183 research outputs found

    On the Generalisation Capabilities of Fingerprint Presentation Attack Detection Methods in the Short Wave Infrared Domain

    Full text link
    Nowadays, fingerprint-based biometric recognition systems are becoming increasingly popular. However, in spite of their numerous advantages, biometric capture devices are usually exposed to the public and thus vulnerable to presentation attacks (PAs). Therefore, presentation attack detection (PAD) methods are of utmost importance in order to distinguish between bona fide and attack presentations. Due to the nearly unlimited possibilities to create new presentation attack instruments (PAIs), unknown attacks are a threat to existing PAD algorithms. This fact motivates research on generalisation capabilities in order to find PAD methods that are resilient to new attacks. In this context, we evaluate the generalisability of multiple PAD algorithms on a dataset of 19,711 bona fide and 4,339 PA samples, including 45 different PAI species. The PAD data is captured in the short wave infrared domain and the results discuss the advantages and drawbacks of this PAD technique regarding unknown attacks

    Deep Learning based Fingerprint Presentation Attack Detection: A Comprehensive Survey

    Full text link
    The vulnerabilities of fingerprint authentication systems have raised security concerns when adapting them to highly secure access-control applications. Therefore, Fingerprint Presentation Attack Detection (FPAD) methods are essential for ensuring reliable fingerprint authentication. Owing to the lack of generation capacity of traditional handcrafted based approaches, deep learning-based FPAD has become mainstream and has achieved remarkable performance in the past decade. Existing reviews have focused more on hand-cratfed rather than deep learning-based methods, which are outdated. To stimulate future research, we will concentrate only on recent deep-learning-based FPAD methods. In this paper, we first briefly introduce the most common Presentation Attack Instruments (PAIs) and publicly available fingerprint Presentation Attack (PA) datasets. We then describe the existing deep-learning FPAD by categorizing them into contact, contactless, and smartphone-based approaches. Finally, we conclude the paper by discussing the open challenges at the current stage and emphasizing the potential future perspective.Comment: 29 pages, submitted to ACM computing survey journa

    Biometric presentation attack detection: beyond the visible spectrum

    Full text link
    The increased need for unattended authentication in multiple scenarios has motivated a wide deployment of biometric systems in the last few years. This has in turn led to the disclosure of security concerns specifically related to biometric systems. Among them, presentation attacks (PAs, i.e., attempts to log into the system with a fake biometric characteristic or presentation attack instrument) pose a severe threat to the security of the system: any person could eventually fabricate or order a gummy finger or face mask to impersonate someone else. In this context, we present a novel fingerprint presentation attack detection (PAD) scheme based on i) a new capture device able to acquire images within the short wave infrared (SWIR) spectrum, and i i) an in-depth analysis of several state-of-theart techniques based on both handcrafted and deep learning features. The approach is evaluated on a database comprising over 4700 samples, stemming from 562 different subjects and 35 different presentation attack instrument (PAI) species. The results show the soundness of the proposed approach with a detection equal error rate (D-EER) as low as 1.35% even in a realistic scenario where five different PAI species are considered only for testing purposes (i.e., unknown attacks

    FedBiometric: Image Features Based Biometric Presentation Attack Detection Using Hybrid CNNs-SVM in Federated Learning

    Get PDF
    In the past few years, biometric identification systems have become popular for personal, national, and global security. In addition to other biometric modalities, facial and fingerprint recognition have gained popularity due to their uniqueness, stability, convenience, and cost-effectiveness compared to other biometric modalities. However, the evolution of fake biometrics, such as printed materials, 2D or 3D faces, makeup, and cosmetics, has brought new challenges. As a result of these modifications, several facial and fingerprint Presentation Attack Detection methods have been proposed to distinguish between live and spoof faces or fingerprints. Federated learning can play a significant role in this problem due to its distributed learning setting and privacy-preserving advantages. This work proposes a hybrid ResNet50-SVM based federated learning model for facial Presentation Attack Detection utilizing Local Binary Pattern (LBP), or Gabor filter-based extracted image features. For fingerprint Presentation Attack Detection (PAD), this work proposes a hybrid CNN-SVM based federated learning model utilizing Local Binary Pattern (LBP), or Histograms of Oriented Gradient (HOG)-based extracted image features
    corecore