13 research outputs found

    A Method for Obtaining Electronic Voting Systems based Voter Confidentiality and Voting Accuracy

    Get PDF
    A Voting is common in our daily life, from electing president to electing committee. A complete electronic voting scheme suitable for all kinds of voting with safe guaranty where the voter?s privacy can be protected. Fingerprint system security have been investigated, including the use of fake fingerprints for masquerading identity, the problem of fingerprint alteration or obfuscation has received very little attention. Fingerprint image quality assessment software (e.g., NFIQ) cannot always detect altered fingerprints since the implicit image quality due to alteration may not change significantly. The main contributions of this Research are-1.Compiling case studies of incidents where individuals were found to have altered their fingerprints for circumventing AFIS.2.Identifying the damages of fingerprint alteration on the accuracy of a commercial fingerprint matcher.3.Classifying the alterations into three major categories and suggesting possible countermeasures.4.Developing a technique to automatically detect altered fingerprints based on analyzing orientation field and minutiae distribution.5.Evaluating the proposed technique and the NFIQ algorithm on a big database of altered fingerprints provided by a law enforcement agency. Experimental results show the feasibility of the proposed approach in detecting altered fingerprints and highlight the need to further pursue this problem

    Monozygotic and Dizygotic Twins Differences in Fingerprint Patterns of Swat District

    Get PDF
    Background: The identification of individual is important for both legal and humanitarian reasons. It is of great importance because every individual exists as an entity in a society and is dealt with as such by the legal system. The most commonly used method for identification is fingerprinting which relies on the uniqueness of ridges present on thumbs and fingers. These are unique in arrangements and remain constant throughout an individual’s life. Fingerprints of no two individuals are same even if they are twins. The power of discrimination of the basis of fingerprinting is about one in 64 billion. The study was designed to carry out analysis of fingerprints from mono and dizygotic twins and to differentiate them on the basis of fingerprinting.Methods: This was a prospective cross-sectional study carried out among 30 pairs of twins including 17 pair of monozygotic twins and 13 pair of dizygotic twins. After taking an informed expressed consent, the participants were asked to press their individual fingers on the stamp pad. They were asked to then put and roll the stamped finger onto an A4 size paper on which blocks for each finger were already made. Both left and right hands were fingerprinted and with the help of magnifying glass, different types were identified including Arches, Composite type, Loops and Whorls. SPSS software was used for data analysis.Results: There was 7.6% of Arch type, 6.1% of tented arches, 1.5% of plain arches, 62.32% of loops, 6.66% of double loop, and 3.83% of central pocket loop, 44.83% of ulnar loop, 7% of radial loop, 0.83% of accidental loop, 29.93% of whorls, 9% of plain whorl and 20.1% of central the pocket whorl.Conclusion: When the left and right thumbs are compared with each other using eight (8) points, there are matches on the first six (6) points, matching percentage for each of these pairs of fingers is 75%. But when the both fingers were rotated on 180° and compared, the matching percentage was 87.5%. These 8 points fingerprinting can be used to distinguish twins.Keywords: Fingerprint; Identification; Twin; Monozygotic; Dizygotic

    Improving Fingerprint Verification Using Minutiae Triplets

    Get PDF
    Improving fingerprint matching algorithms is an active and important research area in fingerprint recognition. Algorithms based on minutia triplets, an important matcher family, present some drawbacks that impact their accuracy, such as dependency to the order of minutiae in the feature, insensitivity to the reflection of minutiae triplets, and insensitivity to the directions of the minutiae relative to the sides of the triangle. To alleviate these drawbacks, we introduce in this paper a novel fingerprint matching algorithm, named M3gl. This algorithm contains three components: a new feature representation containing clockwise-arranged minutiae without a central minutia, a new similarity measure that shifts the triplets to find the best minutiae correspondence, and a global matching procedure that selects the alignment by maximizing the amount of global matching minutiae. To make M3gl faster, it includes some optimizations to discard non-matching minutia triplets without comparing the whole representation. In comparison with six verification algorithms, M3gl achieves the highest accuracy in the lowest matching time, using FVC2002 and FVC2004 databases

    A Review of Fingerprint Feature Representations and Their Applications for Latent Fingerprint Identification: Trends and Evaluation

