller,

where a traditional controller represents no controller present, and thus a traditional switch

forwards packets through Media Access Control (MAC) address learning. The second and

third columns are the first and second ping RTTs in seconds respectively. The ratio column

is the First Ping RTT column divided by the Second Ping RTT column. The script that

generates the data shown in Table 4.5 repeats the process 300 times for each controller,

leading to the boxplots shown in Figure 4.3. Table 4.5 shows only the first three iterations

of each controller.

Table 4.6 lists the summary of the 300 RTT ratios collected and presented in

Figure 4.3. The summary data in Table 4.6 includes outliers, and shows the ratio‘s

minimum, maximum, mean, and standard deviation values. From the summary data, the

traditional network environment has a mean RTT ratio near one, which indicates that the

first ICMP echo RTT and the second ICMP echo RTT are similar in value. The mean

RTT ratio of other SDN controllers is greater than one, with larger standard deviations,

indicative of the delay incurred by a packet-in and packet-out event for flow modifications.

4.1.2.1 Analysis.

In order to distinguish between a traditional network environment and an SDN

environment, it must be shown that the RTT ratio shown in Table 4.5 is significantly less

in a traditional network environment than in any SDN environment. Figure 4.3 contains

a box plot for the traditional network environment data, as well as an individual box plot

for each controller used in Experiment 1. Figure 4.3 shows that each box plot has a very

different distribution of RTT ratios, and also indicates that the SDN environment ping RTT

ratios are higher in value.

74



Table 4.5: Experiment 1 Sample Hardware Data

Controller First Ping RTT (s) Second Ping RTT (s) Ratio

Ryu 0.015655 0.000596 26.2667786

Ryu 0.014527 0.000522 27.8295018

Ryu 0.019545 0.000493 39.6450305

Iris 0.013426 0.000408 32.9068628

Iris 0.014358 0.000506 28.3754939

Iris 0.016179 0.000291 55.59793741

Traditional 0.000614 0.000535 1.1476635

Traditional 0.000564 0.000465 1.2129032

Traditional 0.000353 0.000570 0.6192982

Table 4.6: Experiment 1 Hardware Summary Data

Controller ratiomin ratiomax xratio sratio

Ryu 8.268838 69.53261 34.55759 10.30061

Iris 10.57498 92.26437 25.19955 10.57498

Traditional 0.6192982 1.884244 1.100641 0.2161701

The Student’s t-test is used to quantify how much higher the SDN ping RTT ratios

are when compared to the traditional environment‘s ping RTT ratios [50]. With the t-test,

the sample mean and standard deviation of a population of interest are recorded. A new

sample of a different population is taken, where the new mean is compared with the original

mean. The difference between the two means, in units of standard deviations of the former

sample, represents the parameter used in the t-test. The parameter is the Zscore, and is shown

under Section 4.1.1.1 in (4.1), where xS DN represents the mean RTT ratio of the selected

75



Figure 4.3: Ping Ratios with Emulated SDN Controllers

SDN controller, xtraditional represents the mean RTT ratio of the traditional environment,

and straditional represents the sample standard deviation of the RTT ratios for the traditional

environment.

In terms of Experiment 1 hardware data, the null hypothesis states that the traditional

network environment RTT ratios are the same as the SDN environment RTT ratios. When

performing the Student’s t-test, the p-value represents the probability of collecting a sample

with the resulting mean through random chance alone. A p-value less than 0.05 is sufficient

to reject the null hypothesis. Table 4.7 shows the resulting p-values from applying the

Student’s t-test to each SDN environment.

From Table 4.7, both controllers result in a ping RTT ratio greater than 100 standard

deviations (i.e., a ZS core greater than 100) away from the mean value of the traditional

76



Table 4.7: Experiment 1 T-Test Results

Controller ZScore P-Value

Ryu 154.7714 0

Iris 111.4812 0

environment ping RTT ratio. The ZS core values applied to the Student’s t distribution result

in a p-value very near zero, providing strong evidence to reject the null hypothesis.

4.1.2.2 Other Observations.

When comparing the results of the simulated data with the results of Experiment

1 applied with the HP switch, both indicate a reliable capability in distinguishing SDN

environments from traditional environments. It is also interesting to note that the minimum

RTT ratio observed for both Ryu and IRIS controllers does not fall below the maximum

RTT ratio for the traditional environment, providing supporting evidence that there is

a low probability for a false positive (i.e., low probability that an SDN environment is

misidentified as a traditional environment).

4.2 Experiment 2 Results and Analysis

The purpose of Experiment 2 is to determine whether a host can successfully

determine the controller‘s inactivity timeout value of the SDN environment. Section 4.2.1

presents the data collected using the MiniNet simulation, while Section 4.2.2 presents the

data collected using the hardware switch and controller.

4.2.1 Simulated Data.

Table 4.8 shows a subset of the collected data. The first column specifies the controller

used in the SDN environment. The second column is the inactivity timeout value in seconds

that was programmed into the controller. The third column displays the response variable:

the predicted inactivity timeout value in seconds obtained by the procedure outlined in

77



Chapter 3. The fourth column shows the difference between the predicted inactivity timeout

and the actual inactivity timeout values recorded as an absolute value. The difference in

values shows how accurate the prediction method was in determining the actual inactivity

timeout value, where a smaller difference represents a better estimation. The fifth column

is the elapsed runtime in seconds for obtaining the predicted inactivity timeout value. The

elapsed runtime data is recorded for future research attempting to create a faster process in

determining the SDN controller‘s timeout value.

Table 4.8: Experiment 2 Sample Data

Controller Actual Timeout (s) Predicted Timeout (s) |∆|(s) Runtime (s)

POX 2.00 2.6250 0.625 14.43342

POX 25.00 25.3750 0.3750 216.14472

Beacon 2.00 2.6250 0.625 14.33750

Beacon 25.00 25.6250 0.625 216.88608

Maestro 2.00 2.6250 0.625 14.30233

Maestro 25.00 25.6250 0.625 216.52465

Table 4.9 shows a summary of the collected data for Experiment 2. The controller

column represents the specific controller in use while the data was collected. Under

the controller column, “combined” represents the summary data of all controllers, while

“combined (no outliers)” includes all data minus the three outliers shown in the histogram

(Figure 4.4). The ∆min column shows the minimum difference observed between the

predicted timeout and actual timeout values, while the ∆max column shows the maximum

difference observed between the predicted timeout and actual timeout values. The ∆

column shows the mean difference observed between the predicted timeout and actual

timeout values, and the s∆ column shows the sample standard deviation.

