2 research outputs found

    Rethinking Default Values: a Low Cost and Efficient Strategy to Define Hyperparameters

    Full text link
    Machine Learning (ML) algorithms have been increasingly applied to problems from several different areas. Despite their growing popularity, their predictive performance is usually affected by the values assigned to their hyperparameters (HPs). As consequence, researchers and practitioners face the challenge of how to set these values. Many users have limited knowledge about ML algorithms and the effect of their HP values and, therefore, do not take advantage of suitable settings. They usually define the HP values by trial and error, which is very subjective, not guaranteed to find good values and dependent on the user experience. Tuning techniques search for HP values able to maximize the predictive performance of induced models for a given dataset, but have the drawback of a high computational cost. Thus, practitioners use default values suggested by the algorithm developer or by tools implementing the algorithm. Although default values usually result in models with acceptable predictive performance, different implementations of the same algorithm can suggest distinct default values. To maintain a balance between tuning and using default values, we propose a strategy to generate new optimized default values. Our approach is grounded on a small set of optimized values able to obtain predictive performance values better than default settings provided by popular tools. After performing a large experiment and a careful analysis of the results, we concluded that our approach delivers better default values. Besides, it leads to competitive solutions when compared to tuned values, making it easier to use and having a lower cost. We also extracted simple rules to guide practitioners in deciding whether to use our new methodology or a HP tuning approach.Comment: 44 pages, 13 figure

    A meta-learning recommender system for hyperparameter tuning: predicting when tuning improves SVM classifiers

    Full text link
    For many machine learning algorithms, predictive performance is critically affected by the hyperparameter values used to train them. However, tuning these hyperparameters can come at a high computational cost, especially on larger datasets, while the tuned settings do not always significantly outperform the default values. This paper proposes a recommender system based on meta-learning to identify exactly when it is better to use default values and when to tune hyperparameters for each new dataset. Besides, an in-depth analysis is performed to understand what they take into account for their decisions, providing useful insights. An extensive analysis of different categories of meta-features, meta-learners, and setups across 156 datasets is performed. Results show that it is possible to accurately predict when tuning will significantly improve the performance of the induced models. The proposed system reduces the time spent on optimization processes, without reducing the predictive performance of the induced models (when compared with the ones obtained using tuned hyperparameters). We also explain the decision-making process of the meta-learners in terms of linear separability-based hypotheses. Although this analysis is focused on the tuning of Support Vector Machines, it can also be applied to other algorithms, as shown in experiments performed with decision trees.Comment: 49 pages, 11 figure
    corecore