
Association for Information Systems Association for Information Systems

AIS Electronic Library (AISeL) AIS Electronic Library (AISeL)

ACIS 2012 Proceedings Australasian (ACIS)

2012

Active data-centric framework for data protection in cloud Active data-centric framework for data protection in cloud

environment environment

Lingfeng Chen
University of Technology,Sydney, Lingfeng.Chen@student.uts.edu.au

Doan Hoang
University of Technology,Sydney, dhoang@it.uts.edu.au

Follow this and additional works at: https://aisel.aisnet.org/acis2012

Recommended Citation Recommended Citation
Chen, Lingfeng and Hoang, Doan, "Active data-centric framework for data protection in cloud
environment" (2012). ACIS 2012 Proceedings. 71.
https://aisel.aisnet.org/acis2012/71

This material is brought to you by the Australasian (ACIS) at AIS Electronic Library (AISeL). It has been accepted for
inclusion in ACIS 2012 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more
information, please contact elibrary@aisnet.org.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301389017?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://aisel.aisnet.org/
https://aisel.aisnet.org/acis2012
https://aisel.aisnet.org/acis
https://aisel.aisnet.org/acis2012?utm_source=aisel.aisnet.org%2Facis2012%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/acis2012/71?utm_source=aisel.aisnet.org%2Facis2012%2F71&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

23rd Australasian Conference on Information Systems Active transformation for cloud data protection
3-5 Dec 2012, Geelong Chen & Hoang

1

Active data-centric framework for data protection in cloud environment

Lingfeng Chen, Doan B. Hoang
Advance Research in Networking Laboratory

iNEXT-Centre for Innovation in IT Services and Applications
University of Technology, Sydney

Broadway NSW 2007 Australia
Email: Lingfeng.Chen@uts.edu.au, Doan.Hoang@uts.edu.au

Abstract

Cloud computing is an emerging evolutionary computing model that provides highly scalable services over high-
speed Internet on a pay-as-usage model. However, cloud-based solutions still have not been widely deployed in
some sensitive areas, such as banking and healthcare. The lack of widespread development is related to users’
concern that their confidential data or privacy would leak out in the cloud’s outsourced environment. To address
this problem, we propose a novel active data-centric framework to ultimately improve the transparency and
accountability of actual usage of the users’ data in cloud. Our data-centric framework emphasizes “active”
feature which packages the raw data with active properties that enforce data usage with active defending and
protection capability. To achieve the active scheme, we devise the Triggerable Data File Structure (TDFS).
Moreover, we employ the zero-knowledge proof scheme to verify the request’s identification without revealing
any vital information. Our experimental outcomes demonstrate the efficiency, dependability, and scalability of
our framework.

Keywords

Cloud Computing, Active data-centric, Zero-knowledge proof, Transformation, Tamper-proof

INTRODUCTION

In recent years, the products and services around cloud computing have sprung up. Consumers can take
advantage of this novel computing paradigm to achieve ultra-large-scalable computing and storage, real-time
resource sharing, and convenient and productive services on a pay-as-usage basis over the Internet. However, this
growing IT market is suffering from some security threats and concern of users who are worried about losing
control of their own data, especially in some security and privacy sensitive application domains. Cloud
computing adopts a functional segregation mechanism between resource consumed and user’s devices to achieve
outsourced computing and data management. This paradigm abstracts the provided services from the users. The
users may not know who, what, where, when, how, and why their data is accessed or moved in the cloud service
providers’ (CSPs) environments (Ko et al. 2011a). Some researches and critics (Grove 2011; Lin and Squicciarini
2010; Wang et al. 2010; Yu et al. 2010) emphasized that the core data protection issues of cloud computing are
related to controllability, security, and privacy. Conventional data protection schemes such as data dispersal
storage (Wang et al. 2009; Wang et al. 2011), designated cryptographic mechanism (Goh et al. 2003; Kallahalla
et al. 2003; Yu et al. 2010), third party trust management (Abawajy 2011; Firdhous et al. 2011; Wang et al. 2010)
and policy-based access control (Goyal and Mikkilineni 2009; Lin and Squicciarini 2010; Takabi and Joshi
2012), etc. are able to perform integrity guarantee of data, or encrypt data with a public key infrastructure, or
verify access behaviour correctness from a third party trust manager to achieve data safety and integrity.
However, these solutions lack appropriate schemes to address accountability, auditability, and transparency
which are considered the main factors to solve who-what-how-why related questions (Ko et al. 2011b;
Sundareswaran et al. 2012). Moreover, in cloud environments, highly complex and dynamic hierarchical service
chain determines that data handling may be delegated from a direct CSP to another different CSPs in a flexible
manner (Sundareswaran et al. 2011), but often these CSPs do not employ the same protection schemes and
standards (Foster et al. 2008).

To address the above problems, we propose an innovative approach that satisfies the requirement of highly
decentralized cloud environment. Instead of paying attention to the attacks or violations themselves, we focus on
our target data, and equip it with self-describing and self-defending capability. Our proposed framework
combines preventive scheme (strong enforcement of access control and integrity verification) and detective
scheme (logging data usage record and alerting violation). Moreover, the framework emphasizes “active” feature
which packages raw data with active properties that enforce data usage with active defending and protection
capability. The raw user’s data is required to transform to our novel Triggerable Data File Structure (TDFS)
before storage in the cloud. TDFS is independent of cloud third parties auditor and able to self-defend in
untrusted or compromised cloud hosts. Simultaneously, it remains in cooperation constantly with cloud third
parties auditor to achieve a federate protection requirement. Any access to our TDFS will trigger an automated

23rd Australasian Conference on Information Systems Active transformation for cloud data protection
3-5 Dec 2012, Geelong Chen & Hoang

2

and authenticated process inside the data. This strong enforcement also triggers log information collection
procedure (which records every access to the specific data items) that will be utilized to improve transparency
and accountability of data usage via sending the log information to the data owner. To achieve the tamper-proof
feature, we develop a shell program which is executed prior to accessing data core. The shell and the core
constitute our framework’s protection scheme. The shell takes charge of detection of tampering, verification and
identification of request, remote communication, real-time logging, and terminate the program when the
tampering is evident. The core encapsulates data operation interfaces with encrypted data, and isolates from the
shell. In addition, we employ the zero-knowledge proof scheme to verify the request’s identification without
revealing any vital information which may be leveraged by hackers or attackers to disclosure user’s data by
forging a set of valid request parameters. Our active data-centric framework emphasizes proactivity and
intelligence of data. We summarize our main contributions as follows:

 Our framework achieves platform-independent and multi-tenant support in the cloud. It does not rely on the
third party trusted managers.

