
Aberystwyth University

Compositional model repositories via dynamic constraint satisfaction with order-
of-magnitude preferences
Shen, Qiang; Keppens, Jeroen

Published in:
Journal of Artificial Intelligence Research

Publication date:
2004

Citation for published version (APA):
Shen, Q., & Keppens, J. (2004). Compositional model repositories via dynamic constraint satisfaction with order-
of-magnitude preferences. Journal of Artificial Intelligence Research, 499-550.

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 18. Apr. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aberystwyth Research Portal

https://core.ac.uk/display/288843072?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://pure.aber.ac.uk/portal/en/persons/qiang-shen(695ae0bf-c764-425b-9496-cca71f02cb57).html
https://pure.aber.ac.uk/portal/en/publications/compositional-model-repositories-via-dynamic-constraint-satisfaction-with-orderofmagnitude-preferences(8d1ad4fc-049a-4861-a2eb-67919ff2f6b9).html
https://pure.aber.ac.uk/portal/en/publications/compositional-model-repositories-via-dynamic-constraint-satisfaction-with-orderofmagnitude-preferences(8d1ad4fc-049a-4861-a2eb-67919ff2f6b9).html

Journal of Artificial Intelligence Research 21 (2004) 499-550 Submitted 08/03; published 04/04

Compositional Model Repositories via Dynamic Constraint
Satisfaction with Order-of-Magnitude Preferences

Jeroen Keppens JEROEN@INF.ED.AC.UK

Qiang Shen QIANGS@INF.ED.AC.UK

School of Informatics, The University of Edinburgh
Appleton Tower, Crichton Street, Edinburgh EH8 9LE, UK

Abstract

The predominant knowledge-based approach to automated model construction, compositional
modelling, employs a set of models of particular functional components. Its inference mechanism
takes a scenario describing the constituent interacting components of a system and translates it into
a useful mathematical model. This paper presents a novel compositional modelling approach aimed
at building model repositories. It furthers the field in two respects. Firstly, it expands the appli-
cation domain of compositional modelling to systems that can not be easily described in terms of
interacting functional components, such as ecological systems. Secondly, it enables the incorpora-
tion of user preferences into the model selection process. These features are achieved by casting the
compositional modelling problem as an activity-based dynamic preference constraint satisfaction
problem, where the dynamic constraints describe the restrictions imposed over the composition of
partial models and the preferences correspond to those of the user of the automated modeller. In
addition, the preference levels are represented through the use of symbolic values that differ in
orders of magnitude.

1. Introduction

Mathematical models form an important aid in understanding complex systems. They also help
problem solvers to capture and reason about the essential features and dynamics of such systems.
Constructing mathematical models is not an easy task, however, and many disciplines have con-
tributed approaches to automate it. Compositional modelling (Falkenhainer & Forbus, 1991; Kep-
pens & Shen, 2001b) is an important class of approaches to automated model construction. It uses
predominantly knowledge-based techniques to translate a high level scenario into a mathematical
model. The knowledge base usually consists of generic fragments of models that provide one of
the possible mathematical representation of a process that occurs in one or more components. The
inference mechanisms instantiate this knowledge base, search for the most appropriate selection of
model fragments, and compose them into a mathematical model. Compositional modelling has been
successfully applied to a variety of application domains ranging from simple physics, over various
engineering problems to biological systems.

The present work aims at a compositional modelling approach for building model repositories
of ecological systems. In the ecological modelling literature, a range of models have been devised
to formally characterise the various phenomena that occur in ecological systems. For example,
the logistic growth (Verhulst, 1838) and the Holling predation (Holling, 1959) models describe the
changes in the size of a population. The former expresses changes due to births and deaths and the
latter changes due to one population feeding on another. A compositional model repository aims

c©2004 AI Access Foundation. All rights reserved.

KEPPENS & SHEN

to make such (partial) models more generally usable by providing a mechanism to instantiate and
compose them into larger models for more complex systems involving many interacting phenomena.

Thus, the input to a compositional model repository is a scenario describing the configuration
of a system to be modelled. A sample scenario may include a number of populations and various
predation and competition relations between them. The output is a mathematical model, called a
scenario model, representing the behaviour of the system specified in the given scenario. A set of
differential equations describing the changes in the population sizes in the aforementioned scenario
due to births, natural deaths, deaths because of predation, available food supply or competition
would constitute such a scenario model.

This application domain poses three important new challenges to compositional modelling.
Firstly, the processes and components of an ecological system that are to be represented in the
resulting composed model depend on one another and on the ways they are described. In popu-
lation dynamics for example, models describing the predation or competition phenomena between
two populations rely on the existence of a population growth model for each of the populations
involved in the phenomenon. This inhibits the conventional approach of searching for a consis-
tent and adequate combination of partial models, one for each component in the scenario. This
approach provides an adequate solution for physical systems because these are comprised of com-
ponents implementing a particular functionality that can be described by one or multiple partial
models. Although the seminal work on compositional modelling (Falkenhainer & Forbus, 1991)
recognised the existence of more complex interdependencies in model construction in general, it
provided only a partial solution for it: all the conditions under which certain modelling choices
were relevant had to be specified manually in the knowledge base.

Secondly, the domain of ecology lacks a complete theory of what constitutes an adequate model.
Most existing compositional modellers are based on a predefined concept of model adequacy. They
employ inference mechanisms that are guaranteed to find a model that meets such adequacy criteria.
However, criteria to determine how adequate an ecological model may be vary between ecological
domains and even between the ecologists that require the model within the same domain. Therefore,
the compositional modeller requires a facility to define the properties that the generated ecological
models must satisfy.

Thirdly, it is not possible to express all the criteria imposed on the scenario model in terms of
hard requirements. Often, ecological models that describe mechanisms and behaviours are only par-
tially understood. In such cases, the choice of one model over another becomes a matter of expert
opinion rather than pure theory. Therefore, in the ecological domain, modelling approaches and pre-
sumptions are, to some extent, selected based on preferences. Existing compositional modellers are
not equipped to deal with such user preferences and this paper presents the very first compositional
modeller that incorporates them.

Generally speaking, the above three issues are tackled in this paper by means of a method to
translate the compositional modelling problem into an activity-based dynamic preference constraint
satisfaction problem (aDPCSP) (Keppens & Shen, 2002). An aDPCSP integrates the concept of
activity-based dynamic constraint satisfaction problem (aDCSP) (Miguel & Shen, 1999; Mittal &
Falkenhainer, 1990) with that of order-of-magnitude preferences (Keppens & Shen, 2002). The
attributes and domains of this aDPCSP correspond to model design decisions, with constraints de-
scribing the restrictions imposed by consistency requirements and properties and order-of-magnitude
preferences describing the user’s preferences on modelling choices. The translation method brings
the additional advantage that compositional modelling problems can now be solved by means of

500

COMPOSITIONAL MODEL REPOSITORIES

efficient aDCSP techniques. As such, compositional modellers can benefit from recent and future
advances in constraint satisfaction research.

The remainder of this paper is organised as follows. Section 2 introduces the concept of an
aDPCSP, a preference calculus that is suitable to express subjective user preferences for model
design decisions and to be integrated with the general framework of aDPCSPs. It also gives a
solution algorithm for aDPCSPs. Next, section 3 presents the compositional model repository and
shows how such an aDPCSP is employed for automated model construction. These theoretical
ideas are then illustrated by means of a large example in section 4, applying the compositional
model repository to population dynamics problems. Section 5 concludes this paper with a summary
and an outline of further research.

2. Dynamic Constraint Satisfaction with Order-of-Magnitude Preferences

In this section, a preference calculus based on order-of-magnitude reasoning is introduced and inte-
grated into the activity-based dynamic constraint satisfaction problem (aDCSP) to form an aDCSP
with order-of-magnitude preferences (aDPCSP). Then, a solution algorithm for such aDPCSPs is
presented. The theory is illustrated with examples from the compositional modelling domain.

2.1 Background: Activity-based dynamic preference constraint satisfaction

A hard constraint satisfaction problem (CSP) is a tuple 〈X,D,C〉, where

• X = {x1, . . . , xn} is a vector of n attributes,

• D = {Dx1 , . . . , Dxn} is a vector containing exactly one domain for each attribute in X.
Each domain Dx ∈ D is a set of values {di1, . . . , dini

} that may be assigned to the attribute
corresponding to the domain.

• C is a set of compatibility constraints. A compatibility constraint c{xi,...,xj} ∈ C defines a
relation over a subset of the domains Dxi

, ..., Dxj
, and hence c{xi,...,xj} ⊆ Dxi

× . . . × Dxj
.

A solution to a hard constraint satisfaction problem is any tuple 〈x1 : dx1 , . . . , xn : dxn〉 such
that

• each attribute is assigned a value from its domain: ∀xi ∈ X, dxi
∈ Dxi

, and

• all compatibility constraints are satisfied: ∀x{xi,...,xj} ∈ C, 〈dxi
, . . . , dxj

〉 ∈ c{xi,...,xj}.

An activity-based dynamic CSP (aDCSP), originally proposed in by Mittal and Falkenhainer
(1990), extends conventional CSPs with the notion of activity of attributes. In an aDCSP, not all
attributes are necessarily assigned in a solution, but only the active ones. As such, each attribute is
either active and assigned a value or inactive:

∀xi ∈ X,
(

∃dxi
∈ Dxi

, xi : dxi

)

↔ active(xi)

The activity of attributes in an aDCSP is governed by activity constraints that enforce under which
assignments of attributes, an assignment to another attribute is relevant or possible. This information
is important because it not only dictates for which attributes a value must be searched, but also the
set of compatibility constraints that must be satisfied. Clearly, only the compatibility constraints

501

KEPPENS & SHEN

c{xi,...,xj} ∈ C for which all attributes xi, . . . , xj are active must be satisfied, and a hard CSP is a
sub-type of aDCSP in which all attributes are always active.

In summary, an activity-based dynamic constraint satisfaction problem (aDCSP) is a tuple
〈X,D,C,A〉, where

• 〈X,D,C〉 is a hard CSP, and

• A is a set of activity constraints. An activity constraint restricts the sets of attribute-value
assignments under which an attribute is active or inactive:

axi,{xj ,...,xk} ⊆ Dxj
× . . . × Dxk

× {active(xi),¬active(xi)}

where xi 6∈ {xj , . . . , xk}.

A solution to an activity-based dynamic constraint satisfaction problem is any tuple 〈x1 :
dx1 , . . . , xl : dxl

〉 such that

• the attributes that are part of the solution are assigned a value from their domain: ∀xi ∈
{x1, . . . , xl}, dxi

∈ Dxi
,

• all activity constraints are satisfied:

∀axi,{xj ,...,xk} ∈ A,
(

xj 6∈ {x1, . . . , xl}
)

∨ . . . ∨
(

xk 6∈ {x1, . . . , xl}
)

∨
(

xi ∈ {x1, . . . , xl} ∧ 〈dxj
, . . . , dxk

, active(xi)〉 ∈ axi,{xj ,...,xk}

)

∨
(

xi 6∈ {x1, . . . , xl} ∧ 〈dxj
, . . . , dxk

,¬active(xi)〉 ∈ axi,{xj ,...,xk}

)

and

• all compatibility constraints are satisfied:

∀c{xi,...,xj} ∈ C,¬active(xi) ∨ . . . ∨ ¬active(xj) ∨ 〈dxi
, . . . , dxj

〉 ∈ c{xi,...,xj}

2.2 Order-of-magnitude preferences (OMPs)

Although an aDCSP can capture the hard constraints over decisions in a given problem as well as
their dynamically changing solution space (as described by the activity constraints), the represen-
tation scheme it employs does not take into account any preferences users may have over possible
alternative value assignments. Therefore, this work is extended to allow preference information to
be attached to attribute-value assignments. The way in which this can be achieved depends on the
representation and reasoning mechanisms underlying the preference calculus. In general, a prefer-
ence calculus can be defined as a tuple 〈

�
,⊕, 4〉 where:

•
�

is the set of preferences,

• ⊕ is a commutative, associative operator that is closed in
�

, and

• 4 forms a partial order, that is, reflexive, anti-symmetric and transitive relation defined over
�
×

�
.

Because 4 is reflexive, antisymmetric and transitive, comparing preferences with the 4 relation
yields one of four possible results:

502

COMPOSITIONAL MODEL REPOSITORIES

• Two preferences P1, P2 ∈
�

are equal to one another (denoted P1 = P2) iff P1 4 P2 and
P2 4 P1.

• A preference P1 ∈
�

is strictly greater than a preference P2 ∈
�

(denoted P1 � P2) iff
P1 64 P2 and P2 4 P1.

• A preference P1 ∈
�

is strictly smaller than a preference P2 ∈
�

(denoted P1 ≺ P2) iff
P1 4 P2 and P2 64 P1.

• Two preferences P1, P2 ∈
�

are incomparable with one another (denoted P1?P2) iff P1 64 P2

and P2 64 P1.

Thus, an activity-based dynamic preference constraint satisfaction problem (aDPCSP) is a tuple
〈X,D,C,A, 〈

�
,⊕, 4〉, P 〉 where

• 〈X,D,C,A〉 is an aDCSP,

• 〈
�

,⊕, 4〉 is a preference calculus, and

• P is a mapping Dx1 ∪ . . . ∪ Dxn 7→
�

from the individual attribute-value assignments to the
preferences.

The preferences attached to attribute-value assignments express the relative desirability of these
assignments. The aim of the aDPCSP is to find a solution with the highest combined preference.
That is, given an aDPCSP 〈X,D,C,A, 〈

�
,⊕, 4〉, P 〉, any solution 〈xi : dxi

, . . . , xj : dxj
〉 of the

aDCSP 〈X,D,C,A〉 such that no other solution 〈xk : dxk
, . . . , xl : dxl

〉 of 〈X,D,C,A〉 exists
with P (xi : dxi

)⊕ . . .⊕P (xj : dxj
) ≺ P (xk : dxk

)⊕ . . .⊕P (xl : dxl
) is a solution to the aDPCSP.

In this section, a preference calculus is introduced to extend an aDCSP into an aDPCSP. The
calculus will be illustrated with examples from the compositional modelling domain.

2.2.1 REPRESENTATION OF OMPS

Technically, OMPs are combinations of so-called basic preference quantities (BPQs), which are the
primitive units of preference or utility valuation associated with possible design decisions. Because
it is often difficult to evaluate these BPQs numerically, they are ordered relative to one another em-
ploying similar ordering relations as those employed by relative order-of-magnitude calculi (Dague,
1993a, 1993b).

Let � be the set of all BPQs with respect to a particular decision problem. The BPQs in � are
ordered with respect to one another at two levels of granularity, by two relations � and <. First, �
is partitioned into orders of magnitude, which are ordered by �. Then, the BPQs within each order
of magnitude are ordered by <. Formally, an order-of-magnitude ordering over BPQs � is a tuple
〈O,�〉, where O = {O1, . . . , Oq} is a partition of � and � is an irreflexive and transitive binary
relation over O. Any subset of BPQs O ∈ O is said to be an order of magnitude in � . Similarly, a
within-magnitude ordering over a set of BPQs is a tuple 〈O, <〉, where O is an order of magnitude
in � and < is an irreflexive and transitive binary relation over O.

To illustrate these ideas, consider the problem of constructing an ecological model describing a
scenario containing a number of populations. Let some of the populations be parasites and others
be hosts for these parasites. Also, assume that certain populations compete with others for scarce
resources. In order to construct a scenario model, the compositional modeller must make a number

503

KEPPENS & SHEN

b22: exponential
growth model

b21: logistic
growth model

b23: other
growth model

<

<

O2 (population growth phenomena)

b15: Lotka-Volterra
predation model

b13: Holling
predation model

b11: Roger’s
host-parasitoid model

b12: Nicholson-Bailey’s
host-parasitoid model

b14: Thomson’s
host-parasitoid model

<

<

<

<

<

O1 (host-parasitoid phenomenon)

phenomenon
b31: competition

O3: (competition phenomenon)

�

�

Figure 1: Sample space of BPQs �

of model design decisions: which population growth, host-parasitoid and competition phenomena
are relevant, and which types of model best describe these phenomena.