78



Table 4.9: Experiment 2 Summary Data

Controller ∆min(s) ∆max(s) ∆(s) s∆

POX 0.125 48.3745 3.649975 11.20959

Beacon 0.125 17.125 1.325 3.725446

Maestro 0.125 0.625 0.4625 0.1677051

Combined 0.125 48.3745 1.812492 6.84007

Combined (no outliers) 0.125 1.125 0.44956 0.188749

Figure 4.4 displays a histogram showing the distribution of values for the timeout

delta. Given three values appear as outliers in Figure 4.4, Figure 4.5 was generated to

view the distribution of timeout delta values among the 57 values between zero and ten.

The affect of the outliers as well as attribution to the cause of the outliers is discussed in

Section 4.2.1.1.

4.2.1.1 Analysis.

Determining a relationship between two samples involves calculating Pearson‘s r

correlation coefficient, which is a value between -1 and 1 inclusive and describes the

degree of linear association between two variables [50]. Values close to zero indicate no

correlation, and thus no observable relationship between the two variables, while values

near positive or negative one show a stronger correlation between both variables, and thus

a strong observable relationship between both variables. Pearson‘s r correlation coefficient

is

rXY =
1

n − 1

n∑
i=1

Xi − X
sX

 Yi − Y
sY

 (4.2)

Applying (4.2) to the data in Experiment 2, X represents the sample of actual timeout

values that were programmed into the controller, while Y represents the response variable

79



Figure 4.4: Inactivity Timeout Delta Histogram (Outliers Included)

sample: the predicted timeout values. The value n represents the sample size of both X and

Y combined, while s represents the sample standard deviation.

Pearson‘s r correlation coefficient for both sample sets, with outliers included, is

0.9434948, which indicates a strong positive correlation between the predicted timeout

value and the actual timeout value. The existence of a strong correlation, along with a

mean delta of 1.8125 seconds, indicates that the method of predicting the actual timeout

value has a precision of less than 2 seconds. The standard deviation of both sample sets

is 6.84, which indicates a lack of reliability in determining the inactivity timeout with a

desired precision of less than 1 second.

Outliers heavily affect the mean, standard deviation, and correlation coefficient. With

outliers (i.e., the three delta values of 17.125, 17.625, and 48.3745) omitted, Pearson‘s

r correlation coefficient increases to 0.9878111, with a mean delta of 0.4495614 and a

80



Figure 4.5: Inactivity Timeout Delta Histogram (Outliers Excluded)

standard deviation of 0.18877, indicating strong precision (i.e., a precision of less than 1

second) in predicting the actual inactivity timeout value for a controller. A 95% confidence

interval of the mean delta value with outliers omitted is between 0.39947 and 0.49965.

Outliers can be attributed to network latency spikes. Considering that the method

for determining the inactivity timeout relies on taking an initial sample of RTT values for

an ICMP packet, then detecting any spike in a new RTT value, a spike due to normal

networking lag rather than the installation of a new flow would cause this method to

generate a false predicted timeout value. Depending on when the spike occurred, the

resulting inaccurate response may be anywhere between zero and the actual inactivity

timeout value. Referring back to Table 3.7, the estimates column indicates when a new

ICMP packet is transmitted and an RTT is recorded, which means that at each of those

times (i.e., 1 second, 2 seconds, 4 seconds, etc.) the RTT is tested for deviation from the

81



initial sample. As the number of required estimates increases (i.e., as the actual timeout

value increases), the chances of observing an RTT spike due to normal network activity

(rather than a flow installation event) increases.

4.2.1.2 Other Observations.

An interesting observation to note includes the runtime required to obtain the inactivity

timeout values. In order to determine that a test value is less than the true inactivity

timeout value, the elapsed time must be greater than or equal to the test value. Because

of the elapsed time requirement, testing for 8 seconds requires waiting 8 seconds for

the flow to expire from inactivity. Determining reliably that the value is not less than 8

seconds requires testing other values less than 8 seconds, increasing the number of tests

run, and ultimately increasing the elapsed time to give an inactivity timeout prediction. A

hypothetical example of determining the value of 2.625 is shown in Table 4.10, which has

the same layout as Table 3.7. Each value in the estimate column requires a runtime equal to

the value shown, so to determine the final estimated value of 2.625 seconds, the sum of all

estimates is taken (i.e., 2+4+3+2.5+2.75), resulting in a runtime of 14.25 seconds. From

data shown in Table 4.8, for when the predicted value is 2.6250 seconds, the runtime is

between 14.3 and 14.5 seconds, which is not far from the calculated elapsed time of 14.25

seconds.

Table 4.10: Discovering Inactivity Timeout of 2.625 (With Precision of 0.25 Seconds)

Estimate (Seconds) Result Known Timeout Range (Seconds)

2 Flow is still installed 2 < x < ∞

4 Flow is absent 2 < x < 4

3 Flow is absent 2 < x < 3

2.5 Flow is still installed 2.5 < x < 3

2.75 Flow is absent, precision met 2.5 < x < 2.75

82



4.2.2 Hardware Data.

Table 4.11 shows a subset of the collected data with the hardware environment. The

first column specifies the controller used in the SDN environment. The second column is

the inactivity timeout value in seconds that was programmed into the controller. The third

column displays the response variable: the predicted inactivity timeout value in seconds

obtained by the procedure outlined in Chapter 3. The fourth column shows the difference

between the predicted inactivity timeout and the actual inactivity timeout values recorded as

an absolute value. The difference in values shows how accurate the prediction method was

in determining the actual inactivity timeout value, where a smaller difference represents

a better estimation. The fifth column is the elapsed runtime in seconds for obtaining the

predicted inactivity timeout value.

Table 4.11: Experiment 2 Sample Hardware Data

Controller Actual Timeout (s) Predicted Timeout (s) |∆|(s) Runtime (s)

Ryu 10.00 11.125 1.125 85.96292

Ryu 30.00 54.625 24.625 500.965

Iris 10.00 10.375 0.375 83.981581

Iris 30.00 32.125 2.125 382.384175

Table 4.12 shows a summary of the collected data for Experiment 2. The controller

column represents the specific controller in use while the data was collected. Under column

controller, “combined” represents all the data combined. ∆min column shows the minimum

difference observed between the predicted timeout and actual timeout values, while the

∆max column shows the maximum difference observed between the predicted timeout and

actual timeout values.

83



Table 4.12: Experiment 2 Summary Hardware Data

Controller ∆min(s) ∆max(s) ∆(s) s∆

Ryu 0.625 49.375 20.66667 17.85885

Iris 0.125 7.125 2.927083 2.592819

Combined 0.125 49.375 11.79688 15.48267

Figure 4.6 shows a histogram presenting the distribution of values for the inactivity

timeout delta (i.e., the difference between the actual and predicted inactivity timeouts).

The frequency axis represents the number of occurrences in which a particular value was

observed, while the timeout delta axis provides the range of inactivity timeout values in

seconds. Each bar represents the number of values existing between a range of 5 values

with the lower boundary inclusive and the upper boundary exclusive.