 Our security framework tightly binds to data. Verification and log of any access on data is enforceable, and
this satisfies the requirement of accountability and auditability.

 Our framework achieves ubiquitous monitoring and tracking of data usage record, no matter where the data is
located. Moreover, any access of data will be processed inside the data rather executed by a third party tool,
guaranteeing minimum information disclosure of data.

 Our framework for data protection in the cloud is portable, active, and light-weight.
 Demonstration of the efficiency, dependability, and scalability of the framework with experiments on a real

cloud test bed.
 We also provide a detailed analysis and evaluation of our scheme.

The rest of the paper is organized as follows. Section 2 introduces the related works in current research areas
related with data protection and security in cloud computing. Section 3 presents an overall active data-centric
framework and our previous works, demonstrates the framework infrastructure, and describes the corresponding
core schemes. Section 4 presents the security analysis of our proposed schemes, followed by the performance
study. Section 5 concludes the paper.

RELATED WORKS

As cloud computing integrates and extends from existing Grid Technology, Service-Oriented Architecture, and
Utility Computing Technology, issues that accompany these technologies are also retained in cloud computing.
Conventional data protection schemes address security and privacy related issues through cryptographic
primitives (Kallahalla et al. 2003; Yu et al. 2010) or data dispersal storage (Wang et al. 2009; Wang et al. 2011).
These techniques adopted several effective and complicated key distribution or algorithms to guarantee data
safety and integrity. However, they inevitably introduce complexity and unnecessary computational and
communicational overhead. Besides that, these techniques do not provide support for accountability and
auditability once user’s data is mandated in the cloud side.

Several efforts (Abawajy 2011; Firdhous et al. 2011; Wang et al. 2010) introduced trust computing concept for
cloud data security through a trusted third party management system. These schemes can efficiently increase the
transparency of data usage and prevent their data from being compromised or leaked by the CSP. However, this
type of solutions does not build in a protective capability on data once the adversary penetrates the data storage
service and obtains direct access privilege on data, which is still under threat. Another representative approach is
the data-centric protection which shifts protection mechanism from the third party protection environment to data
where the data itself is strongly enforced according to the inner protection model that enables data to generate a
self-defending and self-protection framework.

The work (Holford et al. 2004) designed a self-defending object which is an extension of the object oriented
programming paradigm, and encapsulates sensitive data and functionality rather than being distributed
throughout the application. This work was at an early-stage theoretic research, and no practical outcome was
shown. Another similar work (Angin et al. 2010) proposed an entity-centric approach for privacy and identity
management. It utilized active bundles and anonymous identification procedure to authenticate users to service
providers to use the cloud service. This work has a similar concept to our work, but, differently, they
encapsulated the personal identity information, privacy policy and a virtual machine in the entity, not data per se.
Besides that, our research goal and techniques are entirely different.

Sundareswaran et al. (2011) and Sundareswaran et al. (2012) proposed a novel highly decentralized information
accountability framework to keep track of data usage in the cloud. They leverage object-centred approach that
encapsulates logging mechanism with users’ data and policies to achieve a compulsory enforcement of auditing
mechanism. However, our work is different from theirs on several aspects. Firstly, our TDFS supports a
hierarchical data structure for controlling. Users can only access some portion of the data, not just support image-

23rd Australasian Conference on Information Systems Active transformation for cloud data protection
3-5 Dec 2012, Geelong Chen & Hoang

3

type data. Secondly, we move our authorization and authentication work from inside the file to an external third
party auditor due to several consideration: 1) our access control policy is designed to operate in the cloud context
of highly distributed access control scenarios. Executing a fine-grained authentication in data file may cause
more overhead to TDFS; 2) the policy is highly dynamic in the distributed cloud environment. The obsolete
policy in TDFS may cause inconsistency of authentication. Moreover, we develop two level protection barriers to
achieve tamper-proof scheme, which are the shell and the core in TDFS. We also employ the zero-knowledge
proof scheme to verify the request identification without revealing any vital information which may be leveraged
by hackers or attackers to disclosure data.

ACTIVE DATA-CENTRIC FRAMEWORK

In the conventional computing-centric or application-centric data protection model, third party services
emphasize an external security environment rather than on the data. In cloud computing environments, highly
complex and dynamic hierarchical service chain determines that data handling may be delegated from a direct
CSP to another different CSP in a flexible manner (Sundareswaran et al. 2011), and these CSPs do not enforce
the same protection scheme and standard (Foster et al. 2008). Moreover, data may still be under threat and
violation when adversaries penetrate into the cloud data storage layer even though we employ cryptographic
schemes to increase the difficulty of revealing sensitive information. Furthermore, for accountability and
auditability of data usage in the cloud, traditional probabilistic sampling technique (Wang et al. 2010) is not
sufficient to provide fully accurate and timely auditing information due to its adoption of periodically fetching of
data usage status. Based on these considerations, we propose an active data-centric framework that encloses an
intelligent analysis mechanism along with users’ data to generate an active object with self-defending and self-
describing capabilities. Through the localization of intelligently active scripts within its encapsulating object,
data’s structure is enhanced. A violation on such data will automatically raise an alarm and alert its data owner or
related legislation organization. The active data-centric framework facilitates data to defend external attack even
though it is located in an untrusted environment. Comparing to computing-centric or application-centric data
protection models, some verification and data operation functions in data-centric framework are executed by data
rather than a third party service provider. Moreover, this framework can support a multi-tenant feature through
independent and isolated data unit.