Figure 1 shows a sample space of BPQs that correspond to the selection of types of model. For
the sake of illustration, the presumption is made that the quality of a scenario model depends on the
inclusion of types of model, rather than on the inclusion or exclusion of phenomena. Apart from
b23 and b31, all BPQs correspond to standard textbook ecological models1. BPQ b23 stands for the
use of a population growth model that is implicit in another population growth model (the Lotka-
Volterra model, for instance, implicitly includes its own concept of growth). Finally, BPQ b31 is the
preference associated with a competition model (say, the only one included in the knowledge base).

The 9 BPQs in this sample space are partitioned over 3 orders of magnitude. The � relation
orders the orders of magnitude: O2 � O1 and O2 � O3. The binary < relation orders indi-
vidual BPQs within an order of magnitude. In the BPQ ordering within O1, for instance, Rogers’
host-parasitoid model (b11) is preferred over that by Nicholson and Bailey (b12) and the Holling
predation model (b13). The latter two models can not be compared with one another, but they both
are preferred over the Lotka-Volterra model. Furthermore, Thompson’s host-parasitoid model is
less preferred than that of Nicholson and Bailey, but it can not be compared with the Lotka-Volterra
and Holling models.

2.2.2 COMBINATIONS OF OMPS

By definition, OMPs are combinations of BPQs. The implicit value of an OMP p equals the com-
bination b1 ⊕ . . .⊕ bn of its constituent BPQs b1, . . . , bn. This property allows OMPs to be defined
as functions such that an OMP P = b1 ⊕ . . . ⊕ bn is a function fP : � 7→ � : b → fP (b) where �

1. To be precise, the BPQs b11, b12, b13, b14, b15, b21 and b22 respectively correspond to the inclusion of Rogers’
host-parasitoid model (1972), the host-parasitoid model by Nicholson and Bailey (1935), Holling’s predation model
(1959), Thompson’s host-parasitoid model (1929), the predation model by Lotka and Volterra (1925, 1926), a logistic
population growth model (Verhulst, 1838) and an exponential population growth model (Malthus, 1798).

504

COMPOSITIONAL MODEL REPOSITORIES

is the set of BPQs, � is the set of natural numbers and fP (b) equals the number of occurrences of b
in b1, . . . , bn.

For example, let Pmodel denote the OMP associated with the scenario model that contains three
logistic population growth models (b21), two Holling predation model (b13) and one competition
model (b31). Therefore,

Pmodel = b21 ⊕ b21 ⊕ b21 ⊕ b13 ⊕ b13 ⊕ b31

and hence:

fPmodel(b) =























3 if b = b21

2 if b = b13

1 if b = b31

0 otherwise

By describing OMPs as functions, the concept of combinations of OMPs becomes clear. For
two OMPs P1 and P2, the combined preference P1 ⊕ P2 is defined as:

fP1⊕P2 : � 7→ � : b → fP1⊕P2(b) = fP1(b) + fP2(b)

Note that the combination operator ⊕ is assumed to be commutative, associative and strictly mono-
tonic (P ≺ P ⊕ P). The latter assumption is made to better reflect the ideas underpinning conven-
tional utility calculi (Binger & Hoffman, 1998).

2.2.3 PARTIAL ORDERING OF OMPS

Based on the combinations of OMPs, a partial order 4 over the OMPs can be computed by exploit-
ing the constituent BPQs of the OMPs considered. This partial order implies that a comparison of
any pair of OMPs either returns equal preference (=), smaller preference (≺), greater preference
(�) or incomparable preference (?). This calculus is developed assuming the following:

• Prioritisation: A combination of BPQs is never an order of magnitude greater than its con-
stituent BPQs. That is, given the set of BPQs belonging to the same order of magnitude
{b1, b2, . . . , bn} ⊆ O1 and a BPQ b ∈ O2 belonging to a higher order of magnitude, i.e.
O1 � O2, then

b1 ⊕ b2 ⊕ . . . ⊕ bn ≺ b

With respect to the ongoing example, this means that any BPQ taken from the order of magni-
tude O1 is preferred over any combination of BPQs taken from O2. In other words, the choice
of a model to describe a host-parasitoid phenomenon is considered more important than the
choice of population growth model (see Figure 1).

Prioritisation also means that distinctions at higher orders of magnitude are considered to
be more significant than those at lower orders of magnitude. Consider a number of BPQs
b1, . . . , bm−1, bm, . . . , bn taken from one order of magnitude O1 and a pair of BPQs {b, b′}
taken from an order of magnitude that is higher than O1. If b < b′, then (irrespective of the
ordering of the BPQs taken from O1)

b1 ⊕ . . . ⊕ bm−1 ⊕ b ≺ bm ⊕ . . . ⊕ bn ⊕ b′

505

KEPPENS & SHEN

• Strict monotonicity: Even though distinctions at higher orders of magnitude are more signif-
icant, distinctions at lower orders of magnitude are not negligible. That is, given an OMP
P and two BPQs b1 and b2 taken from the same order of magnitude with b1 < b2, then
(irrespective of the orders of magnitude of the BPQs that constitute P)

b1 ⊕ P ≺ b2 ⊕ P

For instance, the preference ordering depicted in Figure 1 shows that a scenario model with a
Roger’s host-parasitoid model and two logistic predation models is preferred over one with a
Roger’s host-parasitoid model and two exponential predation models:

b11 ⊕ b22 ⊕ b22 ≺ b11 ⊕ b21 ⊕ b21

Note that this is a departure from conventional order-of-magnitude reasoning. If the OMPs
associated with two (partial) outcomes contain equal BPQs at a higher order of magnitude, it is
usually desirable to compare both solutions further in terms of the (less important) constituent
BPQs at lower orders of magnitude, as the example illustrated. However, conventional order-
of-magnitude reasoning techniques can not handle this.

• Partial ordering maintenance: Conventional order-of-magnitude reasoning is motivated by
the need for abstract descriptions of real-world behaviour, whereas the OMP calculus is mo-
tivated by incomplete knowledge for decision making. As opposed to conventional order-
of-magnitude reasoning and real numbers, OMPs are not necessarily totally ordered. This
implies that, when the user states, for example, that b1 < b2 < b and that b3 < b4 < b, the
explicit absence of ordering information between the BPQs in {b1, b2} and those in {b3, b4}
means that the user is unable to compare them (e.g. because they are entirely different things).
Consequently, b1 ⊕ b2 would be deemed incomparable to b3 ⊕ b4 (i.e. b1 ⊕ b2?b3 ⊕ b4), rather
than roughly equivalent.

From the above, it can be derived that given two OMPs P1 and P2 and an order of magnitude O,
P1 is less or equally preferred to P2 with respect to the order of magnitude O (denoted P1 4O P2)
provided that

∀bi ∈ O,
(

fP1(bi) +
∑

bj∈O,bi<bj

fP1(bj)
)

≤
(

fP2(bi) +
∑

bj∈O,bi<bj

fP2(bj)
)

Thus, comparing two OMPs within an order of magnitude can yield four possible results:

• P1 is less preferred than P2 with respect to O (P1 ≺O P2) iff (P1 4O P2) ∧ ¬(P2 4 P1),

• P1 is more preferred than P2 with respect to O (P1 �O P2) iff ¬(P1 4O P2) ∧ (P2 4 P1),

• P1 is equally preferred than P2 with respect to O (P1 =O P2) iff (P1 4O P2) ∧ (P2 4 P1),
and

• P1 is incomparable to P2 with respect to O (P1?OP2) iff ¬(P1 4O P2) ∧ ¬(P2 4 P1).

506

COMPOSITIONAL MODEL REPOSITORIES

In the ongoing example of Figure 1, for instance, the preference of a scenario model with a
Roger’s host-parasitoid model and a Holling predation model is P1 = b11 ⊕ b13 and the preference
of a scenario model with a Roger’s host-parasitoid model and a Lotka-Volterra predation model
is P2 = b11 ⊕ b15. The latter model is less than or equally preferred to the former within the
“host-parasitoid” order of magnitude (O1), i.e. P2 4O1 P1, because

fP2(b11) = 1 ≤ 1 = fP1(b11),

fP2(b11) ⊕ fP2(b12) = 1 ≤ 1 = fP1(b11) ⊕ fP1(b12),

fP2(b11) ⊕ fP2(b13) = 1 ≤ 2 = fP1(b11) ⊕ fP1(b13),

fP2(b11) ⊕ fP2(b12) ⊕ fP2(b14) = 1 ≤ 1 = fP1(b11) ⊕ fP1(b12) ⊕ fP1(b14),

fP2(b11) ⊕ fP2(b12) ⊕ fP2(b13) ⊕ fP2(b14) = 2 ≤ 2 = fP1(b11) ⊕ fP1(b12) ⊕ fP1(b13) ⊕ fP1(b14).

Similarly, it can be established that the reverse, i.e. P1 4O1 P2, is not true. Therefore, the latter
scenario model is less preferred than the former within O1, i.e. P2 ≺O1 P1.

The above result can be further generalised such that given two OMPs P1 and P2, P1 is less or
equally preferred to P2 (denoted P1 4 P2) if

∀Oi ∈ O, (P1 4Oi
P2) ∨ (∃Oj ∈ O, Oi � Oj ∧ P1 ≺Oj

P2)

More generally, the relations ≺, �, = and ? can be derived in the same manner as with the
relation 4 where ≺O, �O, =O and ?O with 4O.

To illustrate the utility of such orderings, consider the scenario of one predator population that
feeds on two prey populations while the two prey populations compete for scarce resources. The
following are two plausible scenario models for this scenario:

• Model 1 contains two Holling predation models and three logistic population growth models,
and has preference P1 = b13 ⊕ b13 ⊕ b21 ⊕ b21 ⊕ b21.

• Model 2 contains one competition model, two Holling predation models, two logistic pop-
ulation growth models and an exponential population growth model, and has preference
P2 = b13 ⊕ b13 ⊕ b21 ⊕ b21 ⊕ b22 ⊕ b31.

As demonstrated earlier, it can be shown that P1 =O1 P2, P1 �O2 P2, and P1 ≺O3 P2. From these
relations it follows that P1 4 P2 because

• for O1: P1 4O1 P2 since P1 =O1 P2,

• for O2: there exists an order of magnitude O3 where O3 � O2 and P1 ≺O3 P2,

• for O3: P1 4O3 P2 since P1 ≺O3 P2.

As the reverse is not true, it can be concluded that scenario model 2 is preferred over scenario model
1.

2.3 Solving aDPCSPs

This section presents a basic algorithm for solving aDPCSPs. Although OMPs are used in this
work, this algorithm can take any aDPCSP provided that it employs a preference calculus with a

507

KEPPENS & SHEN

commutative, associative and monotonic combination operator. However, the use of OMPs provides
a convenient way of specifying incomplete preference information.

An aDPCSP is similar to valued CSPs as presented by Schiex, Fargier and Verfaillie (1995)
and also to semiring based CSPs (Bistarelli, Montanari, & Rossi, 1997). However, it extends both
approaches with activity constraints and involves different underlying presumptions in its valuation
structure. The preference valuations in this work are allowed to be ordered partially, as opposed to
the valued CSPs.

An aDPCSP represents an important type of constraint satisfaction optimisation problem (Tsang,
1993). In order to tackle the optimisation of preferences an A* type algorithm is employed (Hart,
Nilsson, & Raphael, 1968; Raphael, 1990). A* algorithms are known to be efficient in terms of
the total number of nodes explored in an effort to find optimal solutions, with a given amount of
information. On the downside, they have an exponential space complexity. Naturally, a number of
alternative approaches could have been explored, including conventional constraint-based solving
methods such as depth first branch and bound search. However, the use of an A*-like algorithm is
sufficient for solving the aDPCSPs in the domain of the present interest. In particular, algorithm 1
implements an A* search strategy that is capable of handling activity constraints, which involves
the use of basic CSP techniques such as constraint propagation and backtracking.

An A* algorithm maintains the explored attribute-value assignments by means of a priority
queue Q of nodes. Each node n in Q corresponds to a set of attribute-value assignments: solution(n).
The search proceeds through a number of iterations. At each iteration, a node n is taken from Q,
and replaced by nodes that extend solution(n) with an additional attribute-value assignment. More
specifically, for each node n in Q, a set Xu(n) of remaining active but unassigned attributes is
maintained. At each iteration, the possible assignments of the first attribute x ∈ Xu(n), where
n is the node taken from Q at the current iteration, are processed. For every assignment x : d
that is consistent with solution(n) (i.e. solution(n) ∪ {x : d},C 0 ⊥), a new child node n′, with
solution(n′) = solution(n) ∪ {x : d} and Xu(n′) = Xu(n) − {x}, is created and added to Q.

The activity constraints are processed via propagation rather than constraint satisfaction. When-
ever a node n is taken from Q such that Xu(n) is empty, the activity constraints are fired in order to
obtain a new set of active but unassigned attributes. That is, Xu(n) is assigned

{xi | solution(n),A ` active(xi)} − Xa(n)

where Xa(n) represents the active, but already assigned attributes in node n.
In the priority queue Q, nodes are maintained by means of two heuristics: committed preference

CP (n) and potential preference PP (n). Here, given a node n,

CP (n) = ⊕x:d∈solution(n)P (x : d)

PP (n) = CP (n) ⊕ (⊕x∈Xnd(n) max
d∈Dx

P (x : d))

where Xnd(n) is the set of unassigned attributes that can still be activated given the partial assign-
ment solution(n) (as indicated previously, the actual implementation employs an assumption-based
truth maintenance system (de Kleer, 1986) to efficiently determine which attribute’s activity can no
longer be supported). In other words, CP (n) is the preference associated with the partial attribute-
value assignment in node n and PP (n) is CP (n) combined with the highest possible preference
assignments taken from all the values of the domains of those attributes in Xnd(n). Thus, PP (n)

508

COMPOSITIONAL MODEL REPOSITORIES

Algorithm 1: SOLVE(X,D,C,A, P)

n← new node;
solution(n)← {};
Xu(n)← {xi | {},A ` active(xi)};
Xa(n)← {};
CP (n)← 0;
PP (n)← ⊕x∈X maxd∈D(x) P (x : d);
Q← createOrderedQueue();
enqueue(Q, n, PP (n), CP (n)); while Q 6= ∅

do























































































n← dequeue(Q);
if Xu(n) 6= ∅

then
{

x← first(Xu(n));
PROCESS(x, n,C,A, P, Q);

else























































Xu(n)← {xi | solution(n),A ` active(xi)} −Xa(n);
if Xu(n) = ∅

then























nnext ← first(Q);
if CP (n) ⊀ PP (nfirst)

then return (solution(n));

else
{

PP (n)← CP (n);
enqueue(Q, n, PP (n), CP (n));

else
{

x← first(Xu(n));
PROCESS(x, n,C,A, P, Q);

procedure PROCESS(x, nparent,C,A, P, Q)
for d ∈ D(x)

do































































if solution(nparent) ∪ {x : d},C 0 ⊥

then























































nchild ← new node;
solution(nchild)← solution(nparent) ∪ {x : d};
Xd ← deactivated(solution(nchild), X(nparent));
Xnd(nchild)← Xnd(nparent)− {x} −Xd;
Xa(nchild)← Xa(nparent) ∪ {x};
Xu(nchild)← Xu(nparent)− {x};
CP (nchild)← CP (nparent)⊕ P (x : d);
PP (nchild)← CP (nchild)⊕⊕x∈Xnd(n) maxd∈D(x) P (x : d);
enqueue(Q, nchild, PP (nchild), CP (nchild));

computes an upper boundary on the preference of an aDPCSP solution that includes the partial
attribute-value assignments corresponding to n.

