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Abstract

In this paper, we give a conditional lower bound of nΩ(k) on running time for the classic
k-median and k-means clustering objectives (where n is the size of the input), even in low-
dimensional Euclidean space of dimension four, assuming the Exponential Time Hypothesis
(ETH). We also consider k-median (and k-means) with penalties where each point need not be
assigned to a center, in which case it must pay a penalty, and extend our lower bound to at
least three-dimensional Euclidean space.

This stands in stark contrast to many other geometric problems such as the traveling sales-
man problem, or computing an independent set of unit spheres. While these problems benefit

from the so-called (limited) blessing of dimensionality, as they can be solved in time nO(k1−1/d)

or 2n
1−1/d

in d dimensions, our work shows that widely-used clustering objectives have a lower
bound of nΩ(k), even in dimension four.

We complete the picture by considering the two-dimensional case: we show that there is no

algorithm that solves the penalized version in time less than no(
√

k), and provide a matching

upper bound of nO(
√

k).
The main tool we use to establish these lower bounds is the placement of points on the

moment curve, which takes its inspiration from constructions of point sets yielding Delaunay
complexes of high complexity.
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partially supported by the French ANR project ANR-16-CE40-0009-01 (GATO). The work of A. Roytman is partially
supported by Thorup’s Advanced Grant DFF-0602-02499B from the Danish Council for Independent Research.
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1 Introduction

The fundamental k-median problem has led to several important algorithmic results since the
beginning of its study in the 1970s [45]. It has consistently received attention from both practitioners
and theoreticians, and there is now a vast literature on the problem in different settings, such as
streaming, fixed-parameter tractability (FPT), and beyond worst-case analysis.

Given a set of points (or clients) and a set of candidate centers, the k-median problem asks
for a subset of k candidate centers that minimizes the sum of distances from each point to its
closest center.1 This induces a partitioning of the points where points in the same group are close
to each other. Such a partitioning finds various applications, including facility location, image
compression [29], and community detection. To obtain a more accurate model of the underlying
applications, many variants of the k-median problem have also been studied. Arguably the most
famous are those where the objective functions allow the discarding of data points that are irrelevant
from the application’s perspective. These variants were introduced by Charikar et al. [9] and referred
to as k-median with penalties and k-median with outliers. Another example is the k-means objective
which consists of minimizing the sum of squared distances. This is frequently used in models where
the goal is to recover mixtures of k Gaussians, a popular problem in machine learning.

In this paper, we consider k as a fixed parameter and aim at giving tight upper and lower
bounds for the k-median, k-means, and k-median with penalties problems regarding running time.

The Parameter k: The choice of parameterizing by k is a very natural approach when dealing
with issues of tractability. Many real-world examples involve solving instances of the k-median
problem in low-dimensional Euclidean space. A concrete example stemming from machine learning
is the classic digits dataset (see [35]), which consists of images of hand-written digits. Successful
approaches for obtaining a good classification consist of applying an SVD algorithm (i.e., singular
value decomposition) to the dataset and solving a three-dimensional k-median (or k-means) instance
with k = 10 (see, e.g., [44]).

Other examples include the widely-used hierarchical clustering heuristic Bisection k-means
(see [47]), which consists of recursively dividing a set of points in d-dimensional Euclidean space
using the k-median or k-means objectives for values of k ≤ 10.

Therefore, as early as the 1990s, the k-median and k-means problems have received a great
deal of attention from the theory community, which has tried to obtain efficient approximation
algorithms for the Euclidean setting. Since the work of [14], there has been a long line of research on
(1+ ε)-approximation algorithms running in time f(k, ε)poly(n, d) for ε > 0 (see [1,5,17,18,31,32]).
The best algorithm known for k-median is due to [33], which achieves a (1 + ε)-approximation in

time 2(k/ε)
O(1)

n · d, and for k-means the best known is due to Feldman et al. [18], which achieves a

(1 + ε)-approximation in time O(nkd + poly(k/ε)d + 2Õ(k/ε)). While the design of approximation
schemes is fairly well understood for k-median and k-means when parameterized by k, the brute-
force approach of trying all possible k subsets of candidate centers stubbornly stands as the best
exact algorithm known (hence2 a running time of nO(k)). Thus, obtaining a better bound, even for
low-dimensional inputs, is a natural and important open question.