Our previous works (Chen and Hoang 2011) focused on implementing a robust data protection framework in a
healthcare cloud, which is surrounded by a chain of protection schemes from designated access control,
continuous monitoring, to active auditing from system-level to satisfy scalable, fine-grained, intrusion-tolerant,
and consistent requirements. There are three crucial security components: Active Auditing Control (AAC)
module, Cloud-based Privacy aware Role Based Access Control (CPRBAC) module, and Surveillance module in
this service architecture. The AAC module offers a distributed transaction management scheme to strengthen
security control integrity and keeps the auditing process from introducing new vulnerability of unauthorized
information leakage towards the data security and privacy requirement. The CPRBAC module enables us to build
designated cloud-based access control services that explicitly support highly dynamic distributed cloud
environment and efficiently restrict users’ access to cloud resources under fine-grained, complex context
scenario. The surveillance module contains a group of verification monitors that are utilized to communicate with
the embedded probes in our designated Triggerable Data File Structure (TDFS) in which we introduced its basic
structure that consists of an executable segment, a header, data blocks and an encoding scheme. Relative to our
previous work, this paper presents a novel active data-centric protection framework. The focus of this paper is to
introduce and develop comprehensively our scheme from the active data-centric perspective. This includes
enhanced construction of TDFS, transformation and trigger principle, tamper-proof scheme, and verification and
identification of requests. Data encapsulates a number of runnable scripts, and we wrap the scripts and data with
Java Archive (Jar) technology (Oracle 2011). The eventual active data can be run on the hosts which deployed a
JVM environment. As the core of active data-centric framework, TDFS has an inner surveillance module,
meanwhile, we propose a verification monitor which is an external monitor to incorporate with TDFS to
maximize accountability and auditability of cloud data. Besides that, our TDFS is active on demand which means
that it maintains an active status when it is triggered, and becomes static when it is unused or untouched. Making
TDFS active all the time would cause unnecessary system overheads and may introduce access conflicts, and
affect scalability requirement.

TRIGGABLE DATA FILE STRUCTURE (TDFS)

As the core of our active data-centric framework, TDFS undertakes a major responsibility in protecting the inner
data content from violation or attack, as well as providing efficient data provision service for incoming requests.
In this section, we introduce our TDFS in details.

1. Construction of TDFS

23rd Australasian Conference on Information Systems Active transformation for cloud data protection
3-5 Dec 2012, Geelong Chen & Hoang

4

As shown in figure 1, our proposed TDFS consists of a shell and a core. The shell is orchestrated with active
tamper-proofing codes and is executed prior to the core when the TDFS is triggered. The TDFS is associated
with a Java runtime environment. When it is triggered by third party entities, the Java.exe in JVM would invoke
GetMainClassName function which obtains the JNIEnv instance, and then invokes getManifest() in
Java.util.jar.JarFileJNIEnv class to return the object value which contains Main-class, the main class that is run
when the TDFS is called. With that, the main function will invoke LoadClass method in Java.c to load the main
class. Next, the main function will invoke the GetStaticMethodID method in JNIEnv instance to search for the
“public static void main (String[] args)” method and then invoke the CallStaticVoidMethod method to process
the incoming request.

Figure 1: The skeleton of TDFS

On entering point of the shell the scripts invoke verifier and identifier to certify request’s validity which includes
the format of request parameters and contents through request identification and verification process as described
in Section 4. In our context, the authentication and authorization related access control functions (Chen and
Hoang 2011) are handled on externally designated servers. A permitted access request which is consistent with
our pre-defined CPRBAC policy will be issued a certification that signifies that the current access request is
derived from our AAC servers. The TDFS will then leverage the zero-knowledge proof scheme to verify and
identify the request. This process will be discussed in the section 4.

Another significant component of shell is the logger module which is utilized to record significant checkpoints
during the whole transaction, data operation outcomes, or even errors when TDFS throws exceptions. The logger
is enforced to record significant inter-mediate information when the Jar is running in the JVM, which efficiently
improves data accountability and auditability. Each log record in TDFS is in the form of {Subject_ID, TDFS_ID,
Entity, Behavior, TimeStamp, Location, Priority} which indicates that a subject identified by Subject_ID
performed a Behavior on TDFS identified by TDFS_ID with Priority level at TimeStamp at Location. During a
singular transaction, all log records marked with regular Priority level are stored temporarily in memory for
performance consideration. Once the data operation finishes, the logger leverages a communicator in the shell to
upload the log records to the TDFS’s external verification monitor. However, the log record marked with
emergency tag will be immediately triggered by the probe, and then notify the communicator to raise an
exception. TimeStamp uses the Network Time Protocol (NTP) to take into account the fact that cloud resources
may distribute across different time zones. Location of TDFS is determined by IP address and MAC address of
the current host. Each TDFS’s log information is transparent to its data owner. When the log records are stored in
the cloud, they are encrypted using the Public Key Infrastructure (PKI) to avoid possible information leakage.
Only the data owner has the corresponding key to disclose them. In addition, sending out the log information of
data usage rather than storing it inside the TDFS is considered for maintaining light-weight feature. The
increasing log information may raise the cost of storage, transfer, or copy of TDFS.