The following theorem shows that algorithm 1 is guaranteed to find the set of attribute-value
pairs with the highest combined preferences, within the set of solutions that satisfy the constraints.

Theorem 1 SOLVE(X,D,C,A, P) is admissible
Proof: SOLVE(X,D,C,A, P) is an A* algorithm guided by a heuristic function PP (n) = CP (n)⊕
h(n), where CP (n) is the actual preference of node n and h(n) = ⊕x∈Xnd(n) maxd∈Dx

P (x : d).
It follows from the previous discussion that h(n) is greater than or equal to the combined preference
of any value-assignment of unassigned attributes that is consistent with the partial solution of n. In
this algorithm, the nodes n are maintained in a priority queue in descending order of PP (n). Let δ
be a distance function that reverses the preference ordering such that δ(P1) ≺ δ(P2) ↔ P1 � P2.
SOLVE(X,D,C,A, P) can then be described as an A* algorithm, where the nodes n in the priority

509

KEPPENS & SHEN

queue Q are ordered in ascending order of δ(PP (n)), such that δ(PP (n)) = δ(CP (n))⊕δ(h(n))
and δ(h(n)) is a lower bound on the distance between n and the optimal solution. Therefore, fol-
lowing the work by Hart, Nilsson and Raphael (1968), SOLVE(X,D,C,A, P) is an admissible
algorithm, guaranteed to find a solution S with a minimal δ(P (S)) or a maximal P (S).

To illustrate algorithm 1, consider the problem of finding an ecological model that describes the
behaviour of two populations, one of which predates on the other. An aDPCSP is constructed for
the compositional modelling problem with the following attributes and domains. Note that section
3 demonstrates how the attributes, domains and constraints of this problem can be constructed
automatically and that section 4 illustrates these ideas in the context of a larger example.

X = {x1, x2, x3, x4, x5, x6}

Dx1 = {yes, no}

Dx2 = {yes, no}

Dx3 = {yes, no}

Dx4 = {other, logistic}

Dx5 = {other, logistic}

Dx6 = {Holling, Lotka-Volterra}

The attributes x1, x2 and x3 respectvely describe the relevance of the following phenomena:
the change in size of the predator population, the change in size of the prey population and the
predation of the prey by the predator. The attributes x4 and x5 represent the choice of type of
population growth model. Two types of such models are incorporated in the problem: the logistic
one and the “other”. Finally, attribute x6 is associated with the choice of model type of the predation
phenomenon. Here, two types of model, the Holling model and the Lotka-Volterra model, are
included.

Because the Holling predation model presumes that logistic models are employed to describe
population growth, and because the Lotka-Volterra Model incorporates its own population growth
model, the combinations of assignments to x4, x5, and x6 are restricted. Hence, the aDPCSP
contains a set C = {c{x4,x6}, c{x5,x6}} of compatibility constraints, with:

c{x4,x6} = {〈x4 : other, x6 : Lotka-Volterra〉, 〈x4 : logistic, x6 : Holling〉}

c{x5,x6} = {〈x5 : other, x6 : Lotka-Volterra〉, 〈x5 : logistic, x6 : Holling〉}

Furthermore, a model type of predator/prey growth must be selected if and only if the cor-
responding population growth phenomenon is deemed relevant. Also, a model type of preda-
tion must be selected if and only if both population growth phenomena and the predation phe-
nomenon are deemed relevant (because ecological models describing predation rely on submodels
describing population growth of the predator and the prey). Hence, the aDPCSP contains a set
A = {ax4,{x1}, ax5,{x2}, ax6,{x1,x2,x3}} of activity constraints, with:

510

COMPOSITIONAL MODEL REPOSITORIES

ax4,{x1} = {〈x1 : yes, active(x4)〉, 〈x1 : no,¬active(x4)〉}

ax5,{x2} = {〈x2 : yes, active(x5)〉, 〈x2 : no,¬active(x5)〉}

ax6,{x1,x2,x3} = {〈x1 : yes, x2 : yes, x3 : yes, active(x4)〉, 〈x1 : yes, x2 : yes, x3 : no,¬active(x4)〉,

〈x1 : yes, x2 : no, x3 : yes,¬active(x4)〉, 〈x1 : yes, x2 : no, x3 : no,¬active(x4)〉,

〈x1 : no, x2 : yes, x3 : yes,¬active(x4)〉, 〈x1 : no, x2 : yes, x3 : no,¬active(x4)〉,

〈x1 : no, x2 : no, x3 : yes,¬active(x4)〉, 〈x1 : no, x2 : no, x3 : no,¬active(x4)〉}

Finally, let the preference calculus consist of two orders of magnitude Ogrowth and Opredation,
with Ogrowth � Opredation, where

Ogrowth ={pother, plogistic} with plogistic < pother

Opredation ={pHolling, pLotka-Volterra} with pLotka-Volterra < pHolling

The OMP assignments are as follows:

P (x4 : other) = P (x5 : other) =pother

P (x4 : logistic) = P (x5 : logistic) =plogistic

P (x6 : Holling) =pHolling

P (x6 : Lotka-Volterra) =pLotka-Volterra

When applied to this problem, algorithm 1 initialises the search by creating a node n0, where:

• Xu(n0), the set of currently active attributes, is initialised to {x1, x2, x3}, because the activity
of these attributes does not depend on other attribute-value assignments.

• Xa(n0) and CP (n0) are initialised to the empty set and to 0 respectively, since no attributes
have been assigned yet.

• Finally, PP (n0) equals pother ⊕ pother ⊕ pHolling because this is the combination of highest
OMPs associated with each domain.

This initial node is enqueued in Q. Next, the algorithm proceeds through a number of iterations.
At each iteration, the node with most potential (as measured by PP and CP) is dequeued, and its
children are generated and enqueued in Q. The nodes that are created in this way are depicted in
Figure 2. The number i in the subscript of each node ni indicates the order of node generation, and
the thick arrows show the order in which the search space is explored.

Note that there are three important features of the algorithm that could not be clearly demon-
strated within Figure 2. Firstly, at node n5, the initial set of unassigned attributes is exhausted:
Xu(n5) = {}. Therefore, the activity constraints are fired when n5 is explored. Because n5 corre-
sponds to the assignment {x1 : yes, x2 : yes, x3 : yes}, the remaining attributes are activated and
Xu(n5) is reset to {x4, x5, x6}.

Secondly, node n12 corresponds to an assignment of all (active) attributes that is consistent with
the activity and compatibility constraints:

{x1 : yes, x2 : yes, x3 : yes, x4 : other, x5 : other, x6 : Lotka-Volterra}

511

K
E

P
P

E
N

S
&

S
H

E
N

x6

other

PP = pother ⊕ pother ⊕ pHolling

CP = pother ⊕ pother

logistic

PP = pother ⊕ plogistic ⊕ pHolling

CP = pother ⊕ plogistic

x5

other

PP = plogistic ⊕ pother ⊕ pHolling

CP = plogistic ⊕ pother

logistic

CP = plogistic ⊕ plogistic

PP = plogistic ⊕ plogistic ⊕ pHolling

x5

other

PP = pother ⊕ pother ⊕ pHolling

CP = pother

logistic

PP = plogistic ⊕ pother ⊕ pHolling

CP = plogistic

x4

yes

CP = 0

PP = pother ⊕ pother ⊕ pHolling

x3

no

CP = 0

PP = pother ⊕ pother

yes

CP = 0

PP = pother ⊕ pother ⊕ pHolling

x2

no

CP = 0

PP = pother

yes

CP = 0

PP = pother ⊕ pother ⊕ pHolling

x1

no

CP = 0

PP = pother

n1

x6 x6

Holling

PP = plogistic ⊕ plogistic ⊕ pHolling

CP = plogistic ⊕ plogistic ⊕ pHolling

x6

n2

n3 n4

n5 n6

n7 n8

n9

n14

n10

n11 n12 n13

PP = pother ⊕ pother ⊕ pLotka-Volterra

CP = pother ⊕ pother ⊕ pLotka-Volterra inconsistent

Lotka-Volterra

n15 n16

n17 n18 n19 n20

Lotka-Volterra

inconsistent

Holling

inconsistent inconsistent

Holling Lotka-Volterra

inconsistent

Lotka-Volterra

inconsistent

Holling

Figure 2: Search space explored by algorithm 1 when solving sample aDPCSP

51
2

COMPOSITIONAL MODEL REPOSITORIES

This assignment is not a solution to the aDPCSP, because the corresponding preference is not guar-
anteed to be maximal (and, the assignment is, in fact, not optimal). After the creation of n12, the pri-
ority queue Q looks as follows (the ordering between n2 and n4 may vary since PP (n2) = PP (n4)
and CP (n2) = CP (n4)):

{n10, n8, n12, n6, n2, n4}

Therefore, the next node to be explored (after n9 and the subsequent creation of n12) is n10.
Thirdly, node n19 does correspond with an optimal solution. After its creation, Q equals:

{n19, n12, n6, n2, n4}

As a consequence, n19 is dequeued in the next iteration. Because no children of n19 can be created
(Xu(n19) = ∅ and the activity constraints activate no more attributes), n19 is retained as a solution.

If the user is interested in finding multiple alternative solutions, the search may proceed until
Q contains no more nodes with a PP value that is not smaller than the maximum preference of
the first solution. In this case, PP (n12) ≺ CP (n19) and hence, there is only one solution to this
aDPCSP.

3. Compositional Model Repositories

The aDPCSPs discussed in the previous section provide the foundation for the development of the
compositional model repositories. This section specifies the problem that a compositional model
repository is built to solve and shows how it can be translated into an aDPCSP, and hence be resolved
using the proposed aDPCSP solution algorithm.

3.1 Background: assumption based truth maintenance

An ATMS is a mechanism that keeps track of how each piece of inferred information depends
on presumed information and facts and of how inconsistencies arise. In an ATMS, each piece of
information used or derived by the problem solver is stored as a node. Certain pieces of information
are not known to be true and cannot be inferred from other pieces of information, yet plausible
inference may be drawn from them. Such nodes are categorised by a special type and referred to as
assumptions.

Inferences between pieces of information are maintained within the ATMS as dependencies be-
tween the corresponding nodes. In its extended form (see de Kleer, 1988; or Keppens, 2002), the
ATMS can take inferences, called justifications of the form ni ∧ . . .∧ nj ∧¬nk ∧ . . .∧¬nl → nm,
where ni, . . . , nj , nk, . . . , nl, nm are nodes that the problem solver is interested in. An ATMS
can also take a specific type of justification, called nogood, that leads to an inconsistency, of the
form ni ∧ . . . ∧ nj ∧ ¬nk ∧ . . . ∧ ¬nl → ⊥ (meaning that at least one of the statements in
{ni, . . . , nj ,¬nk, . . . ,¬nl} must be false). In the ATMS, these nogoods are represented as jus-
tifications of a special node, called the nogood node.

Based on the given justifications and nogoods, the ATMS computes a label for each (non-
assumption) node. A label is a set of environments and an environment is a set of assumptions.
In particular, an environment E depicts a possible world where all the assumptions in E are true.
Thus, the label L(n) of a node n describes all possible worlds in which n can be true. The label
computation algorithm of the ATMS guarantees that each label is:

513

KEPPENS & SHEN

• Sound - All assumptions in any environment within the label of a node being true is a sufficient
condition to derive that node:

∀E ∈ L(n), [(∧ni∈Eni) ∧ (∧¬ni∈E¬ni)] ` n

• Consistent - No environment in the label of a node, other than the nogood node, describes an
impossible world:

∀E ∈ L(n), [(∧ni∈Eni) ∧ (∧¬ni∈E¬ni)] 0 ⊥

• Minimal - The label does not contain possible worlds that are less general than one of the
other possible worlds it contains (i.e. environments that are supersets of other environments
in the label):

∀E ∈ L(n)@E′ ∈ L(n), E′ ⊂ E

• Complete - The label of each node, other than the nogood node, describes all possible worlds
in which that node can be inferred:

∀E,[(∧ni∈Eni) ∧ (∧¬ni∈E¬ni) ` n]

∃E′ ∈ L(n), [(∧ni∈E′ni) ∧ (∧¬ni∈E′¬ni) ` n]

3.2 Knowledge Representation

As with any other knowledge-based approach, building a compositional modeller requires a formal-
ism for the specification of its inputs, its outputs and its knowledge base. The work developed here
is loosely based on the compositional modelling language (Bobrow, Falkenhainer, Farquhar, Fikes,
Forbus, Gruber, Iwasaki, & Kuipers, 1996), a proposed standard knowledge representation formal-
ism for compositional modellers, but adapted to meet the challenges of the ecological compositional
modelling problems identified in the introduction.

3.2.1 PRELIMINARY CONCEPTS

The most primitive constructs in a compositional modeller are participants, relations and assump-
tions. This subsection summarises these concepts and explains how they are represented herein.

Participants2 refer to the objects of interest, which are involved in the scenario or its model.
These participants may be real-world objects or conceptual objects, such as variables that express
features of real-world objects in a mathematical model. For instance, a population of a species is
a typical example of a real-world object, and a variable that expresses the number of individuals
of this species forms an example of a conceptual object. It is natural to group objects that share
something in common into classes. Participants are herein grouped into participant classes, with
each representing a set of participants that share certain common features. Each class will be given
a name for easy reference.

Relations describe how the participants are related to one another. As with participants, some
relations represent a real-world relationship, such as:

2. Some of the previous work in compositional modelling refers to these as individuals and quantities, but such names
would not suit the present application. Ecological models typically describe the behaviour of populations rather than
that of individuals and it is often hard to distinguish between quantities.

514

COMPOSITIONAL MODEL REPOSITORIES

predation(frog, insect) (1)

Other relations may be conceptual in nature, such as equation (2), which describes an important
textbook model of logistic population growth (Ford, 1999):

d

dt
change = parameter × size × (1 −

size
capacity

) (2)

To be consistent with other compositional modelling approaches, this paper employs a LISP-
style notation for relations. As such, the above two sample relations become:

(predation frog insect) (1)

(d/dt change (* change-rate size (- 1 (/ size capacity)))) (2)

Assumptions form a special type of relation that are employed to distinguish between alternative
model design decisions. Internally, assumptions will be stored in the form of assumption nodes in
the ATMS (see section 3.3.1), but in the knowledge base, assumptions appear as relations with a
specific syntax and semantics.

Two types of assumptions are employed in this article. Relevance assumptions state what phe-
nomena are to be included in or excluded from the scenario model. Typical examples of phenomena
are the population growth and predation phenomena. The general format of a relevance assumption
is shown in (3). The phenomenon that is incorporated in the scenario model when describing a rele-
vance assumption is identified by 〈name〉 and is specific to the subsequent participants or relations.
For example, relevance assumption (4) states that the growth of participant ?population is to be
included in the model.

(relevant 〈name〉 [{〈participant〉} | 〈relation〉]) (3)

(relevant growth ?population) (4)

Model assumptions specify which type of model is utilised to describe the behaviour of a certain
participant or relation. Typical examples of model types include the exponential (Malthus, 1798)
and the logistic (Verhulst, 1838) model types of population growth. The formal specification of a
model assumption is given in (5). Often the 〈name〉 in (5) corresponds to the name of a known
(partial) model of the phenomenon or process being described. The example in (6) states that the
population ?population is being modelled using the logistic approach.