Figure 4.6: Inactivity Timeout Delta with HP Switch Histogram

84



4.2.2.1 Analysis.

Figure 4.6 shows several delta values existing greater than the desired precision of

one second. From this chart alone the data proves inconsistent and therefore shows that

the inactivity timeout prediction method is not reliable. Table 4.13 shows a closer look at

a particular set of data, which is consistently incorrect. Within Table 4.13, the controller

column describes the controller from which the data is obtained. The actual timeout column

is the inactivity timeout value programmed into the controller, and the predicted timeout

column is the response variable: the predicted inactivity timeout value in seconds obtained

by the method outlined in Chapter 3.

Table 4.13: Experiment 2 Hardware Data Subset

Controller Actual Timeout (s) Predicted Timeout (s) ∆(s)

Ryu 10 11.125 1.125

Ryu 10 14.875 4.875

Ryu 10 15.875 5.875

Ryu 10 15.875 5.875

Ryu 10 15.875 5.875

Ryu 60 109.375 49.375

Ryu 60 109.375 49.375

Ryu 60 109.375 49.375

Ryu 60 109.375 49.375

Ryu 60 109.375 49.375

The actual inactivity timeout is not only different than the predicted inactivity timeout

by greater than the desired precision of one second, but it is also consistently greater. For

every attempt at predicting the true inactivity timeout value when the actual inactivity value

85



was set to 60, the response was a consistent 109.375 seconds, causing the predicted value

to be off by more than 49 seconds. Additionally, as the actual inactivity timeout value

increases, the size of the error increases.

The inactivity timeout value set for the HP switch is verified to ensure that the

controller is transmitting the correct inactivity timeout value for a new flow installation.

Polling the switch for its flow table results in flow information confirming the inactivity

timeout value expected. The fact that the HP switch responds with the correctly set

inactivity timeout value suggests that the HP switch does not stringently enforce its timeout

policy. An inactivity timeout value of 60 seconds takes more than 60 seconds of inactivity

for the HP switch to actually remove the flow.

4.2.2.2 Other Observations.

An interesting observation is the different response variables obtained when different

controllers have the same inactivity timeout value programmed. Table 4.14 shows both Ryu

and Iris controllers with an actual timeout value set to 60 seconds. When a flow installation

from the Ryu controller tells the HP switch to set an inactivity timeout of 60 seconds, the

HP switch deletes the flow consistently after more than 100 seconds pass. When a flow

installation from the Iris controller tells the HP switch to set an inactivity timeout of 60

seconds, the HP switch deletes the flow consistently after only 64 seconds pass. The reason

for the disparity may exist in the flow installation request packet sent by the controller, as

the HP switch actions depend on the requests from the controller.

Figure 4.7 and Figure 4.8 both show the output when the HP switch is sent the

command “display openflow instance 1 flow-table” with the exception that for Figure 4.7,

the attached controller is the Ryu controller, and with Figure 4.8 the attached controller is

the Iris controller. Both command responses have been clipped short to only include the

pertinent flow entries. The flow entry that is not shown handles messages bound for the

controller (i.e., packet-in messages generated from packets that the switch does not know

86



Table 4.14: Experiment 2 Hardware Data Subset

Controller Actual Timeout (s) Predicted Timeout (s) ∆(s)

Ryu 60 109.375 49.375

Ryu 60 109.375 49.375

Ryu 60 109.375 49.375

Ryu 60 109.375 49.375

Ryu 60 108.375 48.375

Iris 60 64.125 4.125

Iris 60 64.125 4.125

Iris 60 64.125 4.125

Iris 60 64.125 4.125

Iris 60 64.125 4.125

how to handle). Disparities between the two outputs are shown boxed in red. One disparity

(aside from the match information) is the flags set by both controllers. The Ryu controller

sets no flags for the flow installation, while the Iris controller sets a “flow send rem”

flag. The “flow send rem” flag dictates that a flowremoved message is transmitted to

the controller when a flow entry is removed or expires [51]. Another disparity between

Figure 4.7 and Figure 4.8 is the priority, which is documented by HP as “Priority of the

flow entry. The larger the value, the higher the priority” [51].

The HP switch’s implementation of the flow entry’s inactivity timeout may differ based

on the flag or priority or some other difference. Both flows have an inactivity time (i.e., the

time labelled as an “idle time” in Figure 4.7 and Figure 4.8) of 60 seconds, yet the time with

which they are deleted from the flow table differs (as shown in Table 4.14). Determining

the specific cause of the difference is difficult as implementation details beyond the HP

switch documentation is not provided.

87



Figure 4.7: HP Switch Flow State With Ryu Controller Attached

Figure 4.8: HP Switch Flow State With Iris Controller Attached

88



Determining the inactivity timeout using the method in Experiment 2 is unreliable as

the value obtained is dependent on the network switch‘s implementation of the Openflow

protocol. The inactivity value obtained is the true length of time that the flow remains

active within the HP switch, rather than the desired default time set by the SDN controller.

While the true length of time is information that is potentially helpful in the discovery of

DoS vulnerabilities, such research is beyond the scope of this thesis and is suggested for

future work.

4.3 Experiment 3 Results and Analysis

The purpose of Experiment 3 is to determine whether a host can successfully

determine the controller‘s hard timeout of the SDN environment. Section 4.3.1 presents the

data collected using the MiniNet simulation, while Section 4.3.2 presents the data collected

using the hardware switch and controller.

4.3.1 Simulated Data.

Table 4.15 shows a subset of the collected data. The first column specifies the

controller used in the SDN environment. The second column is the hard timeout value in

seconds that was programmed into the controller. The third column displays the response

variable: the predicted hard timeout value in seconds obtained by the procedure outlined in

Chapter 3. The fourth column shows the difference between the predicted hard timeout

and the actual hard timeout values. The difference in values shows how accurate the

prediction method was in determining the actual hard timeout value, where a smaller

difference represents a better estimate. The fifth column is the elapsed runtime in seconds

for obtaining the predicted hard timeout value.

Table 4.16 shows a summary of the collected data for Experiment 3. The controller

column represents the specific controller in use while the data was collected. Under column

controller, the term “combined” represents all the data combined, while “combined (no

89



Table 4.15: Experiment 3 Sample Data

Controller Actual Timeout (s) Predicted Timeout (s) ∆(s) Runtime (s)

POX 10 10.80451 0.80451 9.723884

POX 180 180.84806 0.84806 179.762805

Beacon 10 10.77271 0.77271 9.683617

Beacon 180 180.86693 0.86693 179.782083

Maestro 10 11.13056 1.13056 10.068902

Maestro 180 180.85915 0.85915 179.818652

outliers)” includes all data minus the outliers shown in the histogram shown in Figure 4.9.

