3,590 research outputs found

    Compositional Model Repositories via Dynamic Constraint Satisfaction with Order-of-Magnitude Preferences

    Full text link
    The predominant knowledge-based approach to automated model construction, compositional modelling, employs a set of models of particular functional components. Its inference mechanism takes a scenario describing the constituent interacting components of a system and translates it into a useful mathematical model. This paper presents a novel compositional modelling approach aimed at building model repositories. It furthers the field in two respects. Firstly, it expands the application domain of compositional modelling to systems that can not be easily described in terms of interacting functional components, such as ecological systems. Secondly, it enables the incorporation of user preferences into the model selection process. These features are achieved by casting the compositional modelling problem as an activity-based dynamic preference constraint satisfaction problem, where the dynamic constraints describe the restrictions imposed over the composition of partial models and the preferences correspond to those of the user of the automated modeller. In addition, the preference levels are represented through the use of symbolic values that differ in orders of magnitude

    The 1990 progress report and future plans

    Get PDF
    This document describes the progress and plans of the Artificial Intelligence Research Branch (RIA) at ARC in 1990. Activities span a range from basic scientific research to engineering development and to fielded NASA applications, particularly those applications that are enabled by basic research carried out at RIA. Work is conducted in-house and through collaborative partners in academia and industry. Our major focus is on a limited number of research themes with a dual commitment to technical excellence and proven applicability to NASA short, medium, and long-term problems. RIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at JPL and AI applications groups at all NASA centers

    Active Integrity Constraints and Revision Programming

    Full text link
    We study active integrity constraints and revision programming, two formalisms designed to describe integrity constraints on databases and to specify policies on preferred ways to enforce them. Unlike other more commonly accepted approaches, these two formalisms attempt to provide a declarative solution to the problem. However, the original semantics of founded repairs for active integrity constraints and justified revisions for revision programs differ. Our main goal is to establish a comprehensive framework of semantics for active integrity constraints, to find a parallel framework for revision programs, and to relate the two. By doing so, we demonstrate that the two formalisms proposed independently of each other and based on different intuitions when viewed within a broader semantic framework turn out to be notational variants of each other. That lends support to the adequacy of the semantics we develop for each of the formalisms as the foundation for a declarative approach to the problem of database update and repair. In the paper we also study computational properties of the semantics we consider and establish results concerned with the concept of the minimality of change and the invariance under the shifting transformation.Comment: 48 pages, 3 figure

    Finding regions of local repair in hierarchical constraint satisfaction

    Get PDF
    Algorithms for solving constraint satisfaction problems (CSP) have been successfully applied to several fields including scheduling, design, and planning. Latest extensions of the standard CSP to constraint optimization problems (COP) additionally provided new opportunities for solving several problems of combinatorial optimization more efficiently. Basically, two classes of algorithms have been used for searching constraint satisfaction problems (CSP): local search methods and systematic tree search extended by the classical constraint-processing techniques like e.g. forward checking and backmarking. Both classes exhibit characteristic advantages and drawbacks. This report presents a novel approach for solving constraint optimization problems that combines the advantages of local search and tree search algorithms which have been extended by constraint-processing techniques. This method proved applicability in a commercial nurse scheduling system as well as on randomly generated problems

    MODELING, LEARNING AND REASONING ABOUT PREFERENCE TREES OVER COMBINATORIAL DOMAINS

    Get PDF
    In my Ph.D. dissertation, I have studied problems arising in various aspects of preferences: preference modeling, preference learning, and preference reasoning, when preferences concern outcomes ranging over combinatorial domains. Preferences is a major research component in artificial intelligence (AI) and decision theory, and is closely related to the social choice theory considered by economists and political scientists. In my dissertation, I have exploited emerging connections between preferences in AI and social choice theory. Most of my research is on qualitative preference representations that extend and combine existing formalisms such as conditional preference nets, lexicographic preference trees, answer-set optimization programs, possibilistic logic, and conditional preference networks; on learning problems that aim at discovering qualitative preference models and predictive preference information from practical data; and on preference reasoning problems centered around qualitative preference optimization and aggregation methods. Applications of my research include recommender systems, decision support tools, multi-agent systems, and Internet trading and marketing platforms

    Compositional model repositories via dynamic constraint satisfaction with order-of-magnitude preferences

    Get PDF
    The predominant knowledge-based approach to automated model construction, compositional modelling, employs a set of models of particular functional components. Its inference mechanism takes a scenario describing the constituent interacting components of a system and translates it into a useful mathematical model. This paper presents a novel compositional modelling approach aimed at building model repositories. It furthers the field in two respects. Firstly, it expands the application domain of compositional modelling to systems that can not be easily described in terms of interacting functional components, such as ecological systems. Secondly, it enables the incorporation of user preferences into the model selection process. These features are achieved by casting the compositional modelling problem as an activity-based dynamic preference constraint satisfaction problem, where the dynamic constraints describe the restrictions imposed over the composition of partial models and the preferences correspond to those of the user of the automated modeller. In addition, the preference levels are represented through the use of symbolic values that differ in orders of magnitude
    corecore