(model [〈participant〉 | 〈relation〉] 〈name〉) (5)

(model ?population logistic) (6)

515

KEPPENS & SHEN

natality

capacity

capacity

Predators

Prey

natality

natality−rate

mortality

mortality−rate

natality−rate

mortality

mortality−rate

prey−requirement

search−rate

prey−handling−time

predation

Figure 3: Stock flow diagram of predator prey scenario model

3.2.2 SCENARIOS AND SCENARIO MODELS

As formalised by Keppens and Shen (2001b), a compositional modeller takes two inputs and pro-
duces one output. The first input is a representation (which is itself a model) that describes the
system of interest by means of an accessible formalism. This model, which normally consists of
(mainly) real-world participants and their interrelationships, is called the scenario. The second input
is the task description. It is a formal description of the criteria by which the adequacy of the output
is evaluated. The output is a new model that describes the scenario in a more detailed formalism,
usually a set of variables and equations, which the model-based reasoner can employ readily. Such a
model, which normally contains conceptual participants and interrelationships, is called a scenario
model. The aim of any compositional modeller is to translate the scenario into a scenario model, by
means of the task description.

In this work, a model is formally defined by a tuple 〈P, R〉, where P is a set of participants and
R is a set of relations over the participants in P . This definition applies to both the scenario and the
scenario model. A typical example of a scenario is a description of a predator population, a prey
population and a predation relation between the predator and the prey. This scenario is a model
〈P, R〉 with:

P = {predator,prey}

R = {(predation predator prey)}

The aim of the compositional model repository is to translate a scenario into a scenario model.
Within this work, both systems dynamics stock-flow formalism (Forrester, 1968) and ordinary dif-
ferential equations (ODEs) will be employed as the modelling formalisms. For example, a scenario
model that corresponds to the above scenario is depicted in Figure 3. Formally, a scenario model is
another model 〈P, R〉 and in this case

P = {Npredator, Bpredator, Dpredator, Nprey, Bprey, Dprey, Pprey,

bpredator, bprey, dpredator, dprey, Cpredator, Cprey,

s(prey,predator), t(prey,predator), r(predator,prey)}

516

COMPOSITIONAL MODEL REPOSITORIES

Symbol Variable name

Npredator, Nprey number of predators, prey
Bpredator, Bprey natality of predators, prey
Dpredator, Dprey mortality of predators, prey
Pprey predation of prey
bpredator, bprey natality-rate of predators, prey
dpredator, dprey mortality-rate of predators, prey
Cpredator, Cprey capacity of predators, prey
s(prey,predator) search-rate
t(prey,predator) prey-handling-time
r(predator,prey) prey-requirement

Table 1: Variables in the stock flow diagram and the mathematical model

R = {
d

dt
Npredator = Bpredator − Dpredator,

d

dt
Nprey = Bprey − Dprey − Pprey,

Bpredator = bpredator × Npredator,

Bprey = bprey × Nprey,

Dpredator = dpredator × Npredator ×
Npredator

Cpredator
,

Dprey = dprey × Nprey ×
Nprey

Cprey
,

Pprey =
s(prey,predator) × Nprey × Npredator

1 + s(prey,predator) × Nprey × t(prey,predator)
,

Cpredator = r(predator,prey) × Nprey,

Cprey = Nprey}

The relation between the variables of the mathematical model and those used in the stock-flow dia-
gram is given in table 1. Generally speaking, stock-flow diagrams are graphical representations of
systems of (ordinary or qualitative) differential equations. In the automated modelling literature in
general, and engineering and physical systems modelling in particular, more sophisticated represen-
tational formalisms have been developed to enable the identification of mathematical models of the
behaviour of dynamic systems from observations. Examples include bond graphs (Karnopp, Mar-
golis, & Rosenberg, 1990) and generalised physical networks (Easley & Bradley, 1999). However,
the potential benefits of these more advanced formalisms are not exploited here, but remain as an
interesting future work. Instead, stock-flow diagrams are employed throughout this paper as they
are far more commonly used in ecological modelling (Ford, 1999).

It is often possible to construct multiple scenario models from a single given scenario, and the
task specification is employed to guide the search for the most appropriate one(s). In this work,
scenario models are selected on the basis of hard constraints and user preferences. The hard con-
straints stem from restrictions imposed on compositionality by the representational framework (see
section 3.2.3) and from properties the scenario model is required to satisfy (see section 3.2.3). The

517

KEPPENS & SHEN

Name Syntax (infix notation) Syntax (prefix notation)

Addition
?var = C+(formula) (== ?var (C-add formula))
?var = C−(formula) (== ?var (C-sub formula))

Multiplication
?var = C×(formula) (== ?var (C-mul formula))
?var = C÷(formula) (== ?var (C-div formula))

Selection
?var = C if,p(antecedent, formula) (== ?var (C-if antecedent formula :priority p))
?var = Celse(formula) (== ?var (C-else formula)

Table 2: Composable functors and composable relations

user preferences express the user’s subjective view as to which modelling approaches are more
appropriate in the context of the current scenario (see section 2.2).

3.2.3 THE KNOWLEDGE BASE

To construct scenario models from a given scenario, a compositional modeller relies on the use
of a knowledge base that is particular to the problem domain. To illustrate the ideas, this section
presents the constructs employed in the compositional modeller that is developed to synthesise
scenario models in the ecological domain.

Composable relations The knowledge base in this approach consists of partial models that can be
instantiated and composed into more complex scenario models. The composition of partial models
into a scenario model may involve the composition of partial relations (coming from different partial
models) in compounded relations. In the sample scenario model of section 3.2.2, the following
relation describes the changes of population size of the prey population

d

dt
Nprey = Bprey − Dprey − Pprey (7)

In (7), Nprey is the population size, Bprey the number of births, Dprey the number of natural deaths
and Pprey the number of prey who died due to predation. Thus, relation (7) actually describes two
phenomena that affect the population size Nprey: natural population growth (Bprey − Dprey) and
predation related deaths (Pprey). When constructing the knowledge base, it is desirable to represent
these two phenomena in isolation because they do not always occur in combination. For example,
some species do not have predators, and it is therefore unnecessary to always include predation
as a cause of death. From this viewpoint, relation (7) can be seen as composed from different
composable relations in the knowledge base:

d

dt
Nprey = C+(Bprey)

d

dt
Nprey = C−(Dprey)

d

dt
Nprey = C−(Pprey)

The use of composable relations enables the knowledge base to cover as many combinations
of the phenomena that may affect a relation as possible, by representing each phenomenon indi-
vidually rather than precompiling everything together. Because only the component parts (i.e. the
composable relations) of relations need to be represented, instead of all possible, and however com-
plex, combinations of them, the knowledge base can be smaller and more effective. This section
describes how such composable relations are represented in the knowledge base, as well as whether
and how they can be composed to form compounded relations.

518

COMPOSITIONAL MODEL REPOSITORIES

Composable relations are those containing composable functors and for which a method of
composition exists (that describes how a complete set of composable relations can be composed).
The composable functors employed are those proposed by Bobrow et al. (1996) with a new addition:
composable selection. A summary of such composable relations is presented in table 2.

The composable relations introduced by Bobrow et al. (1996) are easy to understand. The
formulae f in v = C+(f) and v = C−(f) represent terms (respectively f and −f) of a sum, and
the formulae f in v = C×(f) and v = C÷(f) represent factors (respectively f and 1

f
) of a product.

However, ecological models in use typically contain selection statements which declare that
one certain equation must be employed when a condition is satisfied and some other one otherwise.
Formally, a selection is a relation of the form

if c1 then v = r1 else if c2 . . . else v = rn (8)

where v is a participant, each ci (with i = 1, . . . , n−1) is a relation describing a condition statement
and each rj (with j = 1, . . . , n) is a relation. This selection relation consists of the partial relations:

if ci then v = ri with i = 1, . . . , n − 1

else v = rn

Therefore, a selection relation can be composed from two types of composable relation. The first
is a composable “if” relation, which has the form v = C if,p(a, f), where v is a participant, p is an
element taken from a total order, such as the set of natural numbers � , which denotes the priority of
the composable “if” relation in the sequence, and a and f are two given relations. The second type
of composable relation is a composable “else” relation, which has the form v = C else(felse), where
felse is a given relation assigned to v if none of the antecedents in the composable “if” relations is
true.

To illustrate this notation, the selection relation (8) can be composed from the following com-
posable relations:

v = C if,p1(c1, r1)

...

v = C if,pn−1(cn−1, rn−1)

v = Celse(rn)

with p1 > . . . > pn−1.
To combine the composable relations, a number of rules are defined to implement the semantics

of the representational formalism. In theory, a set of rules can be generated that enables the aggre-
gation of any set of composable relations. In practice, however, a trade-off must be made between
flexibility (the ability to combine many different types of composable relation) and comprehensi-
bility (the use of a set of rules that is easily understood by the knowledge engineer who employs
composable relations). Thus, the types of composable relations that can be combined has to be
restricted.

Table 3 summarises what composable relations can be joined to form compounded relations.
The principle guiding the construction of this table is to allow only the composition of relations of
certain types for which a resulting compound relation is intuitively obvious. For example, according

519

KEPPENS & SHEN

C+(f2) C−(f2) C×(f2) C÷(f2) C if,p2(a2, f2) Celse(f2)

C+(f1) yes yes no no no no
C−(f1) yes yes no no no no
C×(f1) no no yes yes no no
C÷(f1) no no yes yes no no
C if,p1(a1, f1) no no no no yes yes
C if,p2(a1, f1) no no no no no yes
Celse(f1) no no no no yes no

Table 3: Composibility of composable relations

to Table 3, a composable addition relation x = C+(y) can be combined with a composable sub-
traction relation x = C−(z) because their combination is clearly x = y− z. However, according to
Table 3, a composable addition relation x = C+(y) can not be combined with a composable multi-
plication relation x = C×(z), because an arbitrary and non-intuitive rule would otherwise have to
be defined to decide whether the compound relation would be x = y + z or x = y × z.

The order in which the composable selections must be considered is defined by the priorities
(or is implicit in the case of Celse). Therefore, composable selections can be combined with one
another provided no two composable “if” relations have the same priority.

In order to derive the actual rules of composition, the sets of all composable relations with the
same functor for a given model 〈P, R〉 are defined first:

R(v, C+) = {v = C+(fi) | (v = C+(fi)) ∈ R}

R(v, C−) = {v = C−(fi) | (v = C−(fi)) ∈ R}

R(v, C×) = {v = C×(fi) | (v = C×(fi)) ∈ R}

R(v, C÷) = {v = C÷(fi) | (v = C÷(fi)) ∈ R}

R(v, C if) = {v = C if,pi(ai, fi) | (v = C if,pi(ai, fi)) ∈ R}

R(v, Celse) = {v = Celse(fi) | (v = Celse(fi)) ∈ R}

From this, the rules of composition can be built as given in the expressions (9), (10) and (11).
They jointly state how a given set of composable relations can be rewritten as a single compound
relation. Each of these rules contains a complete set of all composable relations in the antecedent.
In particular, the antecedent of rule (9) contains the set of all composable addition and subtraction
relations with the same participant v in the left-hand side.

Similarly, the antecedent rule (10) contains the complete set of composable multiplication rela-
tions. Finally, the antecedent of rule (11) is satisfied for the complete set of composable if and else
relations with the same left-hand participant v, provided that the priorities are strictly ordered (i.e.
no two priorities are equal) and that there is only a single composable else relation. The latter two
conditions are added because two composable if relations with the same priority or two composable
else relations can not be compounded. The consequents of the rules of composition explain how
these complete sets of composable relations can be joined. This is simply a matter of applying the
appropriate mathematical operation to the provided terms.

520

COMPOSITIONAL MODEL REPOSITORIES

R(v, C+) = {v = C+(f1+), . . . , v = C+(fm+)}∧

R(v, C−) = {v = C−(f1−), . . . , v = C−(fn−)} →

v = f1+ + . . . + fm+ − (f1− + . . . + fn−)

(9)

R(v, C×) = {v = C×(f1×), . . . , v = C×(fm×)}∧

R(v, C÷) = {v = C÷(f1÷), . . . , v = C÷(fn÷)} →

v =
1 × f1× × . . . × fm×

f1÷ × . . . × fn÷

(10)

R(v, C if) ={v = C if,p1(a1, f1), . . . , v = C if,pm(am, fm)}∧

R(v, Celse) ={v = Celse(felse)} ∧ p1 > . . . > pm →

v =if a1 then f1, else . . . , if am then fm, else felse

(11)

Property definitions Property definitions describe features of interest to the application requiring
a scenario model. A property definition Π is a tuple 〈P s, Φ, π〉 where P s = {ps

1, . . . p
s
m} is a set of

source-participants, a predicate calculus sentence Φ whose free variables are elements of P s, and
π is a relation, whose free variables are also elements of P s, such that

∀ps
1, . . . , ∀ps

mΦ → π

A typical example of a feature of interest is the requirement that a certain variable in the model
is endogenous or exogenous. To be more specific, the property definitions below describe when a
variable ?v is endogenous and exogenous respectively.

(defproperty endogenous
:source-participants ((?v :type variable))
:structural-condition ((or (== ?v *) (d/dt ?v *)))
:property (endogenous ?v))

(defproperty exogenous
:source-participants ((?v :type variable))
:structural-condition ((not (endogenous ?v)))
:property (exogenous ?v))

The first definition states that whenever either ?v = * or d
dt
?v = * is true (where * matches

any constant or formula), ?v is deemed to be endogenous. The second property definition indicates
that a variable is said to be exogenous if such an object exists and it is not endogenous.

By describing such features formally in the knowledge base, property definitions enable them
to be imposed as criteria on the selection of scenario models. In this way, the variable describing
the size of a particular population in an eco-system, for instance, can be forced to be endogenous.

Note that required properties can be specified in two different ways: either globally as goals for
the scenario model construction or locally as a required purpose of a certain model fragment. The
latter use of model properties will be illustrated later.

521

KEPPENS & SHEN

Model fragments Model fragments are the building blocks with which scenario models are con-
structed. A model fragment µ is a tuple 〈P s, P t, Φs, Φt, A, Π〉 where P s = {ps

1, . . . p
s
m} is a

set of variables called source-participants, P t = {pt
1, . . . , p

t
n} is a set of variables called target-

participants, Φs = {φs
1, . . . , φ

s
v} is a set of relations, called structural conditions, whose free vari-

ables are elements of P s, Φt = {φt
1, . . . , φ

t
x} is a set of relations, called postconditions, whose free

variables are elements of P s ∪ P t, A = {a1, . . . , ay} is a set of relations, called assumptions, and
Π = is a set of relations, called purpose-required properties, such that:

∀φt
i ∈ Φt, ∀ps

1, . . . , ∀ps
m, ∃pt

1, . . . , ∃pt
n, φs

1 ∧ . . . ∧ φs
v → (a1 ∧ . . . ∧ ay → φt

i) (12)

∀π ∈ Π, ∀ps
1, . . . , ∀ps

m, ∀pt
1, . . . , ∀pt

n, φs
1 ∧ . . . ∧ φs

v ∧ a1 ∧ . . . ∧ ax ∧ ¬π → ⊥ (13)

Note that, in this work, each property definition 〈P s, Φ, π〉 is equivalent to a model fragment
〈P s, {}, Φ, {π}, {}, {}〉.

