95 research outputs found

    Finding the Median (Obliviously) with Bounded Space

    Full text link
    We prove that any oblivious algorithm using space SS to find the median of a list of nn integers from {1,...,2n}\{1,...,2n\} requires time Ω(nlog⁥log⁥Sn)\Omega(n \log\log_S n). This bound also applies to the problem of determining whether the median is odd or even. It is nearly optimal since Chan, following Munro and Raman, has shown that there is a (randomized) selection algorithm using only ss registers, each of which can store an input value or O(log⁥n)O(\log n)-bit counter, that makes only O(log⁥log⁥sn)O(\log\log_s n) passes over the input. The bound also implies a size lower bound for read-once branching programs computing the low order bit of the median and implies the analog of P≠NP∩coNPP \ne NP \cap coNP for length o(nlog⁥log⁥n)o(n \log\log n) oblivious branching programs

    Oblivious Median Slope Selection

    Full text link
    We study the median slope selection problem in the oblivious RAM model. In this model memory accesses have to be independent of the data processed, i.e., an adversary cannot use observed access patterns to derive additional information about the input. We show how to modify the randomized algorithm of Matou\v{s}ek (1991) to obtain an oblivious version with O(n log^2 n) expected time for n points in R^2. This complexity matches a theoretical upper bound that can be obtained through general oblivious transformation. In addition, results from a proof-of-concept implementation show that our algorithm is also practically efficient.Comment: 14 pages, to appear in Proceedings of CCCG 202

    The Bane of Low-Dimensionality Clustering

    Get PDF
    In this paper, we give a conditional lower bound of nΩ(k)n^{\Omega(k)} on running time for the classic k-median and k-means clustering objectives (where n is the size of the input), even in low-dimensional Euclidean space of dimension four, assuming the Exponential Time Hypothesis (ETH). We also consider k-median (and k-means) with penalties where each point need not be assigned to a center, in which case it must pay a penalty, and extend our lower bound to at least three-dimensional Euclidean space. This stands in stark contrast to many other geometric problems such as the traveling salesman problem, or computing an independent set of unit spheres. While these problems benefit from the so-called (limited) blessing of dimensionality, as they can be solved in time nO(k1−1/d)n^{O(k^{1-1/d})} or 2n1−1/d2^{n^{1-1/d}} in d dimensions, our work shows that widely-used clustering objectives have a lower bound of nΩ(k)n^{\Omega(k)}, even in dimension four. We complete the picture by considering the two-dimensional case: we show that there is no algorithm that solves the penalized version in time less than no(k)n^{o(\sqrt{k})}, and provide a matching upper bound of nO(k)n^{O(\sqrt{k})}. The main tool we use to establish these lower bounds is the placement of points on the moment curve, which takes its inspiration from constructions of point sets yielding Delaunay complexes of high complexity

