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Abstract
Distortions such as dryness, wetness, blurriness, physical damages and presence of dots in
fingerprints are a detriment to a good analysis of them. Even though fingerprint image
enhancement is possible through physical solutions such as removing excess grace on the
fingerprint or recapturing the fingerprint after some time, these solutions are usually not
user-friendly and time consuming. In some cases, the enhancements may not be possible
if the cause of the distortion is permanent. In this paper, we are proposing an unpaired
image-to-image translation using cycle-consistent adversarial networks for translating
images from distorted domain to undistorted domain, namely, dry to not-dry, wet to
not-wet, dotted to not-dotted, damaged to not-damaged, blurred to not-blurred. We use a
database of low quality fingerprint images containing 11541 samples with dryness,
wetness, blurriness, damages and dotted distortions. The database has been prepared by
real data from VISA application centres and have been provided for this research by
GEYCE Biometrics. For the evaluation of the proposed enhancement technique, we use
VGG16 based convolutional neural network to assess the percentage of enhanced
fingerprint images which are labelled correctly as undistorted. The proposed quality
enhancement technique has achieved the maximum quality improvement for wetness
fingerprints in which 94% of the enhanced wet fingerprints were detected as undistorted.

Keywords Cycle-consistent adversarial neural network . Low quality fingerprint . Fingerprint
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1 Introduction

Fingerprints are one of the physiological characteristics of a human for verifying and identi-
fying. Along with them, a human has other distinctive features: face, ear print, iris and retina,
palm print, vein map, voice, signature [2, 9, 19, 24, 28]. Due to its uniqueness, high
recognition accuracy, and existence of low-cost devices, fingerprints are one of the most
reliable biometric characteristics used in human authentications and textural structures such as
ridge frequency, orientation field (OF), and minutiae distribution were commonly used for that
purpose [7, 10, 29, 30, 36, 37]. Jianjiang et al. [11] presented a novel minutiae-based
fingerprint matching algorithm using texture-based and minutiae-based descriptors and support
vector machine (SVM) [21, 25]. Cappelli et al. [6] used minutiae cylinder-code (MCC) [5] to
improve the minutiae pair selection.

The attempt to improve the accuracy of fingerprint recognition using textural structures
still continues. Cao et al. [4] proposed a method that effectively detects minutiae clusters,
which tend to overrate the similarity and reduce corresponding minutiae similarity.
Nandakumar [27] proposed a localized minutiae phase spectrum that encodes the local
minutiae structure in the neighborhood of a given minutia point as a fixed-length binary
code. Some researchers have tried to reduce the complexity of the matching process. For
instant, Barman et al. [1] used spatial information (distance) of minutiae points only to
perform the matching in order to reduce the computational complexity of fingerprint
recognition.

In the recent years many researchers are using deep neural network in biometric recognition
[14, 32, 34]. Cao and Jain [3] proposed an automated latent fingerprint recognition algorithm
using Convolutional Neural Networks (ConvNets) for ridge flow estimation and minutiae
descriptor extraction. Zhang et al. [43] proposed Deep Dense Multi-level feature (DDM),
which is a representation for partial high-resolution fingerprint. Discriminative features inside
any local fingerprint block were extracted using deep ConvNets. The showed that DDM
contains multi-level information, which can be utilized for partial-to-partial matching.

Although fingerprints theoretically can identify people with high accuracy, the real-world
performance of the systems highly depends on the condition of the finger’s surface, i.e.,
humidity, dust, temperature, etc., which can drop the identification accuracy [35]. Features
such as OF, which is representing the trend of the ridge flow of fingerprint [16, 42], are usually
used for low-quality fingerprint segmentation. However, this task is usually either computa-
tionally expensive or is time-consuming [20, 44]. Tertychnyi et al. [35] have proposed a
ConvNets based technique which can identify the type of low-quality fingerprints. However,
the challenge of improving the quality of fingerprints is still open. This is the main motivation
of this research work to propose a methodology, which can be used to improve the low quality
of fingerprints.

Even though fingerprint image enhancement is possible through physical solutions such as
removing excess grace on the fingerprint or recapturing the fingerprint after some time, these
solutions are usually not user-friendly and time consuming. In some cases, the enhancements
may not be possible if the cause of the distortion is permanent. The objective of this research is
to develop deep neural network generators that will improve the quality of distorted low
quality fingerprint images digitally without requiring recapturing of the fingerprint.

The rest of the paper is organized as follows: Section 2 reviews the studies related to low
quality fingerprint recognition. Section 3 describes the problem definition which contains the
details of the proposed deep neural network algorithm used for the restoration of the quality of
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the low-quality fingerprint. The experimental results and discussions are provided in Section 4,
and finally, the work is concluded in Section 5.