For example, the model fragment below states that a population ?p can be described by two
variables ?p-size (describing the size of ?p) and ?p-change (describing the rate of change in
population size) and a differential equation

d

dt
?p-size = ?p-change

The usage of this partial scenario model is subject to two conditions: (1) the growth phenomenon is
relevant with regard to ?p, and (2) the variable ?p-change is endogenous in the eventual scenario
model. The former requirement is indicated by the relevance assumption and the latter by the
purpose-required property:

(defModelFragment population-growth
:source-participants ((?p :type population))
:assumptions ((relevant growth ?p))
:target-participants ((?p-size :type variable)

(?p-change :type variable))
:postconditions ((size-of ?p-size ?p)

(change-of ?p-change ?p)
(d/dt ?p-size ?p-change))

:purpose-required ((endogenous ?p-change)))

The purpose-required property is usually satisfied by additional model fragments, such as the
one below:

(defModelFragment logistic-population-growth
:source-participants ((?p :type population)

(?p-size :type variable)
(?p-change :type variable))

:structural-conditions ((size-of ?p-size ?p)
(change-of ?p-births ?p))

:assumptions ((model ?p-size logistic))
:target-participants ((?r :type parameter)

(?k :type variable)
(?d :type variable))

:postconditions ((capacity-of ?k ?p)
(density-of ?d ?p-size)
(== ?d (C-add (/ ?p-size ?k)))

(== ?p-change (- (* ?r ?p-size (- 1 ?d))))))

522

COMPOSITIONAL MODEL REPOSITORIES

Model fragments are rules of inference that describe how new knowledge can be derived from
existing knowledge by committing the emerging model to certain assumptions. They are used
to generate a space of possible models. Model fragments are instantiated by matching source-
participants to existing participants in the scenario or an emerging model, and by matching the
structural conditions to corresponding relations. For each possible instantiation, a new instance is
generated for each of the target-participants, and where necessary, new instances are also created for
the postconditions and assumptions. Such instances, as well as the inferential relationships between
the instances of the source-participants, structural conditions and assumptions on the one hand, and
those of the target-participants and postconditions on the other, are stored in an ATMS, forming the
model space. This is to be further explained in section 3.3.1.

A model fragment is said to be applied if it is instantiated and the underlying assumptions
hold. If a model fragment is applied, the instances of the target-participants and postconditions
corresponding to the instantiation of that model fragment must be added to the resulting model. With
respect to the above example, the model fragment that implements the logistic population growth
model is instantiated whenever variables exist that describe the size and change in a population, and
it is applied if the logistic model for population size has also been selected.

Note that in most compositional modellers, such as the ones devised by Heller and Struss (1998,
2001); Levy, Iwasaki and Fikes (1997); Nayak and Joskowicz (1996); and Rickel and Porter (1997),
model fragments represent direct translations of components of physical systems into influences be-
tween variables. Because the compositional modeller presented herein aims to serve as an ecological
model repository, the contents of the model fragments employed differs from that of conventional
compositional modellers in two important regards:

Firstly, model fragments contain partial models describing certain phenomena instead of in-
fluences. These partial models normally correspond to those developed in ecological modelling
research. Typical examples include the logistic population growth model (Verhulst, 1838) and the
Holling predation model (Holling, 1959) devised in the population dynamics literature.

Secondly, the partial models contained in the model fragments often need to be composed incre-
mentally. For example, the aforementioned sample model fragment logistic-population-
growth requires an emerging scenario model, which may be generated by the other sample model
fragment population-growth. Thus, one model fragment, e.g. logistic-population-
growth, can expand on the partial model contained in another, e.g. population-growth. Be-
cause of this feature, it is (correctly) presumed that no model fragment µ generates new relations
that are preconditions of model fragments that µ expands on. Violating this presumption would
make little sense in the context of the present application as it would imply a recursive extension of
an emerging scenario model with the same set of variables and equations.

3.2.4 PARTICIPANT CLASS DECLARATION AND PARTICIPANT TYPE HIERARCHIES

In general, participant classes need not be defined. However, certain types of participant may be
described in terms of other interesting participants, irrespective of the modelling choices. This
feature provides syntactic sugar for describing important relations between participants, making it
easier to declare required properties of a scenario model in terms of the participants of the scenario.
For example, the behaviour of a population may be described in terms of population size and growth
rate variables:

(defEntity population
:participants (size growth-rate))

523

KEPPENS & SHEN

Participant class declarations may also be employed within model fragments to provide a more
specific definition of the meaning of the source-participants and the target-participants. In this way,
participant specifications are constrained to be a feature of another participant by means of the
:entity statement, as the following example illustrates:

(defModelFragment define-population-growth-phenomenon
:source-participants ((?p :type population))
:target-participants
((?ps :type stock :entity (size ?p))
(?pg :type variable :entity (growth-rate ?p))
(?pb :type flow)
(?pd :type flow))

:assumptions ((relevant growth ?p))
:postconditions ((== ?pg (- ?pb ?pd))

(flow ?pb source ?pl)
(flow ?pd ?pl sink)))

Furthermore, participant class declarations may define one class to be an immediate subclass of
another. For example, the population participant class of holometabolous insects (e.g. butterflies)
may be defined as a subclass of the population participant class:

(defEntity holometabolous-insect-population
:subclass-of (population)
:participants
(larva-number pupa-number adult-number))

In this way, a participant type hierarchy is defined. Each subclass inherits all participants of its
superclasses (i.e. its immediate superclass and superclasses of superclasses).

In summary, a participant class declaration is a tuple Π = 〈ΠS , P 〉 where ΠS is a participant
class, called the immediate superclass of the participant class and P is a set of participants classes
that describe important features of the participant class.

3.3 Inference

The compositional modelling method presented herein employs a four step inference procedure:

1. Model space construction. The model space is an ATMS that efficiently stores all the partici-
pants, relations and model design decisions (represented in the form of relevance and model
assumptions) that may be part of the final scenario model, as well as the conditions under
which each of these participants and relations must or must not be part of the scenario model.

2. aDCSP construction. The model space contains a number of hard constraints on the partici-
pants and relations that may be combined. This inference step extracts such restrictions and
translates them into an aDCSP.

3. Inclusion of order-of-magnitude preferences. Preferences are associated with relevance and
model assumptions in the scenario space as they reflect the relative appropriateness of these
assumptions, resulting in an aDPCSP.

4. Scenario model selection. This inference step solves the aDPCSP. The resulting solutions
correspond to scenario models that are consistent according to the domain knowledge and
optimise the overall preference with respect to the order-of-magnitude preference calculus.

524

COMPOSITIONAL MODEL REPOSITORIES

Prey

birth
rate rate

death

birth
rate rate

death

Predator

sustainable
population

crowding

max crowd

food−demand

crowding

consumption

Knowledge Base

Scenario

Scenario Model

Construction

Scenario Model

Requirements and
Inconsistencies

Generation

Requirements

and Inconsistencies

Model Space

Preferences or

Preference Ordering

Knowledge elements Inference elements

Assumption Set

Satisfaction Problem
Dynamic Preference Constraint

Dynamic Constraint
Satisfaction Problem

ApplicationProblem Specification

population(prey)
population(predator)
predation(predator,prey)

Application

Scenario Model Selection

(aDCSP solver)

Inclusion of Order−of−Magnitude

Preferences

Satisfaction Problem Construction

Model Space Construction

Activity−based Dynamic Constraint

STEP 1

STEP 2

STEP 3

STEP 4

Compositional Model Repository

Figure 4: Inference procedures of the compositional modeller

525

KEPPENS & SHEN

These four steps correspond to the four squares of the compositional model repository in Figure 4
In this section, each of these inference steps is discussed in detail and illustrated by means of

simple examples. The next section contains a more detailed example and shows how this procedure
can be applied to a non-trivial ecological modelling domain.

3.3.1 SCENARIO + KNOWLEDGE BASE = MODEL SPACE

As previously stated, the aim of a compositional modeller is to translate a scenario into a scenario
model. Both are representations of the system of interest though they model the system at a different
level of detail. The knowledge base provides the foundation for translation. All the scenario models
that can be constructed from the given scenario, with regard to the knowledge base, are stored in the
model space.

A model space is an ATMS (de Kleer, 1986) containing all the participants, relations and as-
sumptions that can be instantiated from a given scenario. In this work, the generalised version of
the ATMS, as introduced by de Kleer (1988), is employed as it allows the use of negations of nodes
in the justifications. The algorithm GENERATEMODELSPACE(〈O, R〉) describes how such a model
space can be created from a scenario 〈O, R〉. It first initialises the model space θ with the partic-
ipant instances (O) and the relation instances (R) from the scenario. Then, for each model frag-
ment whose source-participants and structural conditions match participants and relations already
in θ, new instances of its target-participants, assumptions and postconditions are added to θ. Be-
cause each property definition 〈P s, Φ, π〉 is equivalent to a model fragment 〈P s, {}, Φ, {π}, {}, {}〉,
this procedure applies to property definitions as well as model fragments. Matching the source-
participants and structural conditions of a model fragment µ to the emerging model space is per-
formed by the function match(µ, θ, σ) as specified below, where µ is the model fragment being
matched, and σ is a substitution from the source-participants of µ to participant instances.

match(µ, θ, σ) =































true if σ = {ps
1/o1, . . . , p

s
m/om}∧

P s(µ) = {ps
1, . . . , p

s
m}∧

o1 ∈ θ ∧ . . . ∧ om ∈ θ∧

∀φ ∈ Φs(µ), σφ ∈ θ

false otherwise

Each match, specified by a model fragment µ and a substitution σ, is processed as follows:

• For each assumption a ∈ A(µ), a new node, denoting the assumption instance σa, is created
and added to θ.

• Then, a new node n(σ,µ), denoting the instantiation of µ via substitution σ, is created, added
to θ and justified by the implication:

(∧a∈A(µ)σa) ∧ (∧p∈P s(µ)σp) ∧ (∧φ∈Φs(µ)σφ) → n(σ,µ)

• Finally, a new instance for each target-participant p ∈ P t(µ) and for each postcondition
φ ∈ Φt(µ), provided σφ does not already exist in the model space θ, is created. For the
target-participants, this involves creating a new symbol for each new participant instance with
the function gensym() and extending σ with the substitution {p/gensym()}. A new node n

526

COMPOSITIONAL MODEL REPOSITORIES

Algorithm 1: GENERATEMODELSPACE(〈O, R〉)

θ ← new ATMS;
for each o ∈ O, add-node(θ, o);
for each r ∈ R, add-node(θ, r);
for each µ, σ, match(µ, θ, σ)

do







































































































































justification← ∅;
for each a ∈ A(µ)

do
{

newnode← add-node(θ, (σa));
justification← justification ∪ {newnode};

for each p ∈ P s(µ)
do justification← justification ∪ {find-node(θ, (σp))};

for each φ ∈ Φs(µ)
do justification← justification ∪ {find-node(θ, (σφ))};

add-node(θ, n(σ,µ));
add-justification(θ, n(σ,µ),∧n∈justificationn);
for each p ∈ P t(µ)

do







σ ← σ ∪ {p/gensym()};
o← add-node(θ, (σp));
add-justification(θ, o, n(σ,µ));

for each φ ∈ Φt(µ)

do















if (σφ ∈ θ)
then o← get-node(θ, (σφ));
else o← add-node(θ, (σφ));

add-justification(θ, o, n(σ,µ));
for each n1, . . . , nm, inconsistent({n1, . . . , nm)

do add-justification(θ, n⊥, n1 ∧ . . . ∧ nm);

�����
�����
�����
�����

���
���
���
���

{
{
{ }

}

σa1

σat

σps

1

σφs

1

σφs

v

σpt

1x

σpt

n

σφt

1

σφt

sInstances of structural
conditions:

Instances of source-
participants:

Instances of assumptions:

Instances of target
participants:

Instances of postconditions:

A(µ) = {a1, . . . , at}

P s(µ) = {ps

1
, . . . , ps

m
}

Φs(µ) = {φs

1
, . . . , φs

v
}

P t(µ) = {pt

1
, . . . , pt

n
}

Φt(µ) = {φt

1
, . . . , φt

s
}

...

...

...

...

... µ

σps

m

Figure 5: Model fragment application

is created and added to θ for each new participant instance σp and for each new instantiated
relation σφ. Each of these nodes is justified by the implication n(σ,µ) → n.

527

KEPPENS & SHEN

∧ π

¬π ∧ ⊥

π is a global property that must by satisfied
by all consistent scenario models

(a) Inconsistency caused by a
global property

∧ π

σµ ∧

∧ ⊥

π is a purpose-required property in a model fragment µ,
and µ is applied with a substitution σ.

(b) Inconsistency caused by a
purpose-required property

r1 and r2 are
non-composable relations

∧ ⊥

v = r1(. . .)

v = r2(. . .)

(c) Inconsistency caused by
non-composable relations

Figure 6: Sources of inconsistency

To illustrate this procedure, Figure 5 shows a graphical representation of the inferences that are
constructed by applying a model fragment µ = 〈P s, P t, Φs, Φt, A, {}〉 with respect to a substitution
σ.

Once all possible applications of model fragments have been exhausted, the inconsistencies in
the model space are identified and recorded in the ATMS. In the algorithm, nogoods are generated
for each set {n1, . . . , nm} of inconsistent nodes, denoted inconsistent({n1, . . . , nm}). There are
three sources of inconsistencies that are each reported to the ATMS in a different way:

• Global properties: Let π be an instance of a global property that any scenario model must
satisfy. Then, any combination of assumptions and negations of assumptions that prevents π
from being satisfied is inconsistent. Therefore, inconsistent({¬π}) must be reported for any
required global property π. This type of inconsistency is depicted in Figure 6(a).

• Purpose-required properties: Any application of a model fragment µ without satisfying its
purpose-required properties Π(µ) yields an inconsistency (see (13)). Hence, for each node
n(σ,µ) denoting the instantiation of µ via substitution σ, and for each node nσπ describing the
appropriate instance of a purpose-required property π ∈ Π(µ), inconsistent({n(σ,µ),¬nσπ})
is reported. This type of inconsistency is depicted in Figure 6(b).

• Non-composable relations: In any mathematical formalism designed to describe simulation
models of dynamic systems, certain combinations of relations may over-constrain the model,
and hence, be unsuitable for generating the behaviour of a system of interest. Within the
system dynamics and ODE formalisms used in this paper, assignments of relations to the
same variable are only composable if those relations are explicitly deemed composable. In
other words, two relations v = ri and v = rj can only be combined with one another if ri

and rj are composable. Examples of pairs of non-composable relations include

x = C+(y) and x = C×(z) because C+ and C× relations are not composable, and

a = C+(b) and a = c + d because c + d is not a composable relation.

Combinations of such non-composable relations must be reported as an inconsistency as well.
This type of inconsistency is depicted in Figure 6(c).

528

COMPOSITIONAL MODEL REPOSITORIES

µ2:

π:

µ1: population-growth
model fragment
logistic-population-growth
model fragment

property definition
endogenous

∧

relation:
π

population frog
µ1

assumption:

relation:

participant:

participant:
variable nfrog

relation:

relation:
(size-of nfrog frog)

(model nfrog logistic)

d

dt
nfrog = cfrog

variable cfrog

(change-of cfrog frog)

µ2

participant:
parameter rfrog

participant:

relation:

relation:

parameter kfrog

(capacity-of kfrog frog)

cfrog = rfrog × nfrog × (1−
nfrog
kfrog

)

(endogenous cfrog)

participant:

(relevant growth frog)
assumption:

⊥
¬endogenous(cfrog)
relation:

Figure 7: Partial model space

To illustrate the model space construction algorithm, Figure 7 presents a small sample model
space. It results from the application of the population-growth and logistic-popula-
tion-growth model fragments and the endogenous property definition, which were described
earlier, for a single population “frog”. If a larger scenario involving multiple populations and rela-
tions between these populations were specified, a similar partial model space would be generated
for each individual population.

