5 research outputs found

    Hierarchical Attention Network for Action Segmentation

    Full text link
    The temporal segmentation of events is an essential task and a precursor for the automatic recognition of human actions in the video. Several attempts have been made to capture frame-level salient aspects through attention but they lack the capacity to effectively map the temporal relationships in between the frames as they only capture a limited span of temporal dependencies. To this end we propose a complete end-to-end supervised learning approach that can better learn relationships between actions over time, thus improving the overall segmentation performance. The proposed hierarchical recurrent attention framework analyses the input video at multiple temporal scales, to form embeddings at frame level and segment level, and perform fine-grained action segmentation. This generates a simple, lightweight, yet extremely effective architecture for segmenting continuous video streams and has multiple application domains. We evaluate our system on multiple challenging public benchmark datasets, including MERL Shopping, 50 salads, and Georgia Tech Egocentric datasets, and achieves state-of-the-art performance. The evaluated datasets encompass numerous video capture settings which are inclusive of static overhead camera views and dynamic, ego-centric head-mounted camera views, demonstrating the direct applicability of the proposed framework in a variety of settings.Comment: Published in Pattern Recognition Letter

    Fine-grained action segmentation using the semi-supervised action GAN

    No full text
    In this paper we address the problem of continuous fine-grained action segmentation, in which multiple actions are present in an unsegmented video stream. The challenge for this task lies in the need to represent the hierarchical nature of the actions and to detect the transitions between actions, allowing us to localise the actions within the video effectively. We propose a novel recurrent semi-supervised Generative Adversarial Network (GAN) model for continuous fine-grained human action segmentation. Temporal context information is captured via a novel Gated Context Extractor (GCE) module, composed of gated attention units, that directs the queued context information through the generator model, for enhanced action segmentation. The GAN is made to learn features in a semi-supervised manner, enabling the model to perform action classification jointly with the standard, unsupervised, GAN learning procedure. We perform extensive evaluations on different architectural variants to demonstrate the importance of the proposed network architecture, and show that it is capable of outperforming current state-of-the-art on three challenging datasets: 50 Salads, MERL Shopping and Georgia Tech Egocentric Activities dataset.</p
    corecore