The communicator uses RMI-SSL technique (Konstantinou 2003) to enhance the communication security. Each
TDFS in the cloud has a corresponding supervisor which is a verification monitor in same domain level. These
monitors take charge of monitoring external data operations (such as move, and copy, etc.) which cannot be
detected by the internal probe in TDFS, and communicate with their TDFS. If the TDFS cannot establish a
proper network connection or cannot contact its supervisor, it will switch to the termination state to avoid offline
attack.

The probe in the shell is triggered by three types of activities: program exception, inconsistent checksum with
data blocks, and verification failure of zero-knowledge proof procedure.

Once the verification and identification procedure succeeds, the shell will delegate the control to data core. The
core of the TDFS is wrapped by an executable segment (ES), a header, and data blocks. The runnable scripts in
the ES consist of some basic data operations, data loading, and data analysis functions. These functions are
tightly coupled with the data. We leverage dynamic delegation approach in the ES to call back the shell to trigger
the core and execute the data operations. The header refers to a manifest specifying some basic information of
supplemental data resided at the beginning of a block of data. Data blocks describe our data with a tree-type
structure which is a way of representing the hierarchical nature for a set of linked nodes. This tree-type data
structure supports simultaneous data updates and deletes. Mathematically, it is an ordered directed tree separating

Shell
Verifier&Identifier

TDFS

Probe

Logger

Communicator

Executable Segment

Header

Data Blocks

Core

23rd Australasian Conference on Information Systems Active transformation for cloud data protection
3-5 Dec 2012, Geelong Chen & Hoang

5

data contents into some organized and hierarchical sub-contents. Moreover, an encoding scheme on tree nodes is
proposed in our previous work (Chen and Hoang 2011) to facilitate a quick determination of ancestor-descendent
and parent-child relationships among nodes, querying and updating order-sensitive nodes in high efficiency. Our
data value in the leaf-node is encrypted by system’s public key, only the authorized users in our cloud service can
obtain corresponding private key to decrypt the data blocks. Besides that, our data blocks also support other data
formats, such as image, or media-stream.

2. Transformation process of TDFS

Our raw data is a static entity. Prior to transferring to cloud storage servers, the data is required to be transformed
into a TDFS structure. Essentially, we leverage some active programmable technology such as Jar, etc. to wrap
our data with java bytecode scripts which can execute on a JVM to form an active data unit. These embedded
scripts take charge of request verification and identification, monitoring, and auditing tasks when the
corresponding TDFS is triggered. Meanwhile, our data blocks should be reassembled and encrypted by system’s
public key. Table 1 gives description of notations that are used in our scheme. Figure 2 describes the
transformation procedure.

Figure 2: The transformation procedure from raw data to TDFS

This transformation procedure comprises of two stages: initial transformation and final transformation. Four steps
are required to generate the core in the initial transformation: 1) Content serialization and labelling: firstly, data is
required to be serialized to our system object in order to obtain attribute label set (Dset) for data blocks. Raw data
(RD) of cloud users such as electronic health record in the healthcare area normally exists in the form of XML-
type sequential structure specified by healthcare standards such as HL7 (Dolin et al. 2001). 2) Data block
generation: A PK and SK key pair is created for the TDFS, PK is used to encrypt the Lset, and the corresponding
SK is stored in the AAC server. The data block is then generated with Dset and encrypted Lset. 3) Header
generation: the Hset defined in the header contains the generated manifest specifying the fundamental information
of supplemental data. 4) Data loader builder: this step compiles the JCcore and wraps them into the core. The final
transformation utilizes Ant technique to encapsulate the shell and the core into a TDFS. The shell comprises of
runnable scripts that include verifier and identifier module, probe, communicator, and logger. These modules are
compiled into bytecodes which can be run on the JVM. After the completion of encapsulation of TDFS, it is
registered with our cloud service.

Table 1. Notation used in the scheme description

3. Tamper-proof scheme

There are many situations where attackers may utilize non-conventional approaches such as decompiling or
reverse engineering to crack our TDFS internal defence to maliciously execute our TDFS. Theoretically, we
cannot fully resist the adversaries from disclosure our data in cloud (Sundareswaran et al. 2012). They may
leverage some vulnerabilities of system such as analysing compiled bytecodes, memory breakpoints to penetrate
defence of our TDFS. However, what we can do is to increase the difficulty of disclosure data through non-
symmetric encryption of the attribute value, enforceable monitoring and logging, or raising an alarm on the
occurred violation, rather than prevent the occurrence of the attacks. To achieve these goals, our approach is to
append an additional shell resided outside of data core. This concept is inspired by armored viruses (Guide
2011). The virus programmers create a “shell” program to protect or hide virus’s content from disclosure to

Notation Description Notation Description

PK, SK system public key and user security key JCshell all java codes for shell

Hset attribute set of header JCcore all java codes for core

Dset attribute set of data blocks RD the raw data

Lset attribute value set of data blocks

23rd Australasian Conference on Information Systems Active transformation for cloud data protection
3-5 Dec 2012, Geelong Chen & Hoang

6

escape the defence of anti-virus software. Although this may bring destructive effects on system or data because
the virus could succeed escaping antivirus software via armored technique, we can leverage the technique to
protect our TDFS. We define this layer’s program as “shell”. Our shell performs detection of tampering,
verification and identification of request, remote communication, real-time logging, and terminating the access
when tampering is evident. All components associated with data are wrapped into a core in TDFS. Sensitive data
blocks are encrypted by the system’s public key. They can be only revealed when the adversaries obtain the
corresponding private key, while the private key normally resides in the highly trusted servers. Since we cannot
guarantee that an adversary would not gain possession of our TDFS. To prevent TDFS from tampering attacks
when the adversary penetrates our cloud security firewall (CPRBAC and AAC service) and obtain direct access
of our TDFS, on the one hand, we have to rely on the strength of cryptographic primitives to guarantee the
integrity and confidentiality of the data; on the other hand, the shell actually conceals the real entering point of
data operations. It executes prior to the core in TDFS and the core only accepts requests from the shell. Hence,
when the adversary attempts to extract useful information from our shell scripts to open the path to the core, we
deploy the following approaches to detect the tampering:

 Verification and identification: We use the zero-knowledge proof scheme to verify the requester’s identity
through a three-pass protocol, which is described in section 4 in details.