3.3.2 FROM MODEL SPACE TO ADCSP

Once the model space has been constructed, it can be translated into an aDCSP. The translation
procedure, summarised as algorithm CREATEADCSP(), consists of three steps as described below:

Algorithm 2: CREATEADCSP()

comment: σ is the set of substitutions

σ ← {};
comment: Generate attributes and domains

for each A, assumption-class(A)

do







































x← create-attribute();
D(x)← {};
σ ← σ ∪ {A/x};
for each a ∈ A

do







v ← create-value();
D(x)← D(x) ∪ {v};
σ ← σ ∪ {a/x : v};

comment: Generate activity constraints

for each A, assumption-class(A)

do







s← subject(A);
for each {a1>, . . . , ap>,¬a1⊥, . . . ,¬aq⊥} ∈ L(s)

do add(σa1> ∧ . . . ∧ σap> ∧ σ¬a1⊥ ∧ . . . ∧ σ¬aq⊥ → active(σA));
comment: Generate compatibility constraints

for each {a1>, . . . , ap>,¬a1⊥, . . . ,¬aq⊥} ∈ L(n⊥)
do add(σa1> ∧ . . . ∧ σap> ∧ σ¬a1⊥ ∧ . . . ∧ σ¬aq⊥ → ⊥);

529

KEPPENS & SHEN

1. Generate the attributes and domain values from the assumptions. The aDCSP attributes corre-
spond to the underlying assumption classes (i.e. groups of assumptions indicating alternative
choices with regards to the same model construction decision). A relevance assumption and
its negation jointly form an assumption class. For example, A1 ={(relevant growth
frog), ¬(relevant growth frog)} specifies such an assumption class. The set of
model assumptions involving the same participants/relations, but with different model names
and hence different descriptions, also form an assumption class. For instance, A2 ={(model
nfrog exponential), (model nfrog logistic), (model nfrog other)}, where
nfrog is a variable denoting the size of a population, specifies such an assumption class. Run-
ning this step of the algorithm, an attribute is created for each assumption class, with the
domain of such an attribute consisting of all assumption instances in the assumption class.

2. Create activity constraints. The attributes and domain values generated in the previous step
are only meaningful in situations where the participant and/or relation instances contained in
the arguments of the corresponding assumptions exist. For example, the assumption (model
nfrog logistic) is only relevant if the participant instance nfrog exists. Clearly, all as-
sumptions within one assumption class have the same participant and/or relation instances as
their arguments. Because each assumption class corresponds to one attribute, the attribute
can be activated if and only if the participant and/or relation instances associated with the re-
lated assumption class are active. Therefore, this step creates activity constraints that activate
an attribute based on the conjunction of the environments contained within the labels of the
participants/relations of the assumption class. For instance, as can be deduced from Figure
7, nfrog is activated when (relevant growth frog) is committed. Thus, the attribute
corresponding to assumption class A2, defined in step 1, is activated under the attribute value
assignment associated with the (relevant growth frog) assumption.

3. Create compatibility constraints. In the ATMS (or model space), all sources of inconsisten-
cies are contained in the label of the nogood node. Therefore, the compatibility constraints
are created directly by translating the environments in the label L(⊥) into the corresponding
conjunctions of attribute-value assignments.

3.3.3 ADCSP + PREFERENCES = ADPCSP

The aDCSP produced as above formalises the hard requirements imposed upon the scenario models.
Among the scenario models that meet these requirements, some may be better than others, because
the underlying model design decisions may be deemed more appropriate by the user. Preferences
that express this (relative) level of appropriateness are attached to the assumptions that describe the
model design decisions, and by extension, to the attribute-value pairs in the aDCSP. As discussed in
section 2, such an extension to the aDCSP constitutes an aDPCSP.

More specifically, it is worth recalling that in section 2.2 an order-of-magnitude preference
calculus is presented that enables representation and reasoning with subjective user preferences for
different relevance and modelling assumption. Next, section 2.3 introduces a solution algorithm for
aDPCSPs that include an aDCSP, such as the ones constructed with the approach of section 3.3.2,
and are extended with subjective user preferences for alternative design decisions.

530

COMPOSITIONAL MODEL REPOSITORIES

3.4 Outline analysis of complexity

The complexity of the work arises from four major sources: 1) model space construction, 2) label
propagation in the ATMS, 3) model space to aDCSP translation, and 4) aDPCSP solution.

GENERATEMODELSPACE(〈O, R〉) essentially performs a fixed sequence of instructions and
produces a small set of nodes and inferences for each match of a model fragment. Therefore, its
time and space complexity are linear with respect to the number of possible matches of model
fragments. CREATEADCSP() extracts certain information from the model space and rewrites it in
a different formalism without further manipulations. Therefore, its time and space complexity are
linear with respect to the size of the model space.

The label propagation algorithm of an ATMS is known to have an exponential time complexity.
However, because the model space is built up incrementally (by GENERATEMODELSPACE(〈O, R〉))
from the root nodes of the ATMS network (i.e. those that correspond to facts and have no an-
tecedents) to the leaf nodes (i.e. those that have have no consequents, other than the nogood node)
and because the inconsistencies are added at the end, this complexity only increases exponentially
with the depth of the network and the number of participants and relations in individual model frag-
ments, rather than with the size of the model space. This fact significantly limits the complexity
impact of label propagation. Firstly, the depth of the ATMS network is restricted by the domain.
In many conventional compositional modellers, where model fragments are direct translations from
scenario components to scenario model equations, this depth would be only one. Empirically, con-
structing the model space for sophisticated eco-systems, the depth of a model space never exceeded
8. Secondly, the size of the individual model fragments does not change significantly with the size
of the knowledge base.

The fourth and final source of complexity is driven by the fact that the constraint satisfaction
algorithm must determine a consistent combination of assumptions in the model space. The space
of attribute value assignments increases exponentially with the size of the number of assumptions
and hence, with the model space. Thus, the overall complexity of the present approach is largely
dominated by the constraint satisfaction algorithm employed.

If the user does not specify any preference, the CSP is an aDCSP. Recently, a number of efficient
methods have been devised for solving aDCSPs as presented by Minton et al. (1992); Mittal and
Falkenhainer (1990); and Verfaillie and Schiex (1994). This helps minimise the overhead incurred
for compositional modelling.

With preferences, the CSP becomes an aDPCSP. As argued in section 2, this presents a new
problem that has not yet been studied in detail. In this work, an A* algorithm has been proposed to
implement the CSP solution method. This approach is known to be the most efficient in terms of
the proportion of the search space the algorithm needs to explore before finding an optimal solution,
when compared to other search methods that are based on the same heuristic (Hart et al., 1968). A
disadvantage is that it incurs an exponential space complexity. As explained by Miguel and Shen
(2001a, 2001b); and Tsang (1993), a wide range of alternative solution techniques exist for ordinary
CSPs and many of these could also be extended to solve aDPCSPs. A detailed examination of these
techniques is a topic of future research.

3.5 Automated modelling and scientific discovery

As mentioned previously, a compositional model repository is designed in order to compose models
from a system’s structure and relevant domain knowledge. As such, this approach gives rise to a po-

531

KEPPENS & SHEN

tentially beneficial means to operationalise the outcomes of scientific discovery. More specifically,
the resultant compositional model repositories will allow existing knowledge on model construction
to be applied to unexperienced scenarios and to support investigation into situations which may be
physically difficult to replicate or create but which may be synthesised in computational represen-
tations.

The present work has been applied to the vegetation component of the MODMED n-species
model (Legg, Muetzelfeldt, & Heathfield, 1995). This n-species model offers a system dynamics
representation of populations of Mediterranean vegetations and of how they are affected by popu-
lations of farm animals, climate and environmental management. The purpose of the model is to
be instantiated with respect to various Mediterranean communities, and to serve as a component
of a very large scale simulation that is designed to simulate the effects of various environmental
policies on the Mediterranean landscape. A knowledge base containing approximately 60 model
fragments and 4 property definitions has been constructed, on the basis of the most complex parts
of the n-species model in about two man-weeks. This knowledge base can be employed to recon-
struct variations of the n-species model to accommodate a variety of possible scenarios, as well as
to examine simplifications of the original n-species model which exclude certain phenomena.

The compositional model repository is most closely related to the seminal work on compo-
sitional modelling (Falkenhainer & Forbus, 1991). That approach has a similar functionality but
it is devised specifically for physical systems and relies on a component-connection formalism to
represent scenarios.

Another approach which has recently been developed and applied to the ecological domain by
Heller and Struss (1998, 2001). This work derives a system’s structure from observations of its
behaviour and domain knowledge. Therefore, it is able to perform diagnosis of ecological systems
and therapy suggestion. Another important distinction of this work from the present study is that
it presumes that each process can only be described in just one way instead of allowing multiple
alternative models.

In the machine learning community, a number of approaches have been devised by Bradley,
Easley and Stolle (2001); Langley et al. (2002); and Todorovski and Dz̆eroski (1997, 2001) to
induce sets of differential equations from a) observations of behaviour, b) domain knowledge rep-
resented in the form of hypothetical equations, and c) a description of the structure of the system.
These approaches aim at scientific discovery by generalising observed behaviour into mathematical
models. The specifications of the scenario and the domain knowledge in these methods are similar
to those used in this article. This is especially true for the work by Langley et al. (2002); and Todor-
ovski and Dz̆eroski (1997, 2001), because that work has also been applied to population dynamics.
However, the internal mechanisms of these approaches are very different as they essentially rely on
exhaustive search procedures instead of constraint satisfaction techniques.

4. A Population Dynamics Example

The examples used throughout the previous sections were taken from a more extensive application
study of the present work. The application was aimed to construct a repository of basic population
dynamic models, describing the phenomena of growth, predation and competition. This section
presents an overview of how the proposed approach is employed in this application to show the
ability of the work to scale to larger problems.

532

COMPOSITIONAL MODEL REPOSITORIES

4.1 Knowledge base

This subsection illustrates how a set of model fragments can be constructed. The challenge of
this task lies in the fact that model fragments must encompass a sufficiently general and reusable
component part of the ecological models. In instances of models found in the literature on ecological
modelling, the boundaries of the recurring component parts are hidden, and it is therefore up to the
knowledge engineer to identify them.

First, a hierarchy of entity types is set up. The system dynamics models shown earlier contain
only three types of participant: variables, stocks and flows. Here, stocks and flows are a special
type of variable with a predetermined meaning. That is, a flow f into a stock s corresponds to the
equation d

dt
s = C+(f) and a flow f out of a stock s denotes d

dt
s = C−(f). Hence, stocks and

flows are defined as subclasses of the participant class variable:

(defEntity variable)
(defEntity stock

:subclass-of (variable))
(defEntity flow

:subclass-of (variable))

The sample properties defined in section 3.2.3, which describe the condition under which a
variable is endogenous or exogenous, are employed in this knowledge base:

(defproperty endogenous-1
:source-participants ((?v :type variable))
:structural-conditions ((== ?v *))
:property (endogenous ?v))

(defproperty endogenous-2
:source-participants ((?v :type variable))
:structural-conditions ((d/dt ?v *))
:property (endogenous ?v))

(defproperty exogenous
:source-participants ((?v :type variable))
:structural-conditions ((not (endogenous ?v)))
:property (exogenous ?v))

The next three model fragments contain the rules of the stock-flow diagrams employed by sys-
tems dynamics models. They respectively describe that:

• A flow ?flow into a stock ?stock corresponds to the composable differential equation:

d

dt
?stock = C+(?flow)

• A flow ?flow out of a stock ?stock corresponds to the composable differential equation:

d

dt
?stock = C−(?flow)

• A flow ?flow from one stock ?stock1 to another stock ?stock2 corresponds to the
composable differential equations:

d

dt
?stock1 = C−(?flow) and

d

dt
?stock2 = C+(?flow)

533

KEPPENS & SHEN

(defModelFragment inflow
:source-participants
((?stock :type stock)
(?flow :type flow))

:structural-conditions
((flow ?flow source ?stock))

:postconditions
((d/dt ?stock (C-add ?flow))))

(defModelFragment outflow
:source-participants
((?stock :type stock)
(?flow :type flow))

:structural-conditions
((flow ?flow ?stock sink))

:postconditions
((d/dt ?stock (C-sub ?flow))))

(defModelFragment inflow
:source-participants
((?stock1 :type stock)
(?stock2 :type stock)
(?flow :type flow))

:structural-conditions
((flow ?flow ?stock1 ?stock2))

:postconditions
((d/dt ?stock1 (C-sub ?flow))
(d/dt ?stock2 (C-add ?flow))))

Once the above declarations are in place, the knowledge base of model fragments can be de-
fined. The first model fragment describes the population growth phenomenon. Note that all of the
aforementioned growth, predation and competition models contain a stock representing population
size and two flows, one flow of births into the stock and another flow of deaths out of the stock. This
common feature of models on population dynamics is contained in a single model fragment.

(defModelFragment population-growth
:source-participants
((?population :type population))

:assumptions
((relevant growth ?population))

:target-participants
((?size :type stock :name size)
(?birth-flow :type flow :name births)
(?death-flow :type flow :name deaths))

:postconditions
((flow ?birth-flow source ?size)
(flow ?death-flow ?size sink)
(size-of ?size ?population)
(births-of ?birth-flow ?population)
(deaths-of ?death-flow ?population))

:purpose-required
((endogenous ?birth-flow)
(endogenous ?death-flow)))

The variables ?birth-flow and ?death-flow become endogenous if the model contains
an equation describing birth flow and death flow. These equations differ between population growth
models. Two types of population growth model are the exponential growth model (Malthus, 1798),
which is shown in Figure 8(a), and the logistic growth model (Verhulst, 1838), which is shown in
Figure 8(b). The following two model fragments formally describe these component models:

534

COMPOSITIONAL MODEL REPOSITORIES

���������

�

	
	
 ������
��

�

��� � ���

(a) Exponential growth

���������

�

��������������

�
� ������!��

�"

(b) Logistic growth

Figure 8: Population growth models

(defModelFragment exponential-population-growth
:source-participants
((?population :type population)
(?size :type variable)
(?birth-flow :type variable)
(?death-flow :type variable))

:structural-conditions
((size-of ?size ?population)
(births-of ?birth-flow ?population)
(deaths-of ?death-flow ?population))

:assumptions
((model ?size exponential))

:target-participants
((?birth-rate :type variable :name birth-rate)
(?death-rate :type variable :name death-rate))

:postconditions
((== ?birth-flow (* ?birth-rate ?size))
(== ?death-flow (* ?death-rate ?size))))

(defModelFragment logistic-population-growth
:source-participants
((?population :type population)
(?size :type variable)
(?birth-flow :type variable)
(?death-flow :type variable))

:structural-conditions
((size-of ?size ?population)
(births-of ?birth-flow ?population)
(deaths-of ?death-flow ?population))

:assumptions
((model ?size logistic))

:target-participants
((?birth-rate :type variable :name birth-rate)
(?death-rate :type variable :name death-rate)
(?density :type variable :name total-population)
(?capacity :type variable :name capacity))

:postconditions
((== ?birth-flow (* ?birth-rate ?size))
(== ?death-flow (* ?death-rate ?size ?density))
(== ?density (C-add (/ ?size ?capacity)))
(density-of ?density ?population)
(capacity-of ?capacity ?population)))

There is one twist in compositional modelling of population growth. Sometimes, the actual
growth model is implicitly contained within another type of model. In such cases, the growth
phenomenon and the corresponding differential equations are still relevant, but none of the dedicated
growth models can be employed. For example, as will be shown later, the Lotka-Volterra predation
model comes with its own equations describing growth.

535

KEPPENS & SHEN

The model fragment other-growth allows for an empty growth model, named other, to
be selected. However, due to the purpose-required property that any instance of ?p-change must
be endogenous, this empty model can only be selected if a growth model is implicitly included
elsewhere.