The ∆min column shows the minimum difference observed between the predicted hard

timeout and actual hard timeout values, while the ∆max column shows the maximum

difference observed between the predicted hard timeout and actual hard timeout values.

The ∆ column shows the mean difference observed between the predicted timeout and

actual timeout values, and the s∆ column shows the sample standard deviation.

Table 4.16: Experiment 3 Summary Data

Controller ∆min(s) ∆max(s) ∆(s) s∆

POX 0.520713 155.47555 8.5625996 34.58039

Beacon 0.198166 104.06397 5.977903 23.08955

Maestro 0.256199 335.683227 34.726516 83.9809

Combined 0.198166 335.683227 16.97597 58.93733

Combined (no outliers) 0.198166 1.412594 0.8285399 0.3248459

Figure 4.9 displays a histogram showing the distribution of values for the timeout

delta. Given 7 outliers exist in Figure 4.9, Figure 4.10 is generated to view the distribution

90



of hard timeout delta values among the 73 values between zero and ten. The affect of the

outliers as well as attribution to the cause of the outliers is discussed in Section 4.3.1.1.

Figure 4.9: Hard Timeout Delta Histogram (Outliers Included)

4.3.1.1 Analysis.

Determining a relationship between two samples involves calculating Pearson‘s r

correlation coefficient, which is a value between -1 and 1 inclusive and describes the

degree of linear association between two variables [50]. Values close to zero indicate no

correlation, and thus no observable relationship between the two variables, while values

near positive or negative one show a stronger correlation between both variables, and thus

a strong observable relationship between both variables. The equation for Pearson‘s r

correlation coefficient is the same equation used in the analysis for Experiment 2 and is

shown under Section 4.2.1.1 in (4.2).

91



Figure 4.10: Hard Timeout Delta Histogram (Outliers Excluded)

Applying (4.2) to the data in Experiment 3, X represents the sample of actual hard

timeout values that were programmed into the controller, while Y represents the response

variable sample: the predicted hard timeout values. The value n represents the sample size

of both X and Y combined, while s represents the sample standard deviation.

Pearson‘s r correlation coefficient for both sample sets, with outliers included, is

0.8872715, which indicates a strong positive correlation between the predicted hard timeout

value and the actual hard timeout value. The existence of a strong correlation, along

with a mean delta of 16.97597 seconds, indicates that the method of predicting the actual

hard timeout value has a precision of less than 17 seconds. The standard deviation of

both sample sets is 58.93733, which indicates a lack of reliability in determining the hard

timeout with a precision of less than 1 second.

92



Outliers heavily affect the mean, standard deviation, and correlation coefficient. With

the seven outliers omitted, the coefficient increases to 0.9993395, with a mean delta of

0.8285399 and a standard deviation of 0.3248459, indicating strong precision in predicting

the actual hard timeout value for a controller. A 95% confidence interval of the mean delta

value with outliers omitted is between 0.75220 and 0.90488.

Outliers can be attributed to network latency spikes. Considering that the method

for determining the hard timeout relies on taking an initial sample of RTT values for an

ICMP packet, then detecting a spike in a new RTT value, a spike due to normal networking

lag rather than the installation of a new flow would cause the method to generate a false

predicted hard timeout value. Depending on when the spike occurred, the resulting delta

may be anywhere between zero and the actual hard timeout value. Considering that the

method for determining the hard timeout involves routinely transmitting an ICMP echo

packet, and comparing its RTT with the baseline RTT, the chances of an RTT spike due to

normal network activity (rather than a flow installation event) increases with an increased

hard timeout value. Additionally, given that the hard timeout value is usually greater than

the inactivity timeout, it is more likely for greater outliers to exist with hard timeout values.

4.3.1.2 Other Observations.

An interesting observation to note includes the runtime required to obtain the hard

timeout values. In order to determine that a test value is greater than the true hard timeout

value, the elapsed time must be greater than or equal to the test value. Because of the

elapsed time requirement, testing for 10 seconds requires at least 10 seconds for the flow

to expire from a hard timeout. Once the hard timeout event occurs, no further testing is

required, making the elapsed time linearly related to the actual hard timeout value.

4.3.2 Hardware Data.

Table 4.17 shows a subset of the collected data. The first column specifies the

controller used in the SDN environment. The second column is the hard timeout value in

93



seconds that was programmed into the controller. The third column displays the response

variable: the predicted hard timeout value in seconds obtained by the procedure outlined

in Chapter 3. The fourth column shows the absolute value of the difference between the

predicted hard timeout and the actual hard timeout values. The difference in values shows

how accurate the prediction method was in determining the actual hard timeout value,

where a smaller difference represents a better estimate.

Table 4.17: Experiment 3 Sample Hardware Data

Controller Actual Timeout (s) Predicted Timeout (s) |∆|(s)

Ryu 10 11.28655 1.28655

Ryu 180 180.84806 0.84806

Iris 10 10.77637 0.77637

Iris 180 180.6244 0.6244

Table 4.18 shows a summary of the collected data for Experiment 3. The controller

column represents the specific controller in use while the data was collected. Under column

controller, the term “combined” represents all the data combined, while “combined (no

outliers)” includes all data minus the one outlier shown in the histogram described by

Figure 4.11.

The ∆min column shows the minimum difference observed between the predicted

hard timeout and actual hard timeout values, while the ∆max column shows the maximum

difference observed between the predicted hard timeout and actual hard timeout values. The

∆ column shows the mean difference between the predicted hard timeout values and the

actual hard timeout values. The s∆ column shows the standard deviation of the differences.

Figure 4.11 displays a histogram showing the distribution of values for the hard

timeout delta. Given 1 outlier exists in Figure 4.11, Figure 4.10 is generated to view

94



Table 4.18: Experiment 3 Summary Hardware Data

Controller ∆min(s) ∆max(s) ∆(s) s∆

Ryu 0.0059646 286.0684 14.5653 63.90537

Iris 0.0006436 0.6344986 0.2513435 0.1505713

Combined 0.0006436 286.0684 7.408323 45.19001

Combined (no outliers) 0.0006436 0.6344986 0.2631929 0.1499256

the distribution of hard timeout delta values among the 39 values between zero and fifty.

The affect of the outlier as well as attribution to the cause of the outlier is discussed in

Section 4.3.2.1.

Figure 4.11: Hard Timeout Deltas Using The Hardware HP Switch (Outlier Included)

95



Figure 4.12: Hard Timeout Deltas Using The Hardware HP Switch (Outliers Excluded)

4.3.2.1 Analysis.

As is calculated with the simulation data, the Pearson‘s r correlation coefficient from

(4.2) is again used to describe the degree of linear association between the predicted hard

timeout value and the actual hard timeout value.

Applying (4.2) to the data in Experiment 3, X represents the sample of actual hard

timeout values that were programmed into the controller, while Y represents the response

variable sample: the predicted hard timeout values. The value n represents the sample size

of both X and Y combined, while s represents the sample standard deviation.

