5 research outputs found

    Cycle-consistent generative adversarial neural networks based low quality fingerprint enhancement

    Get PDF
    Distortions such as dryness, wetness, blurriness, physical damages and presence of dots in fingerprints are a detriment to a good analysis of them. Even though fingerprint image enhancement is possible through physical solutions such as removing excess grace on the fingerprint or recapturing the fingerprint after some time, these solutions are usually not user-friendly and time consuming. In some cases, the enhancements may not be possible if the cause of the distortion is permanent. In this paper, we are proposing an unpaired image-to-image translation using cycle-consistent adversarial networks for translating images from distorted domain to undistorted domain, namely, dry to not-dry, wet to not-wet, dotted to not-dotted, damaged to not-damaged, blurred to not-blurred. We use a database of low quality fingerprint images containing 11541 samples with dryness, wetness, blurriness, damages and dotted distortions. The database has been prepared by real data from VISA application centres and have been provided for this research by GEYCE Biometrics. For the evaluation of the proposed enhancement technique, we use VGG16 based convolutional neural network to assess the percentage of enhanced fingerprint images which are labelled correctly as undistorted. The proposed quality enhancement technique has achieved the maximum quality improvement for wetness fingerprints in which 94% of the enhanced wet fingerprints were detected as undistorted. © 2020, Springer Science+Business Media, LLC, part of Springer Nature

    Multi-Modal Biometrics: Applications, Strategies and Operations

    Get PDF
    The need for adequate attention to security of lives and properties cannot be over-emphasised. Existing approaches to security management by various agencies and sectors have focused on the use of possession (card, token) and knowledge (password, username)-based strategies which are susceptible to forgetfulness, damage, loss, theft, forgery and other activities of fraudsters. The surest and most appropriate strategy for handling these challenges is the use of naturally endowed biometrics, which are the human physiological and behavioural characteristics. This paper presents an overview of the use of biometrics for human verification and identification. The applications, methodologies, operations, integration, fusion and strategies for multi-modal biometric systems that give more secured and reliable human identity management is also presented

    A computationally efficient framework for large-scale distributed fingerprint matching

    Get PDF
    A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of requirements for the degree of Master of Science, School of Computer Science and Applied Mathematics. May 2017.Biometric features have been widely implemented to be utilized for forensic and civil applications. Amongst many different kinds of biometric characteristics, the fingerprint is globally accepted and remains the mostly used biometric characteristic by commercial and industrial societies due to its easy acquisition, uniqueness, stability and reliability. There are currently various effective solutions available, however the fingerprint identification is still not considered a fully solved problem mainly due to accuracy and computational time requirements. Although many of the fingerprint recognition systems based on minutiae provide good accuracy, the systems with very large databases require fast and real time comparison of fingerprints, they often either fail to meet the high performance speed requirements or compromise the accuracy. For fingerprint matching that involves databases containing millions of fingerprints, real time identification can only be obtained through the implementation of optimal algorithms that may utilize the given hardware as robustly and efficiently as possible. There are currently no known distributed database and computing framework available that deal with real time solution for fingerprint recognition problem involving databases containing as many as sixty million fingerprints, the size which is close to the size of the South African population. This research proposal intends to serve two main purposes: 1) exploit and scale the best known minutiae matching algorithm for a minimum of sixty million fingerprints; and 2) design a framework for distributed database to deal with large fingerprint databases based on the results obtained in the former item.GR201
    corecore