2 Related work

Most current approaches extract minutiae from fingerprint images and perform fingerprint
matching based on the number of corresponding minutiae pairings [3, 8, 33, 35]. Shell et al.
[33],questions regarding human fingerprint orientation and found that expertise in fingerprints
increases the accuracy of marked-up orientation field, which is a characteristic feature. More
recently, to represent the latent, Cao et al. [3] proposed an automated latent fingerprint recognition
algorithm using ConvNets for ridge flow estimation and minutiae descriptor extraction. Experi-
mental results show that their algorithm performs significantly better than published algorithms on
two benchmark databases. In addition,Michelsanti et al. show that transfer learning can be used to
achieve high accuracy in fingerprint classification. Chung et al. [8] also performed a benchmark
study for minutiae extraction by presenting a controlled and repeatable evaluation of one open-
source and three commercial-off-the-shelf minutiae extractors.

Recognition performance of the fingerprint recognition algorithms significantly influenced
by fingertip surface condition, which may vary depending on environmental or personal
causes [26, 35, 41]. Tertychnyi et al. [35], for instance, developed an efficient, yet high
accuracy, deep neural network algorithm to recognize low quality fingerprints. Their proposed
algorithm based VGG16 deep network which achieves the highest performance for dry and the
lowest performance of the blurred fingerprint classes.

Zaixing et al. [15] developed a limited ellipse-band-based matching algorithm for finger-
print recognition. The method utilized the Fourier-Mellin transformation method and ellipse
band on the frequency amplitude to suppress noise. Willis et al. [39] developed a threshold fast
Fourier transform approach to simultaneously smooth and enhance poor quality images. After
enhancing the quality of the images, feature extraction was applied to extract the required
features for classification. Neural net and statistically based classifiers were evaluated for the
recognition task.

Further, early research work by Ito et al. [18] presented an algorithm using phase-based image
matching which used the phase components in 2D discrete Fourier transforms of fingerprint
images and showed highly robust performance for low quality fingerprints recognition. An
effective two-stage enhancement scheme was proposed by Yang et al. [40], where the spatial
and the frequency domain were learning from the underlying images. In their work, the authors
first enhanced the fingerprint image in the spatial domain with a spatial ridge-compensation filter
by learning from the images and then a frequency band-pass filter was employed. The experi-
mental results showed that their proposed algorithm was able to handle various input image
contexts and it improved the performances of fingerprint-authentication systems.

3 The proposed method

3.1 Problem definition

Our research work inspired by a solution developed for GEYCE Biometrics [12] company
whose main clients include Spanish and Portuguese Ministries of Foreign Affairs. The
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company developed a tool to find the origin distortion of a low-quality fingerprint to integrate
into the fingerprint scanners of consular posts. Previous ideal scenario of the solution lies in
detection of the type of the distortion in order to give the customer instructions for enhance-
ment and recapturing of the fingerprint after trying a temporary fix. However, this solution has
several drawbacks. Some of the distortions cannot be compensated by recapturing the finger-
print if the distortion is caused by a skin tissue damage or a permanent cause. Moreover,
recapturing process is time-consuming and not very user-friendly. We propose an alternative
fingerprint enhancement method based on deep-neural networks in order to enhance the
fingerprint to a sufficient quality for enabling an identification without requiring recapturing
of the fingerprint. Please see the schema in Fig. 1 for the improved scenario.

3.2 Database

The database consists of low quality fingerprint images which has several long-familiar
distortions such as dryness, wetness, blurriness, physical damages and presence of dots. Each
fingerprint can have more than one type of distortion. In this case, most of the samples have
around two-three different types of distortions, even though same very rare samples may carry
all types or none.

All images were captured by visa application centres in South America countries via real
life applications. The database is provided for this research by GEYCE Biometrics [12]. Each
fingerprints image was analyzed and labelled by experts from GEYCE Biometrics. Due to
privacy concerns, this dataset is not open for public access.

The classes used to label the fingerprint samples are listed below:

Fig. 1 A scenario of the integrated solution

Fig. 2 Some dry fingerprint examples
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Dry fingerprint This type of fingerprints have a low contact area with the surface of the
scanner. Since the finger skin is dry, the ridge pattern cannot be fully captured due to low
contact of ridges. A potential enhancement of the fingerprint lies in rubbing the finger to
forehead or nose where there are big number of sweat and grease pores. Figure 2 shows some
examples.

Wet fingerprint This type of fingerprints have high contact area with the surface of the
scanner. Because of large amount of grease and sweat on the finger, valleys also contact with
the surface together with ridges. A potential enhancement of the fingerprint lies in removing
extra grease and sweat from the finger. Figure 3 shows some examples.

Damaged fingerprint This type of fingerprints have some scars or problematic tissues such as
a burn and cut. An instant solution for enhancement of the fingerprint does not exist in this
case. If the problem is temporary, the fingerprint can be captured later when the wounds are
healed properly. If the problem is permanent or inborn, enhancement is not possible. Figure 4
shows some examples.