1We consider the Euclidean setting in which the number of candidate centers is polynomial in the number of clients
(which is finite and part of the input). The more general setting where candidate centers can be opened anywhere
can be reduced to this with a multiplicative loss in the cost of at most 1 + 1/poly(n), see [41]. Moreover, even for
the two-dimensional 1-median problem, there are known instances where the optimal position of the center cannot
be described by radicals over the field of rationals [6], so this assumption is quite common.

2Assuming, for the k-median upper bound, that fast comparisons of sums of square roots are possible.
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This question is further motivated by recent results showing that many famous problems
(e.g., the traveling salesman problem or finding a size k independent set of unit spheres) bene-
fit from the “(1 − 1/d) phenomenon,” namely that there exist exact algorithms running in time

nO(k1−1/d) or 2O(n1−1/d) (see [40]). As Marx and Sidiropoulos showed [40], this is often tight as-
suming the Exponential Time Hypothesis (ETH). Hence, understanding whether this phenomenon
applies to clustering strengthens the motivation of studying the k-median problem with k as a fixed
parameter.

Our Results: We show that, quite surprisingly, clustering is hard even in Euclidean space of
dimension four. Namely, there is no f(k)no(k)-time algorithm for any computable function f for
k-median or k-means unless the ETH assumption fails (Theorem 5.1). For the k-median with
penalties problem we show that this hardness bound holds even in R3 (Theorem 4.1), and that the

hardness becomes f(k)no(
√
k) in R2 (Theorem 6.2).

On the positive side, we give an nO(
√
k)-time exact algorithm in two dimensions for both prob-

lems using standard techniques (Theorem 7.1), and hence provide a complete characterization of the
complexity of the k-median with penalties problem. Interestingly, this shows a steep gap between
the two-dimensional case and the three-dimensional setting (for k-median with penalties) and the
four-dimensional case (for k-median). For the k-median and k-median with penalties problems, we
assume a computational model in which sums of square roots can be compared efficiently, which
is a common assumption for geometric problems in Euclidean space (see for example Gibson et
al. [20]).

We note that all of our results extend to objectives where distances are taken to some power
p (for p = 1 and p = 2, this yields the k-median and k-means objectives, respectively). Moreover,
our hardness results do not generalize to versions of the problems where any point in Euclidean
space can serve as a center. That is, our results only hold for settings where the set of potential
candidate centers is explicitly given as input.

Related Work

The k-median and k-means problems are NP-hard, even in the Euclidean plane (see Meggido
and Supowit [42], Mahajan et al. [36], and Dasgupta and Freud [13]). This hardness extends to
approximation: both problems are APX-hard in the Euclidean setting when both k and d are part
of the input (see Guha and Khuller [21], Jain et al. [27], Guruswami et al. [23], and Awasthi et
al. [4]). When d is fixed, however, the problems are no longer APX-hard [3, 10]. There has been a
large body of work on obtaining constant factor approximations for both the k-median and k-means
problems (see [2,7,28,34,43]). The best approximation ratio known for k-median in general metric
spaces is due to Byrka et al. [7] and is ≈ 2.675. For the k-means problem, the best known is now
6.357 due to Ahmadian et al. [2], where they improved upon the 9-approximation algorithm of
Kanungo et al. [29].

The literature on fixed-parameter tractability is vast. We only discuss the most related works
(for a more thorough treatment, see [12]).

Fixed-Parameter Tractability for Fixed k. There has been a long line of work on (1 + ε)-
approximation algorithms for Euclidean k-median parameterized by k, e.g., [17, 24, 25, 33]. Many
of these works are based on the notion of a coreset: a representation of the input of size poly(k, ε).
There are various algorithms to efficiently compute coresets. Once a coreset is computed, the best
solution for the coreset can be found in FPT time (i.e., f(k, ε)poly(n)). The best approach known
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for Euclidean k-median runs in time 2(k/ε)
O(1)

nd, due to Kumar et al. [33]. For Euclidean k-means,

the best approach known runs in time O(nkd+ poly(k/ε)d + 2Õ(k/ε)), due to Feldman et al. [18].

Fixed-Parameter Tractability for Fixed d. The choice of d as a parameter has also been
studied. In this case, polynomial time approximation schemes (PTAS) are known for both the
k-median and k-means problems [3, 10, 19, 30]. For the k-center problem, a lower bound of no(d)

on the running time is known even when k = 2 [8]. Unfortunately, the k-center objective (which
is a min max objective) is quite different from the k-median and k-means objectives (which are
min sum objectives). Hence, no hardness bound is known for the k-median and k-means problems
when parameterized by d.