 Integrity check: Before execution the verification and identification, the TDFS starts a self-check program
to check the checksum of all bytecodes of shell and core. If the new checksum is inconsistent with the
checksum stored in the header, the TDFS terminates the program immediately to block all requests,
meanwhile, sends an alert message to its supervisor (verification monitor).

 Intermediate result check: We define checkpoints in whole program. When these checkpoints return
abnormal data, TDFS will throw an exception and trigger the probe to raise an alarm. We can leverage this
check to detect malicious code insertion.

4. Request identification and verification

This active data-centric approach adopts an executable framework to enforce data protection on an independent
data unit basis. One of the crucial functions of the shell is to ascertain the validity of the incoming requests. Our
goal is to allow the TDFS to verify the request identification without revealing any vital information which may
be used by hackers or attackers to disclosure user’s data by forging a set of valid request parameters. We describe
the zero-knowledge proof scheme and the corresponding analysis in the following section.

Zero-knowledge proof scheme:

When the data request transaction arrives at the final commit stage, the AAC module will directly commit the
transaction through triggering the requested TDFS with a valid proof which is normally issued by the AAC
module to execute a data operation. The enforcement engine in TDFS requires a proof of authentication from the
third party auditors. However, we assume that an active eavesdropper C has already penetrated our security
system and obtained a straightforward access privilege on TDFS. C may still be capable of analysing the
triggering parameters from the AAC to the TDFS, thereby forging a valid request even though C did not
participate in the entire protocol. Hence, to distinguish a valid access from an invalid access (forged one) on the
same data becomes a challenge for the TDFS. In general, the third party proof scheme strongly relies on network
communication in the real world. Hence, the TDFS cannot fulfil the verification process once it cannot contact
the third party trusted service. Moreover, this multi-parties communication procedure is easy to reveal the
vulnerability to the adversaries who may execute a man-in-middle attack. But the zero-knowledge proof scheme
(Pieprzyk et al. 2003; Schnorr 1990) only occurs between two entities. It is still able to provide the proof function
even though the TDFS moves to an untrusted host without network connection. From the perspective of cloud
computing architecture, data may be distributed across multiple domains geographically. This scheme is suitable
to assist the TDFS to distinguish valid request and invalid request. Moreover, it can efficiently reduce the
probability of forging of the proof due to zero information disclosure during the proof process. The following
proposed scheme which is adapted with Schnorr identification scheme (Schnorr 1990):

1. Parameters initialization in the active auditing control (AAC) module:
1) AAC chooses primes p and q such that meet p-1 is divisible by q, and ensures the discrete logarithms of
modules p and q are incalculable in theory. 2) Determines the security level through security parameter t, and
meets qt 2 . 3) AAC chooses β with multiplication order q, and meets ,11  p pq mod1 . 4) Selects

an one-way hash function h(m) which calculates the signature for the message m. AAC publishes a set of security
system parameters (p, q, β) and verification function h(m).

2. Registration of cloud users:
1) When the request arrives at the AAC for registration the service, the AAC would verify the requester’s
identity, and then generates an identifiable string IA which contains the basic information about the user. 2) The
user chooses a private key a which meets 10  qa . AAC calculates corresponding public key

23rd Australasian Conference on Information Systems Active transformation for cloud data protection
3-5 Dec 2012, Geelong Chen & Hoang

7

)(mod pv a  . 3) The user verifies his identity from AAC through conventional presenting personal

information, and then delivers the v to AAC. AAC eventually will issue a certification)),(,,(vIhvIcert AAA 

which binds IA and v.

3. The identification protocol: (Entity A proves its identity to TDFS B)
1) A selects a random number r which meets 11  qr , and computes)(mod px r . A sends),(xcertA to B. 2)

B verifies the certification from A through the public key v in certA in AAC, and then sends a random number e

(which is never used) which meets te 21  to A. 3) A sends the answer)(mod qreay  to B. 4) B

computes)(mod pvz ey   which can be decomposed as ppvpz ey modmod mod ）（   , B accepts A's proof if z=x,

or refuse the A's proof.

Scheme Analysis:
The AAC module provides the system security parameters. The protocol in this scheme takes three-round
communications between the AAC module and the TDFS. Clearly, if A follows the protocol, it will be always
correctly identified by our TDFS B. Now we analyse the security of the protocol from the following aspects:
1) Forge probability: we assume that the attacker C would like to guess B’s question, and let C’s guess be g, B
sends a question e and A has to respond)(mod qrgeay  ）（ . As C is able to guess a valid

response)(mod qry  , hence, the probability of correct guess of e is t2 . If t  40, the success of probability will

be less than 13-109  .
2) This scheme does not reveal any useful information related with a, since x is a random number, y requires a to
calculate, C cannot answer y without a.
3) Discrete logarithm issue is difficult to compute in mathematic theory (Pieprzyk et al. 2003).
4) Once the verification time exceeds the normal time threshold, the TDFS would automatically terminate the
verification procedure.
5) Once the private key a has been chosen, it is easy to compute the corresponding public key v. However, the
inverse process, computing a from v requires to compute the discrete logarithm with base β of v-1.