    Turvalisel ĂŒhisarvutusel pĂ”hinev privaatsust sĂ€ilitav statistiline analĂŒĂŒs

    Get PDF
    VĂ€itekirja elektrooniline versioon ei sisalda publikatsioone.Kaasaegses ĂŒhiskonnas luuakse inimese kohta digitaalne kirje kohe pĂ€rast tema sĂŒndi. Sellest hetkest alates jĂ€lgitakse tema kĂ€itumist ning kogutakse andmeid erinevate eluvaldkondade kohta. Kui kasutate poes kliendikaarti, kĂ€ite arsti juures, tĂ€idate maksudeklaratsiooni vĂ”i liigute lihtsalt ringi mobiiltelefoni taskus kandes, koguvad ning salvestavad firmad ja riigiasutused teie tundlikke andmeid. Vahel anname selliseks jĂ€litustegevuseks vabatahtlikult loa, et saada mingit kasu. NĂ€iteks vĂ”ime saada soodustust, kui kasutame kliendikaarti. Teinekord on meil vaja teha keeruline otsus, kas loobuda vĂ”imalusest teha mobiiltelefonikĂ”nesid vĂ”i lubada enda jĂ€lgimine mobiilimastide kaudu edastatava info abil. Riigiasutused haldavad infot meie tervise, hariduse ja sissetulekute kohta, et meid paremini ravida, harida ja meilt makse koguda. Me loodame, et meie andmeid kasutatakse mĂ”istlikult, aga samas eeldame, et meie privaatsus on tagatud. KĂ€esolev töö uurib, kuidas teostada statistilist analĂŒĂŒsi nii, et tagada ĂŒksikisiku privaatsus. Selle eesmĂ€rgi saavutamiseks kasutame turvalist ĂŒhisarvutust. See krĂŒptograafiline meetod lubab analĂŒĂŒsida andmeid nii, et ĂŒksikuid vÀÀrtuseid ei ole kunagi vĂ”imalik nĂ€ha. Hoolimata sellest, et turvalise ĂŒhisarvutuse kasutamine on aeganĂ”udev protsess, nĂ€itame, et see on piisavalt kiire ja seda on vĂ”imalik kasutada isegi vĂ€ga suurte andmemahtude puhul. Me oleme teinud vĂ”imalikuks populaarseimate statistilise analĂŒĂŒsi meetodite kasutamise turvalise ĂŒhisarvutuse kontekstis. Me tutvustame privaatsust sĂ€ilitavat statistilise analĂŒĂŒsi tööriista Rmind, mis sisaldab kĂ”iki töö kĂ€igus loodud funktsioone. Rmind sarnaneb tööriistadele, millega statistikud on harjunud. See lubab neil viia lĂ€bi uuringuid ilma, et nad peaksid ĂŒksikasjalikult tundma allolevaid krĂŒptograafilisi protokolle. Kasutame dissertatsioonis kirjeldatud meetodeid, et valmistada ette statistiline uuring, mis ĂŒhendab kaht Eesti riiklikku andmekogu. Uuringu eesmĂ€rk on teada saada, kas Eesti tudengid, kes töötavad ĂŒlikooliĂ”pingute ajal, lĂ”petavad nominaalajaga vĂ€iksema tĂ”enĂ€osusega kui nende Ă”pingutele keskenduvad kaaslased.In a modern society, from the moment a person is born, a digital record is created. From there on, the person’s behaviour is constantly tracked and data are collected about the different aspects of his or her life. Whether one is swiping a customer loyalty card in a store, going to the doctor, doing taxes or simply moving around with a mobile phone in one’s pocket, sensitive data are being gathered and stored by governments and companies. Sometimes, we give our permission for this kind of surveillance for some benefit. For instance, we could get a discount using a customer loyalty card. Other times we have a difficult choice – either we cannot make phone calls or our movements are tracked based on cellular data. The government tracks information about our health, education and income to cure us, educate us and collect taxes. We hope that the data are used in a meaningful way, however, we also have an expectation of privacy. This work focuses on how to perform statistical analyses in a way that preserves the privacy of the individual. To achieve this goal, we use secure multi-­‐party computation. This cryptographic technique allows data to be analysed without seeing the individual values. Even though using secure multi-­‐party computation is a time-­‐consuming process, we show that it is feasible even for large-­‐scale databases. We have developed ways for using the most popular statistical analysis methods with secure multi-­‐party computation. We introduce a privacy-­‐preserving statistical analysis tool called Rmind that contains all of our resulting implementations. Rmind is similar to tools that statistical analysts are used to. This allows them to carry out studies on the data without having to know the details of the underlying cryptographic protocols. The methods described in the thesis are used in practice to prepare for running a statistical study on large-­‐scale real-­‐life data to find out whether Estonian students who are working during university studies are less likely to graduate in nominal time

    Lower Bounds on Non-Adaptive Data Structures Maintaining Sets of Numbers, from Sunflowers

    Get PDF
    • 

    corecore