(defModelFragment other-growth
:source-participants
((?population :type population)
(?size :type variable)
(?birth-flow :type variable)
(?death-flow :type variable))

:structural-conditions
((size-of ?size ?population)
(births-of ?birth-flow ?population)
(deaths-of ?death-flow ?population))

:assumptions
((model ?population other)))

In addition to population growth, two other phenomena are included in the knowledge base:
predation and competition. Predation and competition relations between species are represented by
predicates over the populations: e.g. (predation foxes rabbits) and (competition
sheep cows). However the existence of a phenomenon does not necessarily mean that it must be
contained within the model. It would make little sense to model predation and competition without
modelling the size of the populations, because models of these phenomena relate population sizes
to one another. Therefore, the incorporation of the predation phenomenon is made dependent upon
the existence of variables representing population size. Also, human expert modellers may prefer
to leave a phenomenon out of the resulting model. To keep this choice open, the following two
model fragments construct a participant representing the phenomena of predation and competition,
and make it dependent upon a relevance assumption:

(defModelFragment predation-phenomenon
:source-participants
((?predator :type population)
(?prey :type population)
(?predator-size :type variable)
(?prey-size :type variable))

:structural-conditions
((predation ?predator ?prey)
(size-of ?predator-size ?predator)
(size-of ?prey-size ?prey))

:assumptions
((relevant predation ?predator ?prey))

:target-participant
((?predation-phenomenon :type phenomenon :name predation-phenomenon))

:postconditions
((predation-phenomenon ?predation-phenomenon ?predator ?prey))

:purpose-required ((has-model ?predation-phenomenon)))

(defModelFragment competition-phenomenon
:source-participants
((?population1 :type population)
(?population2 :type population)
(?size1 :type variable)
(?size2 :type variable))

:structural-conditions
((competition ?population1 ?population2)
(size-of ?size1 ?population1)
(size-of ?size2 ?population2))

536

COMPOSITIONAL MODEL REPOSITORIES

bprey

d

dt
Npred = Bpred − Dpred

dpred

d

dt
Nprey = Bprey − Dprey − P

pprey

Dprey = pprey × Nprey × Npred

ppred

Dpred = dpred × Npred ×
Npred

Kpred
Bpred = ppred × Nprey × Npred

Bprey = bprey × Nprey

(a) Lotka-Volterra predation

bprey
dprey

Kprey

Dprey = dprey × Nprey ×
Nprey

Kprey

Bpred = bpred × Npred

bpred

d

dt
Npred = Bpred − Dpred

dpred

Dpred = dpred × Npred ×
Npred

Kpred

Kpred = k × Nprey

Bprey = bprey × Nprey

d

dt
Nprey = Bprey − Dprey − P

s

th

P =

s×Nprey×Npred

1+s×Nprey×th

(b) Holling predation

Figure 9: Predation models

:assumptions
((relevant competition ?population1 ?population2))

:target-participant
((?competition-phenomenon :type phenomenon :name competition-phenomenon))

:postconditions
((competition-phenomenon ?competition-phenomenon ?population1 ?population2))

:purpose-required
((has-model ?competition-phenomenon)))

Both model fragments have a purpose-required property of the form (has-model ?phen).
This property expresses the condition that a model must exist with respect to a phenomenon:

(defproperty has-model
:source-participants ((?p :type phenomenon))
:structural-conditions ((is-model-of ?p *))
:property (has-model ?p))

The next two model fragments implement such models (thereby satisfying the above has-model
purpose-required property) for the predation phenomenon between two populations. They describe
two well-known predation models: the Lotka-Volterra model (1925, 1926), which is shown in Fig-
ure 9(a), and the Holling model (1959), which is shown graphically in Figure 9(b).

(defModelFragment Lotka-Volterra
:source-participants
((?predation-phenomenon :type phenomenon)
(?predator :type population)
(?predator-size :type stock)
(?predator-birth-flow :type flow)
(?predator-death-flow :type flow)
(?prey :type population)
(?prey-size :type stock)
(?prey-birth-flow :type flow)
(?prey-death-flow :type flow))

:structural-conditions
((predation-phenomenon ?predation-phenomenon ?predator ?prey)

537

KEPPENS & SHEN

(size-of ?predator-size ?predator)
(births-of ?predator-birth-flow ?predator)
(deaths-of ?predator-death-flow ?predator)
(size-of ?prey-size ?prey)
(births-of ?prey-birth-flow ?prey)
(deaths-of ?prey-death-flow ?prey))

:assumptions
((model ?predation-phenomenon lotka-volterra))

:target-participants
((?prey-birth-rate :type variable :name birth-rate)
(?predator-factor :type variable :name predator-factor)
(?prey-factor :type variable :name prey-factor)
(?predator-death-rate :type variable :name death-rate))

:postconditions
((== ?prey-birth-flow (* ?prey-birth-rate ?prey-size))
(== ?predator-birth-flow (* ?predator-factor ?prey-size ?predator-size))
(== ?prey-death-flow (* ?prey-factor ?prey-size ?predator-size))
(== ?predator-death-flow (* ?predator-death-rate ?predator-size))
(is-model-of lotka-volterra ?predation-phenomenon)))

As mentioned earlier, the Lotka-Volterra model introduces its own growth model for the prey
and predator populations by assigning specific equations to the variables, which describe changes in
the sizes of the predator and prey populations, ?pred-change and ?prey-change respectively.
Thus, it satisfies the purpose-required property in the application of the population-growth
model fragment for the ?prey and ?pred populations.

(defModelFragment Holling
:source-participants
((?predation-phenomenon :type phenomenon)
(?predator :type population)
(?predator-size :type stock)
(?capacity :type variable)
(?prey :type population)
(?prey-size :type stock))

:structural-conditions
((predation-phenomenon ?predation-phenomenon ?predator ?prey)
(size-of ?predator-size ?predator)
(size-of ?prey-size ?prey)
(capacity-of ?capacity ?predator))

:assumptions
((model ?predation-phenomenon holling))

:target-participants
((?search-rate :type variable :name search-rate)
(?handling-time :type variable :name handling-time)
(?prey-requirement :type variable :name prey-requirement)
(?predation :type flow :name predation))

:postconditions
((flow ?predation ?prey-size sink)
(== ?predation

(/ (* ?search-rate ?prey-size ?predator-size)
(+ 1 (* ?search-rate ?prey-size ?handling-time))))

(== ?capacity (C-add (* ?prey-requirement ?prey)))
(is-model-of holling ?predation-phenomenon)))

The Holling model employs a variable denoting the capacity of a population. Such a variable
may be introduced by a logistic growth model. In practice, logistic growth models and Holling
predation models are often used in conjunction. The compositional modeller need not be aware of
such combinations of models, however. All it needs to know is the prerequisites of the individual
component models contained within each model fragment.

538

COMPOSITIONAL MODEL REPOSITORIES

d

dt
N1 = B1 − D1

d

dt
N2 = B2 − D2

B1 = b1 × N1

b1

D1 = d1 × N1 ×
N1+w12×N2

K1

d1

w12

B2 = b2 × N2

b2

D2 = d2 × N2 ×
w21×N1+N2

K2

K1

d2

w21

K2

Figure 10: A species competition model

The final model fragment in the knowledge base implements a model of competition between
two species. It formally describes the competition model type depicted in Figure 10. As this model
fragment contains the only population competition model in the knowledge base, it does not contain
a model assumption to represent the model.

(defModelFragment competition
:source-participants
((?competition-phenomenon :type phenomenon)
(?population-1 :type population)
(?size-1 :type stock)
(?density-1 :type variable)
(?capacity-1 :type variable)
(?population-2 :type population)
(?size-2 :type stock)
(?density-2 :type variable)
(?capacity-2 :type variable))

:structural-conditions
((competition-phenomenon ?competition-phenomenon ?population-1 ?population-2)
(density-of ?density-1 ?size-1)
(capacity-of ?capacity-1 ?size-1)
(density-of ?density-2 ?size-2)
(capacity-of ?capacity-2 ?size-2))

:assumptions
((relevant competition ?population-1 ?population-2))

:target-participants
((?weight-12 :type variable :name weight)
(?weight-21 :type variable :name weight))

:postconditions
((== ?density-1 (C-add (/ (* ?weight-12 ?size-2) ?capacity-1)))
(== ?density-2 (C-add (/ (* ?weight-21 ?size-1) ?capacity-2)))))

539

KEPPENS & SHEN

Growth
Stock +
Flows

Exponential
model

Logistic
model

"Other"
model

Logistic model predator
is logistic

Growth
Stock +
Flows

Exponential
model

Logistic
model

"Other"
model

Logistic model predator
is logistic

relevant
growth predator

Growth
Stock +
Flows

Exponential
model

Logistic
model

Logistic

Exponential

other−growth

model predator
is exponential

model predator
is logistic

model predator
is other

Prey1

Prey2

Predator

relevant
predation

predator,prey1

predation
predator,prey1

predator,prey1
predation−phen:

relevant
predation

predator,prey2

predation
predator,prey2

Predation
predation−phen:
predator,prey2

relevant
competition
prey1,prey2

model comp.
is lotka−volterra

model comp.
is holling

model
Lotka−Volterra

model
Holling

Lotka−Volterra

Holling

model comp.
is lotka−volterra

model comp.
is holling

model
Lotka−Volterra

model
Holling

Lotka−Volterra

Holling

other−growth

Exponential

model predator
is other

model predator
is exponential

other−growth

Exponential

model predator
is other

model predator
is exponential

Competition competition−phen:
prey1,prey2

relevant
growth prey1

relevant
growth prey2

Predation

"Other"
model

competition
prey1,prey2

Figure 11: Model space for the 1 predator and 2 competing prey scenario

4.2 Model space

A model space is constructed when the knowledge base is instantiated with respect to a given sce-
nario. Consider for example the following scenario, which describes a predator population that
preys on two other populations, prey1 and prey2, whilst the two prey populations compete with
one another:

(defScenario pred-prey-prey-scenario
:entities ((predator :type population)

(prey1 :type population)
(prey2 :type population))

:relations ((predation predator prey1)
(predation predator prey2)
(competition prey1 prey2)))

The full specification of the model space is too unwieldy to present here but an abstract graphical
representation of the model space for this scenario is shown in Figure 11. This model space contains
the following knowledge:

• From each of the three populations in the scenario, a set of three population growth models
(i.e. exponential, logistic and other) is derived. This inference is dependent upon
a relevance assumption of the population growth phenomenon, and a model assumption that
corresponds to one of the three population growth models.

540

COMPOSITIONAL MODEL REPOSITORIES

• From both predation relations (i.e. (predation predator prey1) and (predation
predator prey2)), and the populations related by them, a set of two predation models
(i.e. Lotka-Volterra and Holling) is derived. This inference is dependent upon a rel-
evance assumption of the predation phenomenon and a model assumption that corresponds to
one of the two predation models.

• From the competition relation (competition prey1 prey2), and the populations re-
lated by it, a competition model is derived. Because there is only one competition model,
the inference of the competition model is only dependent upon a relevance assumption that
corresponds to the competition phenomenon.

In addition to the hypergraph of Figure 11, the model space also contains a number of constraints
on the conjunctions of assumptions that are consistent. As explained earlier, these stem from two
sources: 1) non-composable relations and 2) purpose-required properties. An example will be given
of each type.

Let predation-phen-1 be the predation phenomenon between predator and prey1,
and prey1-size be the variable representing the size of the prey1 population. In this ex-
ample, the model fragments exponential-population-growth and Lotka-Volterra
will each generate an equation for computing the value of a variable representing the change in
prey1-size. Because both equations can not be composed, the following inconsistency is gen-
erated:

(relevant growth prey1) ∧ (model prey1-size exponential)∧

(relevant growth predator) ∧ (relevant predation predator prey1)∧

(model predation-phen-1 lotka-volterra)→ ⊥

Inconsistencies also arise from purpose-required properties. For example, if the model frag-
ment predation-phenomenon is applicable and the predation relation is deemed relevant, then
the purpose-required property (has-model ?pred-phen) will become a condition for consis-
tency. Under certain combinations of assumptions, this property may not be satisfied. Say, when the
Holling predation and exponential growth models are both selected, the Holling model is not gener-
ated because there is no ?capacity for which (capacity ?capacity ?pred) is true. No
predation model is created in this case (because the Holling model fragment can not be instanti-
ated), even though the predation phenomenon is deemed relevant under this set of assumptions. This
is inconsistent with the has-model purpose-required property in the predation-phenomenon
model fragment, and the responsible combination of assumptions is therefore marked as nogood.

(relevant growth predator) ∧ (model predator-size exponential)∧

(relevant growth prey1) ∧ (model prey1-size exponential)∧

(relevant predation predator prey1) ∧ (model predation-phen-1 holling)→ ⊥

4.3 aDPCSP and solution

The resultant model space is translated into an aDCSP to enable the selection of a consistent set of
assumptions, using advanced CSP solution techniques. The aDCSP derived from the above model
space is depicted in Figure 12.

541

KEPPENS & SHEN

Attribute Meaning

x1 (relevant growth prey1)
x2 (relevant growth prey2)
x3 (relevant growth predator)
x4 (relevant predation predator prey1)
x5 (relevant predation predator prey2)
x6 (relevant competition prey1 prey2)
x7 (model size-1 *)
x8 (model size-2 *)
x9 (model size-3 *)
x10 (model predation-phen-1 *)
x11 (model predation-phen-2 *)

Table 4: Attribute list

Domain Content Meaning

D1 {d1,y, d1,n} {population,none}
D2 {d2,y, d2,n} {population,none}
D3 {d3,y, d3,n} {population,none}
D4 {d4,y, d4,n} {(population,population),none}
D5 {d5,y, d5,n} {(population,population),none}
D6 {d6,y, d6,n} {(population,population),none}
D7 {d7,l, d7,e, d7,o} {logistic,exponential,other}
D8 {d8,l, d8,e, d8,o} {logistic,exponential,other}
D9 {d9,l, d9,e, d9,o} {logistic,exponential,other}
D10 {d10,h, d10,lv} {Holling,Lotka-Volterra}
D11 {d11,h, d11,lv} {Holling,Lotka-Volterra}

Table 5: The aDCSP for the 1 predator and 2 competing prey scenario: domains and their contents
and meaning

This aDCSP contains 11 attributes. They are listed with the corresponding assumption classes
in table 4. The first 6 attributes correspond to the notion of relevance phenomenon: 3 population
growth phenomena, 2 predation phenomena and 1 competition phenomenon to be precise. The other
5 attributes correspond to 5 sets of model types: 3 sets of population growth models and 2 sets of
predation models.

The assumptions from which the attributes were generated form domains of values. The result-
ing domains of the aforementioned attributes are summarised in table 5.

The activity constraints in the aDCSP describe the conditions that instantiate the subject of the
assumptions that correspond to an attribute. Since each participant or relation has a label in the
model space, a minimal set of assumptions under which it becomes part of the emerging model
is available. When a participant or relation is the subject of an assumption, this label explicitly
describes the sets of assumptions under which the attribute that corresponds to that subject should

542

COMPOSITIONAL MODEL REPOSITORIES

d1,nd1,y d4,y d4,n d6,y d6,n d2,y d2,n d5,y d5,n d3,y d3,n

d9,ed9,l d9,od11,lv d11,hd8,ed8,l d8,od10,lv d10,hd7,ed7,l d7,o

value

compatibility constraint

activity constraint

attribute

x1 x4 x6 x2 x5 x3

x9x11x8x10x7

Figure 12: aDCSP derived from the models space reflecting the 1 predator and 2 competing prey
scenario

be activated. By translating the label of a subject into sets of attribute-value assignments, the an-
tecedents of the activity constraints are constructed.

In this example, the relevance assumptions (attributes x1, . . . , x6) take their subjects from the
scenario, and hence, they are always active. The attributes related to the model assumptions for
population growth are active if the corresponding assumptions denoting relevance of population
growth are true. That is,

x1 : d1,y → active(x7)

x2 : d2,y → active(x8)

x3 : d3,y → active(x9)

The attributes related to the assumptions about the predation models are active if the corresponding
assumptions denoting relevance of predation, and the assumptions describing relevance of popula-
tion growth, are true for the populations involved in the predation relation. That is,

x1 : d1,y ∧ x3 : d3,y ∧ x4 : d4,y → active(x10)

x2 : d2,y ∧ x3 : d3,y ∧ x5 : d5,y → active(x11)

Figure 12 shows a graphical representation of these activity constraints.
The compatibility constraints correspond directly to the inconsistencies in the nogood node.

These inconsistencies have been discussed in the previous section and are depicted in Figure 12.
Once the aDCSP is constructed, preferences may be attached to attribute-value assignments.