ANALYSIS OF OUR PROPOSED SCHEME

Cloud computing paradigm presents similar threats and issues to security and privacy as in traditional computing
infrastructure. These issues mainly involve communication and network security in the internet/intranet/extranet
environment (Krutz and Vines 2010). These traditional threats may come from within or external environments.
The internal threats include eavesdropping of data, traffic or trend analysis, data manipulation, altering of data
integrity, and the theft of information or unauthorized disclosure or operation of data. The external threats
include diverse attacks such as distributed denial-of-service (DDoS) attacks, malicious intrusion or insertion of a
malicious code or program. Additionally, in the traditional computing paradigm, users normally possess and
utilize data in their local environment. In traditional scenarios the users take the responsibility of their data’s
safety, but in cloud environments new challenges are encountered around the data itself. Once the data is in the
hand of the cloud service providers, the questions of “who, what, where, when, how and why” related to the
user’s data must be addressed as the cloud paradigm shifts user’s responsibility from the user-side to the cloud-
side. These new issues have to be addressed through new measures for providing sufficient transparency and
accountability of users’ data usage. In this section, we analyse possible attacks to our active data-centric
framework in the cloud environment. These analyses are based on following assumptions: we assume that AAC
service and verification monitor in cloud are sufficiently trustworthy, and they can provide correct legislation
authentication for data requests. We assume that the RMI-SSL technique sufficiently strong to guarantee that the
communication message between the two entities is secure. We assume that the runtime environment of our
TDFS is not corrupted.

Intrusion attack: the most direct attack is that the adversary tries to reveal the contents of the TDFS through
loading data input and output stream, and then runs it on corresponding runtime environment. Our scheme
operates as follows. Any operations on TDFS will compulsorily trigger its shell protection scheme to execute
verification and identification. Only the entity that passed the verification is allowed to continue the data access.
A request without any parameter is straightway regarded as intrusion. The probe in TDFS would alert the
intrusion event to external verification monitor to report an intrusion attack. If the adversary happens to know the
request parameter structure, and enable to generate a correct data access parameter set, the TDFS would execute a
verification and identification in terms of these parameters through a two rounds zero-knowledge proof scheme.
Based on our previous assumption, the third party entities such as the AAC service and the verification monitor
would not reveal any security-related information, that means only authorized entity issued by the AAC service
or the verification monitor survives the verification and identification process without being noticed by our
surveillance module in TDFS. Furthermore, breaking through our zero-knowledge proof scheme is equivalent to
finding a polynomial-time algorithm to solve the discrete logarithm which is nearly impossible to achieve with

23rd Australasian Conference on Information Systems Active transformation for cloud data protection
3-5 Dec 2012, Geelong Chen & Hoang

8

current computer technology (Pieprzyk et al. 2003). Once the verification time exceeds the normal time
threshold, TDFS would proactively reject the request.

Man-in-the-middle attack: the adversary may intercept communication messages between the TDFS and its
corresponding AAC service provider or verification monitor, and attempt to make them believe that they are
communicating with each other over a correct connection. However, in fact the adversary may control the entire
communication. This type of attacks basically can be prevented by deploying the RMI-SSL communication
protocol which guarantees both entities using a mutually trusted communication tunnel, and we employ zero-
knowledge proof scheme between the AAC service provider and the TDFS to avoid a third party from
interruption.

Malicious code insertion attack: it is difficult to prevent an adversary to disassemble the TDFS files with
abnormal approaches such as reverse-engineering, analyzing compiled bytecodes, memory breakpoints, etc. But,
once the TDFS files are disassembled, the adversary may insert executable codes into the TDFS to break the shell
protection scheme. This attack can be prevented by the sealing techniques. Sealing creates a signature that
ensures the executable scripts inside the TDFS remains intact. Furthermore, integrity check and intermediate
result check ensure that any malicious code insertion would be detected when the TDFS is running.

TDFS external attacks: if an adversary penetrates our cloud firewall and security system, and obtains a root
privilege, the adversary is able to execute some operation system (OS) level operations on the TDFS, such as
copy, move, and delete the entire TDFS from our system. These OS operations would not trigger the TDFS files
into an active state, and hence the TDFS files may not be able to protect themselves. The solution we proposed is
to deploy a verification monitor in the same domain as the TDFS files to take charge of an overall surveillance
task. Once the above operations occur, the verification monitor can detect them from an OS probe, and then
trigger the TDFS files into an active state. When TDFS files are active, they can execute self-protection process.
In brief, such an active data-centric framework dictates data’s compulsory enforcement of verification and
identification when it is triggered. In this framework, logging, verification, monitoring, and data operations are
actively enforced along with the data. With the active data-centric framework, comprehensive transparency can
be achieved through data usage monitoring and protection. For cloud users, once their data is compromised or
violated in their subscribed cloud service, cloud service providers can detect violations and inform their
customers through a bundled mobile phone push service. Furthermore, any illegal violations could be delivered
to relevant governance, regulation, and compliance authorities.

PERFORMANCE STUDY AND IMPLEMENTATION

Our experiments were performed on the IBM HS20 Blades center which consists of 8 high-performance blade
servers. Each server is equipped with an Intel Xeon CPU 2.8 GHZ, 2GB RAM, and connects to a DS400 SAN
(Storage Area Networking) by a 10G Fiber-Channel switch. We selected 3 of 8 Blades as our mini-private cloud
infrastructure. These three blade servers separately install Ubuntu-10.04.2-desktop-i386 OS, and we utilized
OpenStack open source cloud toolkit (OpenStack 2011) to establish and manage our cloud platform resources. In
this research, we do not focus on the construction of the cloud platform, rather our focus is on the security and
privacy issues around cloud environments. In the experiments, we first examine the time taken to retrieve data
from the TDFS, and then test several invalid intrusion cases simulated through a third party program which is
developed in Java, finally, we measure the storage cost and transformation cost in our active data-centric
framework. Our static data derived from (Dolin et al. 2000), with only small parts of the EHR data were
captured. The data blocks in this test case consist of 15 content nodes. The data complied with HL7 standard.

