408 research outputs found

    DiffVein: A Unified Diffusion Network for Finger Vein Segmentation and Authentication

    Full text link
    Finger vein authentication, recognized for its high security and specificity, has become a focal point in biometric research. Traditional methods predominantly concentrate on vein feature extraction for discriminative modeling, with a limited exploration of generative approaches. Suffering from verification failure, existing methods often fail to obtain authentic vein patterns by segmentation. To fill this gap, we introduce DiffVein, a unified diffusion model-based framework which simultaneously addresses vein segmentation and authentication tasks. DiffVein is composed of two dedicated branches: one for segmentation and the other for denoising. For better feature interaction between these two branches, we introduce two specialized modules to improve their collective performance. The first, a mask condition module, incorporates the semantic information of vein patterns from the segmentation branch into the denoising process. Additionally, we also propose a Semantic Difference Transformer (SD-Former), which employs Fourier-space self-attention and cross-attention modules to extract category embedding before feeding it to the segmentation task. In this way, our framework allows for a dynamic interplay between diffusion and segmentation embeddings, thus vein segmentation and authentication tasks can inform and enhance each other in the joint training. To further optimize our model, we introduce a Fourier-space Structural Similarity (FourierSIM) loss function, which is tailored to improve the denoising network's learning efficacy. Extensive experiments on the USM and THU-MVFV3V datasets substantiates DiffVein's superior performance, setting new benchmarks in both vein segmentation and authentication tasks

    A Framework for Verification in Contactless Secure Physical Access Control and Authentication Systems

    Get PDF
    Biometrics is one of the very popular techniques in user identification for accessing institutions and logging into attendance systems. Currently, some of the existing biometric techniques such as the use of fingerprints are unpopular due to COVID-19 challenges. This paper identifies the components of a framework for secure contactless access authentication. The researcher selected 50 journals from Google scholar which were used to analyze the various components used in a secure contactless access authentication framework. The methodology used for research was based on the scientific approach of research methodology that mainly includes data collection from the 50 selected journals, analysis of the data and assessment of results. The following components were identified: database, sensor camera, feature extraction methods, matching and decision algorithm. Out of the considered journals the most used is CASIA database at 40%, CCD Sensor camera with 56%, Gabor feature extraction method at 44%, Hamming distance for matching at 100% and PCA at 100% was used for decision making. These findings will assist the researcher in providing a guide on the best suitable components. Various researchers have proposed an improvement in the current security systems due to integrity and security problems

    Local Descriptor Approach to Wrist Vein Recognition with DVH-LBP Domain Feature Selection Scheme

    Get PDF
    Local Binary Pattern (LBP) is one of the well-known image recognition descriptors for texture-based images due to its superiority. LBP can represent texture well due to its ability to discriminate and compute efficiency. However, when it is used to describe textures that are barely visible, such as vein images (especially contactless vein), its discrimination ability is reduced, which leads to lower performance. LBP has extensively been implemented for features extraction in recognition system of hand, eye, face, eye, and other images. Nowadays, there are a lot of developments of hand recognition systems as a hand is a part of the body that can be easily used in the recognition process and it is easier to contact the sensor when taking the image (user-friendly). In particular, a hand consists of various parts that can be used, such as palm and fingers. Other parts like dorsal and wrist can also be used as they have unique characteristics, i.e., they are different from each other, and they do not change with ages. Changes in pixel intensity can be derived from skeletal vein images to distinguish individuals in palm vein recognition. In the previous paper, we proposed a method diagonal, vertical, horizontal local binary pattern (DVH-LBP) for implementing the palm vein recognition system successfully. Through this work, we improve our previous procedure and implement the improved method for recognizing wrist. In particular, this study proposes a new and robust directional extraction technique for encoding the functions of the wrist vein in a simple representation of binary numbers. Simulation results show the low equal error rate (ERR) of the proposed technique is 0.012, and the recognition rate is 99.4%

    Biometric Systems

    Get PDF
    Because of the accelerating progress in biometrics research and the latest nation-state threats to security, this book's publication is not only timely but also much needed. This volume contains seventeen peer-reviewed chapters reporting the state of the art in biometrics research: security issues, signature verification, fingerprint identification, wrist vascular biometrics, ear detection, face detection and identification (including a new survey of face recognition), person re-identification, electrocardiogram (ECT) recognition, and several multi-modal systems. This book will be a valuable resource for graduate students, engineers, and researchers interested in understanding and investigating this important field of study

    Curved Gabor Filters for Fingerprint Image Enhancement

    Full text link
    Gabor filters play an important role in many application areas for the enhancement of various types of images and the extraction of Gabor features. For the purpose of enhancing curved structures in noisy images, we introduce curved Gabor filters which locally adapt their shape to the direction of flow. These curved Gabor filters enable the choice of filter parameters which increase the smoothing power without creating artifacts in the enhanced image. In this paper, curved Gabor filters are applied to the curved ridge and valley structure of low-quality fingerprint images. First, we combine two orientation field estimation methods in order to obtain a more robust estimation for very noisy images. Next, curved regions are constructed by following the respective local orientation and they are used for estimating the local ridge frequency. Lastly, curved Gabor filters are defined based on curved regions and they are applied for the enhancement of low-quality fingerprint images. Experimental results on the FVC2004 databases show improvements of this approach in comparison to state-of-the-art enhancement methods