Dotted fingerprint This type of fingerprint demonstrate some easily distinguishable black
dots on fingerprint images. These dots occurs because of excessive sweating caused by
nervousness or some other problems that can be associated with excessive sweating. The dots
are located around swear pores on the skin. It is not necessary for the fingerprint to be dry in
order to observe these dots. A potential enhancement is to capture the fingerprint later when
the person is not nervous. Figure 5 shows some examples.

Blurred fingerprint This type of fingerprints have some regions where the ridges are not
easily distinguishable. This problem usually occurs when the finger is not stable during the
capturing process. Another reason can correspond to the case when the person puts too much
pressure on the finger that fingerprint valleys also contact to the surface. The fingerprint image
can be enhanced by recapturing when the finger is stable and pressed to the surface

Fig. 3 Some wet fingerprint examples

Fig. 4 Some damaged fingerprint examples
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appropriately. If the cause of this problem is a burned tissue, an instant solution is not possible.
Figure 6 shows some examples.

3.3 Methodology

In order to address the aforementioned problems we apply a state-of-the-art Generative
Adversarial Networks (GANs) [23] based unpaired image-to-image translation network, also
known as Cycle-Consistent Adversarial Networks (Cycle-GAN). The network is used to
translate images from distorted domain, namely, dry, wet, dotted, damaged, blurred, to
undistorted domain, namely, not-dry, not-wet, not-dotted, not-damaged, not-blurred.

Our model is based on GANs introduced in [13]. A Vanilla GAN consists of two deep
neural networks: a generator G and a discriminator D. The objective of the generator is to
generate synthetic images indistinguishable from real images using a given random noise. On
the other hand, the discriminator tries to distinguish the synthetic images generated by the
generator from real images. Both G and D are trained iteratively in a minimax manner. As we
want to transfer real fingerprint images from distorted domain to undistorted domain, the
generator does not get noise as the input. Instead it is given a distorted real fingerprint image.

Even though CycleGAN provides symmetric transfers from one domain to the other and
vice versa, translation from undistorted fingerprint images to distorted images is unwanted and
hence its results are not demonstrated in this paper. However, this translation is also necessary
for obtaining cycle consistency loss that is used for training of the generator network that will
transfer distorted fingerprints to undistorted fingerprints. It is shown in [45] that both the
adversarial loss and the cycle consistency loss have critical roles for obtaining high-quality
results.

3.4 Model architecture

Our model follows the same structure as CycleGAN [45]. CycleGAN consists of two
GANs in a cyclic fashion and trained in accordance. One generator (GA→B) transfer images

Fig. 5 Some dotted fingerprint examples

Fig. 6 Some blurred fingerprint examples
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from domain A to B and the other (GB→A) transfer from domain B to A. Discriminators DA

and DB distinguish if the images are real or synthetic. xA denotes a real image from domain
A. bxB is the same image after being translated to domain B, i.e., bxB ¼ GA→B xAð Þ. ex∼A is the
same image after translated back to domain A, i.e, ex∼A ¼ GB→A bxBð Þ. Equivalently an image
is also transferred from domain B to A and back to B and denoted in the same manner.

Fig. 7 Generator model
architecture
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For the generators, a U-Net-based architecture, which enables low level information to
shortcut across the network [38] was used. As a good amount of low level information is
shared between the input and the output for a wide range of image translation applications, it is
wise to add skip connections in order to transfer low level images across the network [17]. The
architecture of the generators is presented in Fig. 7. For the generators, the input size is 512 ×
512. Conv2D is a 2D convolution layer with a filter size of 4 × 4 and a stride of 2 × 2.
ConvTranspose2D is a transposed convolution layer (sometimes referred as deconvolution)
with a filter size of 4x4 and a stride of 2 × 2. The weights of the this layer are initialized with a
normal distribution of mean 0 and a standard deviation of 0.02. LeakyReLU (with a negative
slope coefficient of 0.2), ReLU, and tanh are activation layers. BatchNorm is a batch
normalization layer. Dropout applies dropout to its input with a rate of 0.5. Concatenate layer
concatenates a list of inputs in order pass low level information along the network. Crop layer
crops the image 1 pixel along both spatial dimensions.

Fig. 8 Discriminator model
architecture
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For the discriminators, we use a standard DCGAN-based architecture [31]. The model
architecture is presented in Fig. 8. Conv2D is a 2D convolution layer with a filter size of 4 × 4
and a stride of 2 × 2. LeakyReLU is an activation layer. BatchNorm is a batch normalization
layer. The last two Conv2D layers have a stride of 1 × 1. ZeroPadding layer adds 1 row and 1
column of zeros at the top, bottom, left and right side of the image tensor.