Figure 3: Time cost of zero-knowledge proof scheme from TDFS

1. Time cost for a complete data retrieval from a TDFS: The overall overhead for a complete data retrieval from a
TDFS involves verification and identification, data loading, and network communication cost. Basically, the
network communication cost is negligible due to our high speed intranet test environment. We mainly tested the
performance of zero-knowledge proof scheme and data loading. The most important element which decides the
performance in the stage of verification is the q’s bit length. Meanwhile q also determines p, and t. Due to great

23rd Australasian Conference on Information Systems Active transformation for cloud data protection
3-5 Dec 2012, Geelong Chen & Hoang

9

randomness of generating an appropriate prime number with certain bit lengths and meeting p-1 is divisible by q,
the time cost for the parameters initialization in the AAC module demonstrates obvious variation. Hence, we did
5 sets of tests in which the bit length for the q is ranged from 30 to 70, and each set of test runs 10 times
circularly. The figure 3 illustrates the test result. The x-axis represents the bit length of q, and the y-axis
represents the execution time. As we can see, along with the bit lengths of q increasing, the time cost for
generating the system public parameters increases obviously. However, the average time cost for 40 bit length’s q
(844.9ms) is similar to 50 bit length’s q (1126.1ms). Considering the time taken for generating the system public
parameters may be a bottleneck for achieving the lightweight feature of TDFS, we suggest that the bit length of q
can be from 40 bits to 50 bits. In that way, the q will be larger than 2130, and t can be larger than 65, hence the

success of probability for adversaries guessing the correct e will be less than 20-107.2  , which is sufficiently
secure to resist the discrete logarithm attack. In addition, the time cost for user parameters generation and
verification process nearly maintain constant which is around 50ms. The time cost for data loading in this test
case is around 170ms.

2. Test cases for intrusion attacks: To test the alert functions for the intrusion attacks, we developed a third party
program to simulate a simple intrusion attack scenario. To implement violation alert function, we developed the
notification feature of the Cloud to Device Messaging Framework (Android C2DM) in our platform. It binds
with cloud user’s data violation. We established three test cases: the first one is triggering the TDFS file without
any parameters; the second one is moving the TDFS without any permission from AAC module; and the third
one is triggering the TDFS file with correct parameters structure. All these three test cases triggered the probe
inside the TDFS because they failed at the verification stage and then violation messages are sent to our
verification monitor, and meanwhile, our mobile device received the alert message immediately. Figure 4
demonstrates the screenshots of the notification messages in Samsung Galaxy SII when the violations occur in
user’s TDFS file.

Figure 4: Screenshots of notification messages when executing the three intrusion test cases

3. Storage cost and transformation cost: Finally, we investigated the shell size, core size, and final TDFS size.
Basically, the shell occupies 333KB storage and the core occupies 90.8KB in which the data blocks, header and
the image data occupy 64.9KB. However, the final TDFS only occupies 250KB storage due to the compression
feature of Jar technology. The size of TDFS will vary only when the size of the data blocks and header change
and the other runnable scripts in shell and core are unchangeable. To test average transformation cost, we
leverage the “ant” technique (Kallambella 2006) to automatically transform the raw EHR data into the TDFS.
The average transformation time was around 200 ms when executed 30 times circularly. The overall outcome
also presents a light-weight feature.

CONCLUSION
This paper presented a novel active data-centric framework for data protection in cloud scenario. It provided
higher transparency and accountability to efficiently mitigate users’ concern about the protection of their data in
outsourced cloud environments. We proposed a novel TDFS in which the data is equipped with the intelligent
active properties to achieve self-describing and self-defending capabilities in a light-weight protection framework
via an active bundle scheme. The scheme strongly enforces data protection requirements and strictly conforms to
high transparency of data usage. Moreover, we implemented the zero-knowledge proof scheme in TDFS to verify
the request’s identification without revealing any vital information about the data.

Test case 1

Test case 2

Test case 3

23rd Australasian Conference on Information Systems Active transformation for cloud data protection
3-5 Dec 2012, Geelong Chen & Hoang

10

REFERENCES

Abawajy, J. 2011. "Establishing Trust in Hybrid Cloud Computing Environments," IEEE 10th International Conference on
Trust, Security and Privacy in Computing and Communications (TrustCom), pp. 118-125.

Angin, P., Bhargava, B., Ranchal, R., Singh, N., Linderman, M., Ben Othmane, L., and Lilien, L. 2010. "An Entity-Centric
Approach for Privacy and Identity Management in Cloud Computing," 29th IEEE Symposium on Reliable
Distributed Systems, pp. 177-183.

Chen, L., and Hoang, D.B. 2011. "Towards Scalable, Fine-Grained, Intrusion-Tolerant Data Protection Models for Healthcare
Cloud," 2011 IEEE 10th International Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom), pp. 126-133.

Dolin, R.H., Alschuler, L., Beebe, C., Biron, P.V., Boyer, S.L., Essin, D., Kimber, E., Lincoln, T., and Mattison, J.E. 2001.
"The Hl7 Clinical Document Architecture," Journal of the American Medical Informatics Association (8:6), p 552.

Dolin, R.H., Alschuler, L., Boyer, S., and Beebe, C. 2000. "An Update on Hl7's Xml-Based Document Representation
Standards," American Medical Informatics Association.

Firdhous, M., Ghazali, O., and Hassan, S. 2011. "A Trust Computing Mechanism for Cloud Computing with Multilevel
Thresholding," 6th IEEE International Conference on Industrial and Information Systems (ICIIS), pp. 457-461.

Foster, I., Yong, Z., Raicu, I., and Lu, S. 2008. "Cloud Computing and Grid Computing 360-Degree Compared," Grid
Computing Environments Workshop, 2008. GCE '08, pp. 1-10.

Goh, E.J., Shacham, H., Modadugu, N., and Boneh, D. 2003. "Sirius: Securing Remote Untrusted Storage," Citeseer, pp. 131–
145.