    Improved methods for finger vein identification using composite median-wiener filter and hierarchical centroid features extraction

    Get PDF
    Finger vein identification is a potential new area in biometric systems. Finger vein patterns contain highly discriminative characteristics, which are difficult to be forged because they reside underneath the skin of the finger and require a specific device to capture them. Research have been carried out in this field but there is still an unresolved issue related to low-quality data due to data capturing and processing. Low-quality data have caused errors in the feature extraction process and reduced identification performance rate in finger vein identification. To address this issue, a new image enhancement and feature extraction methods were developed to improve finger vein identification. The image enhancement, Composite Median-Wiener (CMW) filter would improve image quality and preserve the edges of the finger vein image. Next, the feature extraction method, Hierarchical Centroid Feature Method (HCM) was fused with statistical pixel-based distribution feature method at the feature-level fusion to improve the performance of finger vein identification. These methods were evaluated on public SDUMLA-HMT and FV-USM finger vein databases. Each database was divided into training and testing sets. The average result of the experiments conducted was taken to ensure the accuracy of the measurements. The k-Nearest Neighbor classifier with city block distance to match the features was implemented. Both these methods produced accuracy as high as 97.64% for identification rate and 1.11% of equal error rate (EER) for measures verification rate. These showed that the accuracy of the proposed finger vein identification method is higher than the one reported in the literature. As a conclusion, the results have proven that the CMW filter and HCM have significantly improved the accuracy of finger vein identification

    A Method for Obtaining Electronic Voting Systems based Voter Confidentiality and Voting Accuracy

    Get PDF
    A Voting is common in our daily life, from electing president to electing committee. A complete electronic voting scheme suitable for all kinds of voting with safe guaranty where the voter?s privacy can be protected. Fingerprint system security have been investigated, including the use of fake fingerprints for masquerading identity, the problem of fingerprint alteration or obfuscation has received very little attention. Fingerprint image quality assessment software (e.g., NFIQ) cannot always detect altered fingerprints since the implicit image quality due to alteration may not change significantly. The main contributions of this Research are-1.Compiling case studies of incidents where individuals were found to have altered their fingerprints for circumventing AFIS.2.Identifying the damages of fingerprint alteration on the accuracy of a commercial fingerprint matcher.3.Classifying the alterations into three major categories and suggesting possible countermeasures.4.Developing a technique to automatically detect altered fingerprints based on analyzing orientation field and minutiae distribution.5.Evaluating the proposed technique and the NFIQ algorithm on a big database of altered fingerprints provided by a law enforcement agency. Experimental results show the feasibility of the proposed approach in detecting altered fingerprints and highlight the need to further pursue this problem

    Biometric Systems

    Get PDF
    Biometric authentication has been widely used for access control and security systems over the past few years. The purpose of this book is to provide the readers with life cycle of different biometric authentication systems from their design and development to qualification and final application. The major systems discussed in this book include fingerprint identification, face recognition, iris segmentation and classification, signature verification and other miscellaneous systems which describe management policies of biometrics, reliability measures, pressure based typing and signature verification, bio-chemical systems and behavioral characteristics. In summary, this book provides the students and the researchers with different approaches to develop biometric authentication systems and at the same time includes state-of-the-art approaches in their design and development. The approaches have been thoroughly tested on standard databases and in real world applications

    A design of license plate recognition system using convolutional neural network

    Get PDF
    This paper proposes an improved Convolutional Neural Network (CNN) algorithm approach for license plate recognition system. The main contribution of this work is on the methodology to determine the best model for four-layered CNN architecture that has been used as the recognition method. This is achieved by validating the best parameters of the enhanced Stochastic Diagonal Levenberg Marquardt (SDLM) learning algorithm and network size of CNN. Several preprocessing algorithms such as Sobel operator edge detection, morphological operation and connected component analysis have been used to localize the license plate, isolate and segment the characters respectively before feeding the input to CNN. It is found that the proposed model is superior when subjected to multi-scaling and variations of input patterns. As a result, the license plate preprocessing stage achieved 74.7% accuracy and CNN recognition stage achieved 94.6% accuracy

    Image Segmentation Techniques: A Survey

    Get PDF
    Segmenting an image utilizing diverse strategies is the primary technique of Image Processing. The technique is broadly utilized in clinical image handling, face acknowledgment, walker location, and so on. Various objects in an image can be recognized using image segmentation methods. Researchers have come up with various image segmentation methods for effective analysis. This paper presents a survey and sums up the designs process of essential image segmentation methods broadly utilized with their advantages and weaknesses
    corecore