3.5 Training details

The loss function of the generators is

LG ¼ LGA→B þ LGB→A þ λLC ð1Þ

Table 1 Classification performance of different classes

Classes Percentage of images labelled as undistorted

Dry 86
Wet 94
Dotted 87
Damaged 88
Blurred 64

Fig. 9 Several selected examples of dry to not-dry translation
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where the least squares loss is used as in [45]

LGA→B ¼ jjDB bxBð Þ−1jj2 ð2Þ

LGB→A ¼ jjDA bxAð Þ−1jj2 ð3Þ
λ is used to weight LC and LC is the cycle consistency loss defined as in [45]

LC ¼ jjex∼A−xAjj1 þ jjex∼B−xBjj1 ð4Þ
The loss function of the discriminators is the same as standard GAN discriminators

LDA ¼ 1

2
jjDA xAð Þ−1jj2 þ jjDA bxAð Þjj2
� � ð5Þ

LDB ¼
1

2
jjDB xBð Þ−1jj2 þ jjDB bxBð Þjj2ð Þ ð6Þ

Fig. 10 Several selected examples of wet to not-wet translation
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Vertical flipping and rotation (± 35∘) are used for data augmentation. We set λ = 10 for
training. We adopted the Adam optimizer [22] with a initial learning rate of 0.0002 and
momentum decay rates β1 = 0.5 and β2 = 0.999 for both D and G. The batch size is 1.

As the loss curve does not reveal much information in training GANs, we periodically
translated fingerprint images and tested the results in order to check convergence.

4 Experimental results and discussion

4.1 Evaluation

In order to obtain quantitative results, a low quality fingerprint classifier based on deep neural
networks proposed in [35] is used. The classifier is trained using a different subset of the same
database and achieved high performance [35]. Therefore, it is an appropriate choice in order to
evaluate the performance of the proposed method.

We used trained generators to translate images from a test set of distorted domain to
undistorted domain (dry to not-dry, wet to not-wet, dotted to not-dotted, damaged to not-
damaged, blurred to not-blurred). Images in test set are not used for the training. After
translating distorted fingerprint images to undistorted fingerprint images, we used the classifier

Fig. 11 Several selected examples of damaged to not-damaged translation
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to evaluate the percentage of images that is labelled as undistorted. Table 1 presents the
classification results of each class.

4.2 Discussion

Figure 9 presents several selected examples of dry to not-dry translation. The generator
network fills small discontinuities along the ridges caused by small contact area between the
fingerprint and the scanner surface. After translation, the ridge pattern of dry fingerprints are
enhanced and more distinguishable.

Figure 10 shows selected examples of wet to not-wet translation. For this type of distorted
fingerprint images, the generator network enhances the ridge pattern by removing the unwant-
ed density in pixels caused by the contact of valleys in fingerprints to the scanner surface. The
output images demonstrate less valley-contact, and higher contrast between ridges and valleys.
This class has the highest classification performance (see Table 1).

Example damaged to not-damaged translation results are shown in Fig. 11. This type of
distorted fingerprints have some scars or other problematic tissues. After translation the scars
and cuts in the images are filled by the generator with respect to the original ridge pattern.
While the generators correct relatively small cuts completely, a good improvement on rela-
tively bigger cuts and gaps are obtained as well.

Fig. 12 Several selected examples of dotted to not-dotted translation
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For dotted to not-dotted translation, example results are shown in Fig. 12. The generator
improves the visibility of the ridge patterns and makes the dots caused by excessive sweating
much less visible. It is also worth to note that the obtained results shows that the generators
also fixes some issues caused by dryness in dotted fingerprint images. The presence of dots is
also possible in not-dry fingerprints and our trained generator performs well in enhancing not-
dry samples as well. As one might expect the dots are almost indistinguishable in a well
enhanced ridge pattern.

Several example blurred to not-blurred translation results are presented in Fig. 13.
This class has the lowest classification performance. As it can be seen from Fig. 13,
due to the nature of CycleGAN which still produce smoothed output, the blurred
fingerprint are not necessarily enhanced and this is also reflected in Table 1.

5 Conclusion

In work proposed an unpaired image-to-image translation using CycleGAN for translating
images from distorted domain to undistorted domain, namely dry to not-dry, wet to not-wet,
dotted to not-dotted, damaged to not-damaged, and blurred to not-blurred. In this work, a real

Fig. 13 Several selected examples of blurred to not-blurred translation
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low quality fingerprint images collected at VISA centres were used, hence the represented
experimental results are reflecting the real-world performance of the proposed algorithm. In
order to illustrate the effect of the proposed CycleGAN based fingerprint image undistortion, a
VGG16 based convolutional neural network was adopted to evaluate the correct score of
images that is labelled as undistorted. The highest and lowest quality improvement was
achieved for wetness and blurred fingerprints, respectively.
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