Goyal, P., and Mikkilineni, R. 2009. "Policy-Based Event-Driven Services-Oriented Architecture for Cloud Services
Operation Management," IEEE International Conference on Cloud Computing (CLOUD), pp. 135-138.

Grove, D. 2011. "Healthcare Practices Embrace Mobile Technologies, New Comptia Research Reveals " Retrieved
December 13th, 2011, from http://www.comptia.org/news/pressreleases/11-11-
16/Healthcare_Practices_Embrace_Mobile_Technologies_New_CompTIA_Research_Reveals.aspx

Guide, I. 2011. "Computer Viruses / Virus Guide." from http://www.internet-guide.co.uk/viruses.html
Holford, J.W., Caelli, W.J., and Rhodes, A.W. 2004. "Using Self-Defending Objects to Develop Security Aware Applications

in Java\&Trade," Proceedings of the 27th Australasian conference on Computer science - Volume 26, Dunedin,
New Zealand: Australian Computer Society, Inc., pp. 341-349.

Kallahalla, M., Riedel, E., Swaminathan, R., Wang, Q., and Fu, K. 2003. "Plutus: Scalable Secure File Sharing on Untrusted
Storage," 03 Proceedings of the 2nd USENIX Conference on File and Storage Technologies pp. 29–42.

Kallambella, A. 2006. "Advanced Ant Techniques, Part I." Retrieved September, 2011, from
http://www.javaranch.com/journal/200603/AntPart1.html

Ko, R.K.L., Jagadpramana, P., and Bu Sung, L. 2011a. "Flogger: A File-Centric Logger for Monitoring File Access and
Transfers within Cloud Computing Environments," 2011 IEEE 10th International Conference on Trust, Security
and Privacy in Computing and Communications (TrustCom), pp. 765-771.

Ko, R.K.L., Lee, B.S., and Pearson, S. 2011b. "Towards Achieving Accountability, Auditability and Trust in Cloud
Computing," A. Abraham, J.L. Mauri, J.F. Buford, J. Suzuki and S.M. Thampi (eds.). Springer Berlin Heidelberg,
pp. 432-444.

Konstantinou, A.V. 2003. "Using Rmi over Ssl Authentication for Application-Level Access Control." from
http://www.cs.columbia.edu/~akonstan/rmi-ssl/

Krutz, R.L., and Vines, R.D. 2010. Cloud Security: A Comprehensive Guide to Secure Cloud Computing.
Lin, D., and Squicciarini, A. 2010. "Data Protection Models for Service Provisioning in the Cloud," 15th ACM symposium on

Access control models and technologies, Pittsburgh, Pennsylvania, USA: ACM, pp. 183-192.
NTP. "The Network Time Protocol." from http://www.ntp.org/
OpenStack. 2011. "Open Source Software for Building Private and Public Clouds." Retrieved October, 2011, from

http://openstack.org/
Oracle. 2011. "The Java Archive (Jar) File Format Using Jar Files: The Basics." Retrieved September, 2011, from

http://java.sun.com/developer/Books/javaprogramming/JAR/basics/
Pieprzyk, J., Hardjono, T., and Seberry, J. 2003. Fundamentals of Computer Security. Springer.
Schnorr, C. 1990. "Efficient Identification and Signatures for Smart Cards
Advances in Cryptology — Crypto’ 89 Proceedings," G. Brassard (ed.). Springer Berlin / Heidelberg, pp. 239-252.
Sundareswaran, S., Squicciarini, A., Dan, L., and Shuo, H. 2011. "Promoting Distributed Accountability in the Cloud," 2011

IEEE International Conference on Cloud Computing (CLOUD), pp. 113-120.
Sundareswaran, S., Squicciarini, A., and Lin, D. 2012. "Ensuring Distributed Accountability for Data Sharing in the Cloud,"

IEEE Transactions on Dependable and Secure Computing (9:4), pp 556-568.
Takabi, H., and Joshi, J.B.D. 2012. "Policy Management as a Service: An Approach to Manage Policy Heterogeneity in

Cloud Computing Environment," 45th Hawaii International Conference on System Science (HICSS), pp. 5500-
5508.

Wang, C., Wang, Q., Ren, K., and Lou, W. 2009. "Ensuring Data Storage Security in Cloud Computing," 17th International
Workshop on Quality of Service (IWQoS) pp. 1-9.

Wang, C., Wang, Q., Ren, K., and Lou, W. 2010. "Privacy-Preserving Public Auditing for Data Storage Security in Cloud
Computing," 2010 IEEE Proceedings on INFOCOM, pp. 1-9.

Wang, S., Agrawal, D., and El Abbadi, A. 2011. "A Comprehensive Framework for Secure Query Processing on Relational
Data in the Cloud," 8th VLDB international conference on Secure data management, Seattle, WA, pp. 52-69.

Yu, S., Wang, C., Ren, K., and Lou, W. 2010. "Achieving Secure, Scalable, and Fine-Grained Data Access Control in Cloud
Computing," INFOCOM'10 Proceedings of the 29th conference on Information communications, pp. 534-542

23rd Australasian Conference on Information Systems Active transformation for cloud data protection
3-5 Dec 2012, Geelong Chen & Hoang

11

COPYRIGHT

Lingfeng Chen, Doan B.Hoang © 2012. The authors assign to ACIS and educational and non-profit institutions
a non-exclusive licence to use this document for personal use and in courses of instruction provided that the
article is used in full and this copyright statement is reproduced. The authors also grant a non-exclusive licence
to ACIS to publish this document in full in the Conference Papers and Proceedings. Those documents may be
published on the World Wide Web, CD-ROM, in printed form, and on mirror sites on the World Wide Web.
Any other usage is prohibited without the express permission of the authors.

	Active data-centric framework for data protection in cloud environment
	Recommended Citation

	Microsoft Word - 180-Active data-centric framework for data protection in cloud environment.doc