Suppose that preferences are only assigned to the standard population modelling choices, i.e. expo-

543

KEPPENS & SHEN

Attribute Preference assignments

x1, . . . , x5 no preference assignments
x6 P (x6 : d6,y) = pcompetition

x7 P (x7 : d7,l) = plogistic, P (x7 : d7,e) = pexponential

x8 P (x8 : d8,l) = plogistic, P (x8 : d8,e) = pexponential

x9 P (x9 : d9,l) = plogistic, P (x9 : d9,e) = pexponential

x10 P (x10 : d10,h = pholling, P (x10 : d10,lv) = plotka-volterra

x11 P (x11 : d11,h = pholling, P (x11 : d11,lv) = plotka-volterra

Table 6: Preference assignments for the 1 predator and 2 competing prey problem

nential growth, logistic growth, lotka-volterra predation and holling predation, and to the relevance
of competition (because only one type model has been implemented for this phenomenon). For
example, the following BPQs could be employed:

pexponential < plogistic

plotka-volterra < pholling

pcompetition

The logistic and Holling models are preferred over the exponential and Lotka-Volterra models be-
cause the former are generally regarded as being more accurate. Note that the preferences have
been ordered in such a way that those corresponding to different phenomena are not related to one
another. The justification for this ordering is that, even though the models are structurally connected
(there are restrictions over which models can combined with one another), models of different phe-
nomena inherently describe behaviours that can not be compared with one another. The preference
assignments for attribute value assignments are summarised in table 6.

Solving this aDPCSP is simple. First, the attributes x1, . . . , x6 are activated. Each of these
attributes is assigned xi : di,y because that assignment maximises the potential preference. Then,
the attributes x7, . . . , x11 are activated. Here, attributes x7, . . . , x9 are assigned xi : di,l because the
logistic growth model has the highest preference. Finally, x10 and x11 are assigned x10 : d10,h and
x11 : d11,h because the Holling models have the highest preference and are not inconsistent with the
logistic model committed earlier. The resulting solution satisfies the following set of assumptions:

{(relevant growth prey1),

(relevant growth prey2),

(relevant growth predator),

(relevant competition prey1 prey2),

(relevant predation predator prey1),

(relevant predation predator prey2),

(model size-1 logistic),

(model size-2 logistic),

(model size-3 logistic),

(model predation-phen-1 holling),

(model predation-phen-2 holling)}

544

COMPOSITIONAL MODEL REPOSITORIES

Assumptions in the
aDPCSP solution

Nodes entailed by the
aDPCSP solution

Nodes NOT entailed by the
aDPCSP solution

Applied model fragment

Model fragment that is
not applied

SYMBOLS

relevant
growth prey1

relevant
growth prey2

Predation

"Other"
model

competition
prey1,prey2

Predator

relevant
growth predator

Prey1

predation
predator,prey2

relevant
predation

predator,prey2

Prey2

predation
predator,prey1

relevant
predation

predator,prey1

relevant
competition
prey1,prey2

Growth

Predation

Growth

Stock +
Flows

Logistic
model

Logistic model predator
is logistic

model
Holling Holling

Logistic
model

Logistic model predator
is logistic

model comp.
is holling

Competition competition−phen:
prey1,prey2

predation−phen:
predator,prey2

Stock +
Flows

predator,prey1
predation−phen:

model
Holling Holling model comp.

is holling

Logistic
model

Logistic model predator
is logistic

Growth
Stock +
Flows

Exponential
model is exponential

model predator
is other

model
Lotka−Volterra model comp.

is lotka−volterra

model comp.
is lotka−volterramodel

Lotka−Volterra

model predator
is exponential

model predator
is other

Exponential
model

"Other"
model

Exponential
model

"Other"
model

model predator
is exponential

model predator
is other

Exponential

other−growth

Exponential

other−growth

other−growth

Lotka−Volterra

Lotka−Volterra

Exponential model predator

Figure 13: Deducing a scenario model from the model space, given a set of assumptions

4.4 Sample scenario model

Figure 13 shows how a scenario model can be deduced from the above set of assumptions by ex-
ploiting the model space. The nodes corresponding to the aforementioned assumptions and those
that logically follow from the assumption set are indicated in the Figure.

When combining the participants and relations in the resulting scenario model, the model given
in Figure 14 can be drawn. This model corresponds to the one that an ecologist would draw if the
logistic growth and Holling predation models were regarded to be appropriate for the task at hand.

5. Conclusion and Future Work

This article has presented a novel approach to compositional modelling that enables the construction
of models of ecological systems. This work differs from existing approaches in that it automatically
translates the compositional modelling problem into an aDCSP with (order-of-magnitude) prefer-
ence valuations. There are several benefits to this method.

The use of a translation algorithm that converts the compositional modelling problem into an
aDCSP allows criteria to be formalised. More importantly, it also enables efficient, existing and
future, aDCSP solution techniques to be effectively applied to solving compositional modelling
problems.

545

K
E

P
P

E
N

S
&

S
H

E
N

Logistic

Logistic

Logistic

Holling Holling

Growth Growth

Growth

b2

B2 = b2 × N2

s32

th,32

d
dt

N2 = B2 − D2 − P32

D2 = d2 × N2 × δ2

δ2 =
w21×N1

K2

+
N2

K2

K2

d2

s31

th,31

d1

B1 = b1 × N1

b1

d
dt

N1 = B1 − D1 − P31

D1 = d1 × N1 × δ1

δ1 =
N1

K1

+
w12×N2

K1

d
dt

N3 = B3 − D3

b3

D3 = d3 × N3 × δ3

K1

K3

δ3 =
N3

K3

d3

B3 = b3 × N3

P31 =
s31×N1×N3

1+s31×N1×th,31 P32 =
s32×N2×N3

1+s32×N2×th,32

Figure 14: Sample scenario model for the 1 predator and 2 competing prey scenario

54
6

COMPOSITIONAL MODEL REPOSITORIES

The extension of the aDCSPs with (order-of-magnitude) preferences (to form aDPCSPs) also
permits the incorporation of softer requirements in the compositional modelling problem. In this
paper, order-of-magnitude preferences have been employed to express the appropriateness of alter-
native model types for certain phenomena. While such considerations may be described by hard
constraints in the physical systems domain3, they are more subjective in less understood problem
domains, such as the ecological modelling domain. The approach presented herein provides a means
to capture and represent the subtlety of the flexible model design decisions.

The theoretical ideas presented in this article have been applied to real-world ecological mod-
elling problems. In this paper, it has been demonstrated how the resultant compositional modeller
can be employed to create a repository of population dynamics models. The approach has also been
applied to automated model construction of large and complex ecosystems such as the MODMED
model of Mediterranean vegetation (Legg et al., 1995), as reported by Keppens (2002).

There are some practical and theoretical issues that need to be addressed, however. On the prac-
tical side, the types of ecological model design decisions, as represented by the assumptions and
assumption classes, and as supported by the inference mechanisms, should be extended. Ecological
systems tend to involve interrelated populations of individuals, instead of functional compositions of
individual components as with physical systems. One particularly important type of design decision
in ecological modelling is therefore granularity. This requires the introduction of novel representa-
tion formalisms and inference mechanisms such as aggregation and disaggregation. Initial work for
considering populations as single entities and for dividing such entities into sub-populations when
necessary has been carried out (Keppens & Shen, 2001a). Integration of such work into the present
aDPCSP framework requires further investigation.

On the theoretical side, the analysis of the complexity of the present approach is rather informal.
Much remains to be done in this regard, especially when comparing to the complexity of existing
compositional modellers. For this comparison, additional work will be required to adapt the cur-
rent translation procedure to suit existing compositional modelling problems. Most compositional
modellers are of exponential complexity, however. As they employ problem-specific solution algo-
rithms, little is known about opportunities for improving their efficiency. This work hopes to be a
first step toward further understanding this important issue.

Acknowledgments

This work is partly supported by the UK-EPSRC grant GR/S63267. The first author has also been
supported by a College of Science and Engineering scholarship at the University of Edinburgh.
We are very grateful to Robert Muetzelfeldt for helpful discussions and assistance in the research
reported, whilst taking the full responsibility of the views expressed here. Thanks also go to the
anonymous referees for their constructive comments which are very useful in revising the earlier
version of this paper.

References

Binger, B., & Hoffman, E. (1998). Microeconomics with Calculus. Longman.

3. These are the so-called operating conditions, stating the range of values of certain variables within which the use of
certain assumptions is permitted.

547

KEPPENS & SHEN

Bistarelli, S., Montanari, U., & Rossi, F. (1997). Semiring-based constraint satisfaction and opti-
mization. Journal of the ACM, 44(2), 201–236.

Bobrow, D., Falkenhainer, B., Farquhar, A., Fikes, R., Forbus, K., Gruber, T., Iwasaki, Y., & Kuipers,
B. (1996). A compositional modeling language. In Proceedings of the 10th International
Workshop on Qualitative Reasoning about Physical Systems, pp. 12–21.

Bradley, E., Easley, M., & Stolle, R. (2001). Reasoning about nonlinear system identification.
Artificial Intelligence, 133, 139–188.

Dague, P. (1993a). Numeric reasoning with relative orders of magnitude. In Proceedings of the
National Conference on Artificial Intelligence, pp. 541–547.

Dague, P. (1993b). Symbolic reasoning with relative orders of magnitude. In Proceedings of the
13th International Joint Conference on Artificial Intelligence, pp. 1509–1514.

de Kleer, J. (1986). An assumption-based TMS. Artificial Intelligence, 28, 127–162.

de Kleer, J. (1988). A general labeling algorithm for assumption-based truth maintenance. In
Proceedings of the 7th National Conference on Artificial Intelligence, pp. 188–192.

Easley, M., & Bradley, E. (1999). Generalized physical networks for automated model building. In
Proceedings of the 16th International Joint Conference on Artificial Intelligence, pp. 1047–
1053.

Falkenhainer, B., & Forbus, K. (1991). Compositional modeling: finding the right model for the
job. Artificial Intelligence, 51, 95–143.

Ford, A. (1999). Modeling the Environment - An Introduction to System Dynamics Modeling of
Environmental Systems. Island Press.

Forrester, J. (1968). Principles of Systems. Wright-Allen Press, Cambridge, MA, USA.

Hart, P., Nilsson, N., & Raphael, B. (1968). A formal basis for the heuristic determination of
minimal cost paths. IEEE Transactions on Systems, Science and Cybernetics, SSC-4(2), 100–
107.

Heller, U., & Struss, P. (1998). Diagnosis and therapy recognition for ecosystems - usage of model-
based diagnosis techniques. In Proceedings of the 12th International Symposium ”Computer
Science for Environment Protection”.

Heller, U., & Struss, P. (2001). Transformation of qualitative dynamic models - application in hydro-
ecology. In Hotz, L., Struss, P., & Guckenbienl, T. (Eds.), Intelligent Diagnosis in Industrial
Applications, pp. 95–106. Shaker Verlag.

Holling, C. (1959). Some characteristics of simple types of predation and parasitism. Canadian
Entomologist, 91, 385–398.

Karnopp, D., Margolis, D., & Rosenberg, R. (1990). System Dynamics: A United Approach (Second
Edition edition). John Wiley & Sons, Inc.

Keppens, J. (2002). Compositional Ecological Modelling via Dynamic Constraint Satisfaction with
Order-of-Magnitude Preferences. Ph.D. thesis, The University of Edinburgh.

Keppens, J., & Shen, Q. (2001a). Disaggregation in compositional modelling of ecological systems
via dynamic constraint satisfaction. In Proceedings of the 15th International Workshop on
Qualitative Reasoning about Physical Systems, pp. 21–28.

548

COMPOSITIONAL MODEL REPOSITORIES

Keppens, J., & Shen, Q. (2001b). On compositional modelling. Knowledge Engineering Review,
16(2), 157–200.

Keppens, J., & Shen, Q. (2002). On supporting dynamic constraint satisfaction with order of mag-
nitude preferences. In Proceedings of the 16th International Workshop on Qualitative Rea-
soning about Physical Systems, pp. 75–82.

Langley, P., Sanchez, J., Todorovski, L., & Dz̆eroski, S. (2002). Inducing process models from
continuous data. In Proceedings of the 19th International Conference on Machine Learning,
pp. 347–354.

Legg, C., Muetzelfeldt, R., & Heathfield, D. (1995). Modelling vegetation dynamics in mediter-
ranean ecosystems: Issues of scale. In Proceedings of the 39th Symposium of the International
Association for Vegetation Science.

Levy, A., Iwasaki, Y., & Fikes, R. (1997). Automated model selection for simulation based on
relevance reasoning. Artificial Intelligence, 96, 351–394.

Lotka, A. (1925). Elements of physical biology. Williams & Wilkins Co., Baltimore.

Malthus, T. (1798). An essay on the principle of population. Printed for J. Johnson in St. Paul’s
Church Yard, London, England.

Miguel, I., & Shen, Q. (1999). Hard, flexible and dynamic constraint satisfaction. Knowledge
Engineering Review, 14(3), 199–220.

Miguel, I., & Shen, Q. (2001a). Solution techniques for constraint satisfaction problems: Advanced
approaches. Artificial Intelligence Review, 15(4), 269–293.

Miguel, I., & Shen, Q. (2001b). Solution techniques for constraint satisfaction problems: Founda-
tions. Artificial Intelligence Review, 15(4), 243–267.

Minton, S., Johnston, M., Philips, A., & Laird, P. (1992). Minimizing conflicts: A heuristic repair
method for constraint satisfaction and scheduling problems. Artificial Intelligence, 58, 161–
205.

Mittal, S., & Falkenhainer, B. (1990). Dynamic constraint satisfaction problems. In Proceedings of
the 8th National Conference on Artificial Intelligence, pp. 25–32.

Nayak, P., & Joskowicz, L. (1996). Efficient compositional modeling for generating causal expla-
nations. Artificial Intelligence, 83, 193–227.

Nicholson, A., & Bailey, V. (1935). The balance of animal populations. Proceedings of the Zoolog-
ical Society of London, 1, 551–598.

Raphael, B. (1990). A* algorithm. In Shapiro, S.C. (Ed.), Encyclopedia of Artificial Intelligence,
Vol. 1, pp. 1–3. John Wiley & Sons.

Rickel, J., & Porter, B. (1997). Automated modeling of complex systems to answer prediction
questions. Artificial Intelligence, 93, 201–260.

Rogers, D. (1972). Random search and insect population models. Journal of Animal Ecology, 41,
369–383.

Schiex, T., Fargier, H., & Verfaillie, G. (1995). Valued constraint satisfaction problems: Hard and
easy problems. In Proceedings of the 14th International Joint Conference on Artificial Intel-
ligence, pp. 631–637.

549

KEPPENS & SHEN

Thompson, W. (1929). On the relative value of parasites and predators in the biological control of
insect pests. Bull. Etnomol. Res., 19, 343–350.

Todorovski, L., & Dz̆eroski, S. (1997). Declarative bias in equation discovery. In Proceedings of
the 14th International Conference on Machine Learning, pp. 432–439.

Todorovski, L., & Dz̆eroski, S. (2001). Using domain knowledge on population dynamics mod-
eling for equation discovery. In Proceedings of the 12th European Conference on Machine
Learning, pp. 478–490.

Tsang, E. (1993). Foundations of Constraint Satisfaction. Academic Press, London and San Diego.

Verfaillie, G., & Schiex, T. (1994). Solution reuse in dynamic constraint satisfaction problems. In
Proceedings of the 12th National Conference on Artificial Intelligence, pp. 307–312.

Verhulst, P. (1838). Recherches mathématiques sur la loi d’accroissement de la population. Nou-
veaux mémoires de l’académie royale des sciences et belles-lettres de Bruxelles, 18, 1–38.

Volterra, V. (1926). Fluctuations in the abundance of a species considered mathematically. Nature,
118, 558–560.

550