Pearson‘s r correlation coefficient for both sample sets, with outliers included, is

0.934193, which indicates a strong positive correlation between the predicted hard timeout

value and the actual hard timeout value. The existence of a strong correlation, along with

a mean delta of 7.408323 seconds, indicates that the method of predicting the actual hard

timeout value has a precision of less than 8 seconds. The standard deviation of both sample

sets is 45.19001, which indicates a lack of reliability in determining the hard timeout with

a precision of less than 1 second.

96



Outliers heavily affect the mean, standard deviation, and correlation coefficient. With

the single outlier omitted, the coefficient increases to 0.999997, with a mean delta of

0.2631929 and a standard deviation of 0.1499256, indicating strong precision (i.e., a

precision of near 1 second) in predicting the actual hard timeout value for a controller. A

95% confidence interval of the mean delta value with outliers omitted is between 0.21459

and 0.31179.

Similar to the simulated data, outliers can be attributed to network latency spikes.

Considering that the method for determining the hard timeout relies on taking an initial

sample of RTT values for an ICMP packet, then detecting a spike in a new RTT value, a

spike due to normal networking lag rather than the installation of a new flow would cause

the method to generate a false predicted hard timeout value. Depending on when the spike

occurred, the resulting delta may be anywhere between zero and the actual hard timeout

value. Considering that the method for determining the hard timeout involves routinely

transmitting an ICMP echo packet, and comparing its RTT with the baseline RTT, the

chances of an RTT spike due to normal network activity (rather than a flow installation

event) increase with an increased actual hard timeout value. Additionally, given that the

hard timeout value is usually greater than the inactivity timeout, it is more likely for greater

outliers to exist with hard timeout values.

4.3.2.2 Other Observations.

An interesting observation to note is that every predicted timeout value obtained is

greater than the actual timeout. The consistency in which the predicted timeout is greater

than the actual timeout value indicates that the method can be linearly optimized by simply

subtracting a constant amount each time the predicted value is obtained. The constant

amount selected is the mean of the delta values obtained (i.e., 0.9630554). While this is

not the optimum value for all cases, it provides a better prediction of the actual inactivity

timeout value. Applying this subtraction to all data for both Ryu and Iris controllers, along

97



with the removal of the single outlier, reduces the mean delta to 0.2631929 which is well

within our desired precision of one second.

Achieving the desired precision of less than one second in determining the hard

timeout value indicates that the method for obtaining the hard timeout value is reliable.

However, the previous experiment (i.e., Experiment 2) raises concerns regarding the

influence of the network switch, (i.e., the introduction of the network switch as a variable).

While the hard timeout value is strictly enforced with the HP switch, the results of

Experiment 3 are limited to interpolation within a netork containing the specific HP 5900

series Openflow switch. A separate network may introduce a different Openflow network

switch that does not enforce the hardware timeout value as precisely as the HP switch, and

consequently may provide different results.

4.4 Experiment 4 Results and Analysis

The purpose of Experiment 4 is to determine which SDN controller is creating and

managing flows for the network switch. Section 4.4.1 describes why the data for the

network designed in Chapter 3 are not observable.

4.4.1 Result.

Within MiniNet, the communication between each end host is accomplished through

virtual ports connected to OpenVSwitch. By default, the end host does not see the the

remote SDN controller‘s network. Without a communication link between a host on the

network and the SDN controller, an assumption is violated, and the methods of crafting

and transmitting custom OpenFlow packets to an unknown controller become impossible.

The features available for extracting are limited to features observable from the host‘s

perspective (i.e., the data collected from Experiments 1-3). For this thesis, these features

include whether the network is an SDN or traditional environment, the flow inactivity

timeout value, and the flow hard timeout value. The use of only three features is insufficient

98



to uniquely identify an SDN controller considering the likelihood for the three features to

be identical among any two controllers is high.

The result of the simulated network extends to the hardware network. The HP switch

uses a Virtual Local Area Network (VLAN) to segregate control traffic (i.e., traffic between

the controller and the OpenFlow switch) from other network traffic. The isolation of control

traffic prohibits any host attached to the HP switch from communicating directly with the

controller, and consequently limits the number of features a host can collect from the SDN

controller.

4.4.2 Observations.

While a host is unable to communicate directly with the controller attached to the

SDN environment due to network segregation, information can be obtained from a separate

controller found within the same network. Reasons for an SDN controller existing on the

network include a network administrator testing an SDN controller that is not yet deployed,

or an older version of an SDN controller that was moved from an isolated network to

another network. In either case, gleaning information about visible SDN controllers gives

a host insight into the potential SDN controller managing the current network.

The following data is collected from a modification to the original network

environment described in Chapter 3. The new network environment is depicted in

Figure 4.13, and is similar to the original network environment with the exception that

the unknown “discovered controller” is found within the same VLAN and is thus visible

from the perspective of a network host. The controller managing the SDN environment in

Figure 4.13 exists within a separate VLAN as that of the hosts, while the newly discovered

controller exists within the same VLAN as the host. The discovered controller is an SDN

controller running on top of an Ubuntu 12.04 Linux Virtual Machine.

Ensuring that a connection exists to a controller fulfills the assumption of a

communication link between the host and controller. Table 4.19 explains each feature that

99



Figure 4.13: Modified SDN Simple Network

is captured on the newly discovered SDN controller. The left-most column represents the

identification number of the feature, and corresponds to the same identification numbers 1

through 7 in Table 4.20.

Table 4.20 shows the features of the discovered controller collected by the host in

the network. The actual column represents the actual controller that is running on the

Ubuntu virtual machine. The predicted column shows the response variable: the predicted

controller operating on the Ubuntu virtual machine. Columns titled 1 through 7 correspond

to each feature number listed in Table 4.19. Columns 6 and 7 show a list of numbers that

correspond to the OpenFlow packet type listed in Table 3.16. For columns 6 and 7, a list

within parenthesis means that both OpenFlow packets were sent within the same Ethernet

frame, while numbers separated by a comma represent an ordered event. For example,

100



Table 4.19: List of Features

ID Feature

1 Default Flow Inactivity-Timeout Period

2 Default Flow Hard-Timeout Period

3 Does the SDN controller initiate an OF Hello packet?

4 Does the SDN controller initiate an Echo Request?

5 Does the SDN controller initiate a Feature Request?

6 The set of packets sent by the SDN controller just after the Hello exchange

7 The set of packets sent by the SDN controller just after the Feature Response

the very last row and last column (i.e., 9,(14,18)), represents an OpenFlow packet type 9

arriving, followed by a single Ethernet frame containing both OpenFlow packet types 14

and 18, respectively. OpenFlow packet type 9 represents a “Set Configuration” packet, and

OpenFlow packet types 14 and 18 represent a “Flow Modification” and “Barrier Request”

packet type, respectively (as specified in Table 3.16).