    Get PDF
    Latent fingerprint identification is attracting increasing interest because of its important role in law enforcement. Although the use of various fingerprint features might be required for successful latent fingerprint identification, methods based on minutiae are often readily applicable and commonly outperform other methods. However, as many fingerprint feature representations exist, we sought to determine if the selection of feature representation has an impact on the performance of automated fingerprint identification systems. In this paper, we review the most prominent fingerprint feature representations reported in the literature, identify trends in fingerprint feature representation, and observe that representations designed for verification are commonly used in latent fingerprint identification. We aim to evaluate the performance of the most popular fingerprint feature representations over a common latent fingerprint database. Therefore, we introduce and apply a protocol that evaluates minutia descriptors for latent fingerprint identification in terms of the identification rate plotted in the cumulative match characteristic (CMC) curve. From our experiments, we found that all the evaluated minutia descriptors obtained identification rates lower than 10% for Rank-1 and 24% for Rank-100 comparing the minutiae in the database NIST SD27, illustrating the need of new minutia descriptors for latent fingerprint identification.This work was supported in part by the National Council of Science and Technology of Mexico (CONACYT) under Grant PN-720 and Grant 63894

    Low-Quality Fingerprint Classification

    Get PDF
    Traditsioonilised sõrmejälgede tuvastamise süsteemid kasutavad otsuste tegemisel minutiae punktide informatsiooni. Nagu selgub paljude varasemate tööde põhjal, ei ole sõrmejälgede pildid mitte alati piisava kvaliteediga, et neid saaks kasutada automaatsetes sõrmejäljetuvastuse süsteemides. Selle takistuse ületamiseks keskendub magistritöö väga madala kvaliteediga sõrmejälgede piltide tuvastusele – sellistel piltidel on mitmed üldteada moonutused, nagu kuivus, märgus, füüsiline vigastatus, punktide olemasolu ja hägusus. Töö eesmärk on välja töötada efektiivne ja kõrge täpsusega sügaval närvivõrgul põhinev algoritm, mis tunneb sõrmejälje ära selliselt madala kvaliteediga pildilt. Eksperimentaalsed katsed sügavõppepõhise meetodiga näitavad kõrget tulemuslikkust ja robustsust, olles rakendatud praktikast kogutud madala kvaliteediga sõrmejälgede andmebaasil. VGG16 baseeruv sügavõppe närvivõrk saavutas kõrgeima tulemuslikkuse kuivade (93%) ja madalaima tulemuslikkuse häguste (84%) piltide klassifitseerimisel.Fingerprint recognition systems mainly use minutiae points information. As shown in many previous research works, fingerprint images do not always have good quality to be used by automatic fingerprint recognition systems. To tackle this challenge, in this thesis, we are focusing on very low-quality fingerprint images, which contain several well-known distortions such as dryness, wetness, physical damage, presence of dots, and blurriness. We develop an efficient, with high accuracy, deep neural network algorithm, which recognizes such low-quality fingerprints. The experimental results have been conducted on real low-quality fingerprint database, and the achieved results show the high performance and robustness of the introduced deep network technique. The VGG16 based deep network achieves the highest performance of 93% for dry and the lowest of 84% for blurred fingerprint classes

    A new algorithm for minutiae extraction and matching in fingerprint

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.A novel algorithm for fingerprint template formation and matching in automatic fingerprint recognition has been developed. At present, fingerprint is being considered as the dominant biometric trait among all other biometrics due to its wide range of applications in security and access control. Most of the commercially established systems use singularity point (SP) or ‘core’ point for fingerprint indexing and template formation. The efficiency of these systems heavily relies on the detection of the core and the quality of the image itself. The number of multiple SPs or absence of ‘core’ on the image can cause some anomalies in the formation of the template and may result in high False Acceptance Rate (FAR) or False Rejection Rate (FRR). Also the loss of actual minutiae or appearance of new or spurious minutiae in the scanned image can contribute to the error in the matching process. A more sophisticated algorithm is therefore necessary in the formation and matching of templates in order to achieve low FAR and FRR and to make the identification more accurate. The novel algorithm presented here does not rely on any ‘core’ or SP thus makes the structure invariant with respect to global rotation and translation. Moreover, it does not need orientation of the minutiae points on which most of the established algorithm are based. The matching methodology is based on the local features of each minutiae point such as distances to its nearest neighbours and their internal angle. Using a publicly available fingerprint database, the algorithm has been evaluated and compared with other benchmark algorithms. It has been found that the algorithm has performed better compared to others and has been able to achieve an error equal rate of 3.5%
    corecore