3,498 research outputs found

    Secure data sharing and processing in heterogeneous clouds

    Get PDF
    The extensive cloud adoption among the European Public Sector Players empowered them to own and operate a range of cloud infrastructures. These deployments vary both in the size and capabilities, as well as in the range of employed technologies and processes. The public sector, however, lacks the necessary technology to enable effective, interoperable and secure integration of a multitude of its computing clouds and services. In this work we focus on the federation of private clouds and the approaches that enable secure data sharing and processing among the collaborating infrastructures and services of public entities. We investigate the aspects of access control, data and security policy languages, as well as cryptographic approaches that enable fine-grained security and data processing in semi-trusted environments. We identify the main challenges and frame the future work that serve as an enabler of interoperability among heterogeneous infrastructures and services. Our goal is to enable both security and legal conformance as well as to facilitate transparency, privacy and effectivity of private cloud federations for the public sector needs. © 2015 The Authors

    Attribute-based encryption for cloud computing access control: A survey

    Get PDF
    National Research Foundation (NRF) Singapore; AXA Research Fun

    Ex-HABE with User Accountability for Secure Access Control in Cloud

    Get PDF
    Data outsourcing is becoming a useful and feasible paradigm with the rapid application of service-oriented technologies. Many researchers have tried combination of access control and cryptography to propose a model to protect sensitive information in this outsourcing scenario. However, these combinations in existing approaches have difficulty in key management and key distribution when fine-grained data access is required. Taking the complexity of fine-grained access control policy and the wide-reaching users of cloud in account, this issue would become extremely difficult to iron out. Various system models using attribute-based encryption (ABE) have been proposed however, most of them suffer from heavy overhead in implementing the access control policies. In this paper, a system is proposed with extended hierarchical attribute-based encryption (HABE) by using ciphertext-policy attribute-based encryption (ABE). It uses the hierarchical structure of users and bilinear mapping for generating the keys for various data handlers. Also the system focuses on user tracking by allocating an unique id to user. The system uses traitor tracing along with separation of duty made available by HABE and reduces the scope of key abuse. It is formally proved extended HABE with traitor tracing adds on to user accountability if user tracking for resource is maintained for hierarchical systems. DOI: 10.17762/ijritcc2321-8169.16042

    Active data-centric framework for data protection in cloud environment

    Get PDF
    Cloud computing is an emerging evolutionary computing model that provides highly scalable services over highspeed Internet on a pay-as-usage model. However, cloud-based solutions still have not been widely deployed in some sensitive areas, such as banking and healthcare. The lack of widespread development is related to users&rsquo; concern that their confidential data or privacy would leak out in the cloud&rsquo;s outsourced environment. To address this problem, we propose a novel active data-centric framework to ultimately improve the transparency and accountability of actual usage of the users&rsquo; data in cloud. Our data-centric framework emphasizes &ldquo;active&rdquo; feature which packages the raw data with active properties that enforce data usage with active defending and protection capability. To achieve the active scheme, we devise the Triggerable Data File Structure (TDFS). Moreover, we employ the zero-knowledge proof scheme to verify the request&rsquo;s identification without revealing any vital information. Our experimental outcomes demonstrate the efficiency, dependability, and scalability of our framework.<br /
    • …
    corecore