Table 4.20 shows that every time the controller was randomly set, the method of

predicting the controller was accurate. In all cases except three, every feature of the

unknown controller was correctly matched with the feature of the predicted controller. In

Table 4.20, row 6 (i.e., the first Maestro controller), an incorrect value of 63.996s for the

flow hard timeout was found. The value of 63.996s for a default flow hard timeout value

was not found in the table for any controller. Because a perfect match does not exist, the

set of features of each controller in the table was compared with each other. The controller

that has the highest number of matching features was selected. The same best-guess action

was taken for rows 15 and 16 in Table 4.20, as either the flow inactivity timeout, or flow

hard timeout default values were not exactly paired with the known default value.

101



Table 4.20: SDN Controller Feature Table

Actual Predicted 1 2 3 4 5 6 7

NOX NOX 5.625 >181 False False False (5,9) None

Nodeflow Nodeflow 5.625 >181 False False False 0,5 None

NOX NOX 5.375 >181 False False False (5,9) None

OpenDaylight OpenDaylight >120 >181 True False False 5,5,5 9,7,14

Nodeflow Nodeflow 5.625 >181 False False False 0,5 None

Maestro Maestro 30.625 63.996 True False False 5 (13,13,13,13)

POX POX 10.375 30.784 True False False 5 9,(14,18)

Beacon Beacon 5.375 >181 True True False 5,2,2 16,2,2

Nodeflow Nodeflow 5.375 >181 False False False 0,5 None

Nodeflow Nodeflow 5.375 >181 False False False 0,5 None

POX POX 10.375 30.741 True False False 5 9,(14,18)

Maestro Maestro 30.375 180.343 True False False 5 (13,13,13,13)

Beacon Beacon 5.625 >181 True True False 5,2,2 16,2,2

Floodlight Floodlight 5.875 >181 True False False 5 (9,18,7)

Floodlight Floodlight 6.125 >181 True False False 5 (9,18,7)

Maestro Maestro 5.625 180.347 True False False 5 (13,13,13,13)

POX POX 10.375 30.812 True False False 5 9,(14,18)

The fact that all cases of controllers are accurately predicted shows that this method

of identifying an unknown controller from a table of known controllers is accurate

provided the controller exists within the table, and provided that the controller features

are extractable. The requirement that the controller be in the table enforces the need for a

growing table of many versions of each type of controller.

102



V. Conclusions

This chapter provides a summary for the results of each experiment, and explains the

relation each result has to the goal of this research. Section 5.1 summarizes each

conclusion drawn from each experiment. Next, Section 5.2 explains the significance this

research has on the body of research for software defined networking. Finally, Section 5.3

presents suggested future work to continue this research.

5.1 Research Conclusions

5.1.1 Goal #1: Construct a table of features.

The first goal of this research is to construct a set of features extensive enough to

uniquely identify each known SDN controller, and demonstrate that the table of features

reliably identifies each SDN controller. Table 4.20 from Section 4.4.2 shows that the set

of features selected for each SDN controller is extensive enough to uniquely identify each

SDN controller. The method of creating a table of features requires creating a new feature

when more than one SDN controller contains an exact match of features. Creating a new

feature ensures that each SDN controller remains distinct within the table. The results

of Experiment 4 with a communication link between the host and the SDN controller

demonstrate that the table of features correctly differentiated between known controllers.

5.1.2 Goal #2: Verifying feature extraction.

The second goal includes ensuring that each feature from goal 1 is obtainable by a

host connected to the SDN environment. The second goal requires that the environment

be verified before proceeding to collect features. The results of Experiment 1 demonstrate

that it is possible to distinguish between a traditional network environment and an SDN

environment. The results of Experiment 1 apply to both the simulated MiniNet environment

as well as the emulated environment using the HP switch. When simulated using MiniNet,

103



the results of Experiment 2 demonstrate that one feature, the flow‘s inactivity timeout value,

is obtainable by an end host of the SDN environment. The results of Experiment 2 applied

to the emulated environment however show that the response inactivity timeout depends

on not only the controller, but also the switch implementing the OpenFlow protocol.

Experiment 2 showed that the inactivity timeout is not reliably obtainable considering the

value depends on the implementation of the network switch.

When simulated in MiniNet, the results of Experiment 3 demonstrate that another

feature, the flow‘s hard timeout value, is obtainable by an end host of the SDN

environment. The results of Experiment 3 applied to the emulated environment also

support the conclusions established from the simulated data. Experiment 2 sheds light

on the importance of the network switch’s OpenFlow implementation, and thus shows that

the results of Experiment 3, while conclusive, cannot be extrapolated to other network

hardware switches. Experiment 3’s results are thus confined to the specific switch used

during data collection (i.e., the HP 5900 series switch). The results of both Experiment

2 and Experiment 3 fail to achieve the second goal set out in this research, as both

experiments demonstrate that a host, without prior knowledge of the network switch‘s

implementation of OpenFlow, fail to reliably determine the flow timeout values set by the

controller.

5.2 Research Significance

This research provides a reliable method for verifying the existence of an SDN

environment. Additionally, this research presents a method for fingerprinting various

SDN controllers. While the features collected from Experiments 2 and 3 are not reliably

collectable from an end host connected to the SDN environment, the framework is laid out

for future features to be discovered and added to the list of observable features. Discovering

unique features observable by an end host brings this research closer to uniquely identifying

the SDN controller. Once an SDN controller is identified, known vulnerabilities may

104



exist for the controller and can be selected for use in exploiting the SDN network. The

method of fingerprinting SDN controllers, followed by targeted exploits, parallels current

network attack methodologies: first network reconnaissance identifies a target, then a

vulnerability is selected from a database pertaining to the selected target, and finally a

network attack ensues. Future research includes current research dedicated to these network

attack methodologies, but applied specifically to SDN environments.

5.3 Future Work

Extensions to this research include discovery of new observable features. With a

greater availability of new features, the feature table will more uniquely identify each

controller based on the entire list of features. Additionally, methods of fingerprinting

OpenFlow enabled network switches allows an increased ability in fingerprinting the

OpenFlow network. Once identified, switches that behave in an expected manner according

to their implementation of OpenFlow will then be removed as a variable hindering the

fingerprinting of the SDN controller.

As with every network attack discovery, the idea of mitigation grows apparent.

Preventing disclosure of the network environment through the use of aggregate flows or

intentionally induced latency provides another avenue of research extending from this

topic.

Another extension to this research includes applying the results of Experiment 2 with

the creation of a targeted DoS attack. Considering Experiment 2 effectively determines

how long an active flow resides within the network switch, it may be possible to create a

flood of traffic designed to fill the flow table at exactly the rate of traffic necessary to disable

network services. The fact that the flooding of packets is only at the level necessary to deny

service, such a level may exist below the level of detection by an IDS.

105



Bibliography

[1] M. E. Dempsey, “Quadrennial defense review,” 2014. Available at
http://www.defense.gov/pubs/2014 Quadrennial Defense Review.pdf (Retrieved
on 18 December 2014).

[2] S. Corporation, “Internet security threat report 2013 trends,” In-
ternet Security Threat Report volume 19, Apr. 2014. Available
at http://www.symantec.com/content/en/us/enterprise/other resources/b-
istr main report v19 21291018.en-us.pdf (Retrieved on 18 December 2014).

[3] Anonymous, “Corporate cyber-ssecurity horror movie: Hackers shine
a harsh spotlight on sony,” The Economist, Dec. 2014. Available at
http://abcnews.go.com/Technology/wireStory/sony-attack-hackers-employees-
27653706 (Retrieved on 18 December 2014).

[4] B. Solomon, “Apple admits celebrity photos were stolen
in targeted hack,” Forbes, Sept. 2014. Available at
http://www.forbes.com/sites/briansolomon/2014/09/02/apple-admits-celebrity-
photos-were-stolen-in-targeted-hack/ (Retrieved on 18 December 2014).

[5] R. Abrams, “Target puts data breach costs at $148 million, and fore-
casts profit drop,” The New York Times, Aug. 2014. Available at
http://www.nytimes.com/2014/08/06/business/target-puts-data-breach-costs-at-
148-million.html/ (Retrieved on 18 December 2014).

[6] “Critical security controls for effective cyber defense,” SANS Critical Security
Controls. Available at https://www.sans.org/critical-security-controls/ (Retrieved on
18 December 2014).

[7] L. Bilge and T. Dumitras, “Before we knew it: an empirical study of zero-day attacks
in the real world,” in Proceedings of the 2012 ACM conference on Computer and
communications security, pp. 833–844, ACM, 2012.

[8] H. Kim and N. Feamster, “Improving network management with software defined
networking,” Communications Magazine, IEEE, vol. 51, no. 2, pp. 114–119, 2013.

[9] T. D. Nadeau and K. Gray, SDN: Software Defined Networks. ” O’Reilly Media, Inc.”,
2013.

[10] V. Shukla, Introduction to Software Defined Networking - Openflow & VxLAN.
”CreateSpace Independent Publishing Platform”, 2013.

[11] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner, “Openflow: enabling innovation in campus networks,”
ACM SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 69–74, 2008.

106



[12] “Openflow switch specification,” Mar. 2014. Available at
https://www.opennetworking.org/sdn-resources/onf-specifications/openflow (Re-
trieved on 1 October 2014).

[13] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and S. Banerjee,
“Devoflow: scaling flow management for high-performance networks,” in ACM
SIGCOMM Computer Communication Review, vol. 41, pp. 254–265, ACM, 2011.

[14] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and S. Shenker,
“Nox: towards an operating system for networks,” ACM SIGCOMM Computer
Communication Review, vol. 38, no. 3, pp. 105–110, 2008.

[15] D. Erickson, “The beacon openflow controller,” in Proceedings of the Second ACM
SIGCOMM Workshop on Hot Topics in Software Defined Networking, pp. 13–18,
ACM, 2013.

[16] Z. Cai, A. L. Cox, and T. E. N. Maestro, “A system for scalable openflow
control,” tech. rep., Technical Report TR10-08, Rice University, 2010. Available
at http://www.cs.rice.edu/ eugeneng/papers/TR10-11.pdf (Retrieved on 1 October
2014).

[17] A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood, “On
controller performance in software-defined networks,” in Proceedings of the 2nd
USENIX Conference on Hot Topics in Management of Internet, Cloud, and Enterprise
Networks and Services, Hot-ICE’12, (Berkeley, CA, USA), pp. 10–10, USENIX
Association, 2012. Available at http://dl.acm.org/citation.cfm?id=2228283.2228297
(Retrieved on 1 October 2014).

[18] “Project floodlight,” 2014. Available at http://www.projectfloodlight.org/floodlight/
(Retrieved on 21 December 2014).

[19] “Big switch networks.” Available at: http://www.bigswitch.com/ (Retrieved on 13
October 2014).

[20] “Loxigen.” Available at: http://github.com/floodlight/loxigen/wiki/OpenFlowJ-Loxi
(Retrieved on 13 October 2014).

[21] B. Lee, S. H. Park, J. Shin, and S. Yang, “Iris: The openflow-based recursive
sdn controller,” in Advanced Communication Technology (ICACT), 2014 16th
International Conference on, pp. 1227–1231, IEEE, 2014.

[22] A. Tootoonchian and Y. Ganjali, “Hyperflow: A distributed control plane
for openflow,” in Proceedings of the 2010 Internet Network Management
Conference on Research on Enterprise Networking, INM/WREN’10, (Berke-
ley, CA, USA), pp. 3–3, USENIX Association, 2010. Available at
http://dl.acm.org/citation.cfm?id=1863133.1863136 (Retrieved on 1 October 2014).

107



[23] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, and R. Smeliansky, “Advanced
study of sdn/openflow controllers,” in Proceedings of the 9th Central & Eastern
European Software Engineering Conference in Russia, p. 1, ACM, 2013.

[24] A. Greenhalgh, F. Huici, M. Hoerdt, P. Papadimitriou, M. Handley, and L. Mathy,
“Flow processing and the rise of commodity network hardware,” ACM SIGCOMM
Computer Communication Review, vol. 39, no. 2, pp. 20–26, 2009.

[25] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid prototyping for
software-defined networks,” in Proceedings of the 9th ACM SIGCOMM Workshop on
Hot Topics in Networks, p. 19, ACM, 2010.

[26] M. Gupta, J. Sommers, and P. Barford, “Fast, accurate simulation for sdn
prototyping,” in Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics
in Software Defined Networking, pp. 31–36, ACM, 2013.

[27] S. McCanne, S. Floyd, K. Fall, K. Varadhan, et al., “Network simulator ns-2,” 1997.

[28] T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell, and J. Kopena, “Network
simulations with the ns-3 simulator,” SIGCOMM demonstration, 2008.

[29] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata,
J. Wanderer, J. Zhou, M. Zhu, et al., “B4: Experience with a globally-deployed
software defined wan,” in Proceedings of the ACM SIGCOMM 2013 conference on
SIGCOMM, pp. 3–14, ACM, 2013.

[30] U. Hoelzle, “Openflow @ google.” Available at
http://www.opennetsummit.org/archives/apr12/hoelzle-tue-openflow.pdf (Retrieved
on 13 October 2014).

[31] M. Palmer, “Sdncentral exclusive: Sdn market size expected to reach 35b by 2018,”
2013. Available at https://www.sdncentral.com/market/sdn-market-sizing/2013/04/

(Retrieved on 13 October 2014).

[32] R. Klöti, “Openflow: A security analysis,” Proc. Workshop on
Secure Network Protocols (NPSec). IEEE, 2013. Available at
http://www.csg.ethz.ch/people/vkotroni/openflow sec.

[33] S. Hernan, S. Lambert, T. Ostwald, and A. Shostack, “Threat modeling-uncover
security design flaws using the stride approach,” MSDN Magazine-Louisville, pp. 68–
75, 2006.

[34] V. Saini, Q. Duan, and V. Paruchuri, “Threat modeling using attack trees,” Journal of
Computing Sciences in Colleges, vol. 23, no. 4, pp. 124–131, 2008.

[35] S. Scott-Hayward, G. O’Callaghan, and S. Sezer, “Sdn security: A survey,” in Future
Networks and Services (SDN4FNS), 2013 IEEE SDN for, pp. 1–7, IEEE, 2013.

108



[36] S. Shin and G. Gu, “Attacking software-defined networks: A first feasibility study,”
in Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking, pp. 165–166, ACM, 2013.

[37] J. M. Dover, “A switch table vulnerability in the open floodlight sdn controller,”
Available at http://dovernetworks.com/wp-content/uploads/2014/03/OpenFloodlight-
03052014.pdf.

[38] J. M. Dover, “A denial of service attack against the open floodlight sdn controller,”
Available at http://dovernetworks.com/wp-content/uploads/2013/12/OpenFloodlight-
12302013.pdf.

[39] D. Kreutz, F. Ramos, and P. Verissimo, “Towards secure and dependable software-
defined networks,” in Proceedings of the Second ACM SIGCOMM Workshop on Hot
Topics in Software Defined Networking, pp. 55–60, ACM, 2013.

[40] S. A. Mehdi, J. Khalid, and S. A. Khayam, “Revisiting traffic anomaly detection using
software defined networking,” in Recent Advances in Intrusion Detection, pp. 161–
180, Springer, 2011.

[41] R. Braga, E. Mota, and A. Passito, “Lightweight ddos flooding attack detection using
nox/openflow,” in Local Computer Networks (LCN), 2010 IEEE 35th Conference on,
pp. 408–415, IEEE, 2010.

[42] T. Xing, D. Huang, L. Xu, C.-J. Chung, and P. Khatkar, “Snortflow: A openflow-based
intrusion prevention system in cloud environment,” in Research and Educational
Experiment Workshop (GREE), 2013 Second GENI, pp. 89–92, IEEE, 2013.

[43] S. Shin, P. A. Porras, V. Yegneswaran, M. W. Fong, G. Gu, and M. Tyson, “Fresco:
Modular composable security services for software-defined networks,” in NDSS, The
Internet Society, 2013. Available at http://internetsociety.org/doc/fresco-modular-
composable-security-services-software-defined-networks (Retrieved on 1 October
2014).

[44] J. H. Jafarian, E. Al-Shaer, and Q. Duan, “Openflow random host mutation: Trans-
parent moving target defense using software defined networking,” in Proceedings of
the First Workshop on Hot Topics in Software Defined Networks, pp. 127–132, ACM,
2012.

[45] A. Zarek, Y. Ganjali, and D. Lie, “Openflow timeouts demystified,” Univ. of Toronto,
Toronto, Ontario, Canada, 2012.

[46] A. Vishnoi, R. Poddar, V. Mann, and S. Bhattacharya, “Effective switch memory
management in openflow networks,” in Proceedings of the 8th ACM International
Conference on Distributed Event-Based Systems, pp. 177–188, ACM, 2014.

[47] T. Kim, K. Lee, J. Lee, S. Park, Y.-H. Kim, and B. Lee, “A dynamic timeout control
algorithm in software defined networks,”

109



[48] Hewlett-Packard, “Quickspecs hp 5900 switch series,” Dec. 2014. Available at
http://h18000.www1.hp.com/products/quickspecs/14252 na/14252 na.pdf (Re-
trieved on 18 December 2014).

[49] “Ryu sdn framework,” Dec. 2014. Available at http://osrg.github.io/ryu/ (Retrieved
on 18 December 2014).

[50] F. Ramsey and D. Schafer, The statistical sleuth: a course in methods of data analysis.
Cengage Learning, 2012.

[51] Hewlett-Packard, “Hp 5920 and 5900 switch series:
Openflow command reference,” 2014. Available at
http://h20565.www2.hp.com/hpsc/doc/public/display?docId=emr na-c04089449-1
(Retrieved on 18 December 2014).

110



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

26–03–2015 Master’s Thesis Oct 2013–Mar 2015

Fingerprinting Software Defined Networks and Controllers

in house

Zeitlin, Zachary J., 2nd Lt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB, OH 45433-7765

AFIT-ENG-MS-15-M-067

Intentionally Left Blank

12. DISTRIBUTION / AVAILABILITY STATEMENT
DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
13. SUPPLEMENTARY NOTES
This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.
14. ABSTRACT
SDN transforms a network from a calcified collection of hardware into a logically centralized and programmable method
of interconnectivity. Changing the networking paradigm shifts a network‘s security posture. Changes visible to a host
connected to the network include small latency differences between a traditional network environment and an SDN
environment. This thesis aims to reliably distinguish SDN environments from traditional environments by observing
latency behavior. Additionally, this thesis determines whether latency information contributes to the unique fingerprint
of SDN controllers. Identifying the controller software gives an adversary information contributing to a network attack.
An SDN and traditional network environment consisting of two hosts, one switch, and one controller are created. Within
both environments, packet RTT values are compared between SDN and traditional environments to determine if both
sets differ. Latency analysis is used to observe features of an SDN controller. Collected features contribute to a table of
information used to uniquely fingerprint an SDN controller.

Results show that packet RTTs within a traditional network environment significantly (p-value less than 1.0 × 10−15)
differ from from SDN environments. The predicted controller inactivity timeout within the simulated environment differs
from the true timeout by a mean value of 0.44956 seconds. The emulated environment shows that the observed inactivity
timeout depends on the network switch implementation of the controller‘s set value, leading to incorrect observed
timeouts. Within the SDN environment, the host is not able to directly communicate with the SDN controller, leading
to an inability to collect the number of features needed to uniquely identify the SDN controller.
15. SUBJECT TERMS
SDN Openflow Software Defined Networking Security

U U U UU 126

Dr Barry E. Mullins (ENG)

(937) 255-3636 x7979 barry.mullins@afit.edu


	Air Force Institute of Technology
	AFIT Scholar
	3-26-2015

	Fingerprinting Software Defined Networks and Controllers
	Zachary J. Zeitlin
	Recommended Citation


	tmp.1508527208.pdf.ajZri