1.1 Roadmap

In Section 2, we introduce some preliminaries. In Section 3, we provide some intuition for our main
reductions by giving a simple hardness proof for k-median in general metric spaces. In Section 4,
we show hardness of the penalized version of k-median in Rd for d ≥ 3. In Section 5, we show
hardness of k-median in Rd for d ≥ 4. In Section 6, we show hardness of the penalized version
of k-median in the two-dimensional case. Finally, in Section 7, we show an upper bound in the
two-dimensional setting for both problems.

1.2 Overview of Ideas and Techniques

Lower bounds of the form f(k)nΩ(k): We begin with a straightforward reduction from the
Partial Vertex Cover problem that rules out an f(k)no(k)-time algorithm for k-median in general
metrics under ETH (for any computable function f). Our observation is the following: obliviously
to the parameter k, a graph can be represented as an instance with a candidate for each vertex,
and a client for each edge. We set the distance from an edge to its endpoints to 1, and its distance
to all other vertices to something strictly larger, say, 3. Then, the number of covered edges can be
read off directly from the cost.

Unfortunately, the metric example above does not embed well in small dimensions. However,
the idea of letting vertices correspond to candidates and edges to clients can still be made to
work. The first challenge is to place the edges (clients) so that they are closer to their endpoints
(candidates) than to any other candidate. Geometrically, this requires placing the candidates in
such a way that the Voronoi cells of any two candidates intersect, so that we can place the clients
at the intersections of these cells. Dually, this amounts to finding point sets inducing a Delaunay
complex in which its 1-skeleton is a complete graph. While this is impossible in two dimensions,
since the Delaunay complex is a triangulation and is thus sparse, higher dimensions allow for this
quite pathological behavior. This is a classic topic in computational geometry (see Erickson [16]
and the references therein), and one elegant construction [46] exhibiting this phenomenon is to
place the points on the moment curve t 7→ (t, t2, . . . , td), which is what we do in our paper.

For the version with penalties, three dimensions are enough to obtain a lower bound. Here, we
prove that for any two values ta, tb that parameterize two vertices a, b (where (a, b) is an edge) on
the moment curve, there is a unique sphere S tangential to the points on the curve t = ta and t = tb
that has the entire moment curve exterior to it. We want to place the client point (corresponding
to the edge (a, b)) at or near the center of S. In fact, we can give a little slack, and not consider
a tangential sphere, but rather the sphere going through (ta, t

2
a, t

3
a), (tb, t

2
b , t

3
b), and two “dummy”

points on the moment curve placed closely to them. The difference between the radii of the spheres
creates a disparity in the contribution of each covered client (i.e., covered edge) to the objective,
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which we handle by placing many clients at each center (thus nearly equalizing their contribution).
Finally, naturally, the associated penalty for an edge is set to be only slightly larger than the radius
of the corresponding ball.

For the version without penalties, the task is slightly more challenging: we need to make sure
that each edge is equally costly to “not cover.” To handle the challenge of uncovered edges, we
construct a universal special candidate z that is only slightly farther away from every edge than
the two candidates corresponding to the edge’s endpoints. This additional candidate requires us to
add an additional dimension to our construction, raising it to four. Considering the moment curve
m(t) = (t, t2, t3, t4) in R4, the unique sphere through m(tz) (corresponding to z) and tangential to
the later points m(ta),m(tb) with ta, tb > tz is such that the moment curve after m(tz) is exterior to
the sphere. We may thus choose z = (1, 1, 1, 1) and let all other vertices correspond to points t > 1.
However, placing the edges at the exact centers of the spheres will not give us any information, as
all edges could then be served optimally by z. Thus as a final step, we place each edge near the
center, but slightly farther from z.

Lower bound in two dimensions: The lower bounds in two dimensions are a reduction from
the Grid Tiling problem using techniques from [40]. The main observation is the following: imagine
you have uncountably infinitely many clients placed uniformly within a region. If all candidates
have the same radius 1 and the same penalty, then it is always an advantage if the 1-balls around
the chosen candidates overlap as little as possible – preferably not at all. We can precompute the
cost ν for non-overlapping balls, which is strictly smaller than the cost of any solution where balls
overlap. Then, the instance to Grid Tiling has a solution if and only if the constructed k-median
with penalties instance has a solution with cost ≤ ν. (In fact, exactly ν.)

Upper bound in two dimensions: Our upper bounds in two dimensions use the strategy of
guessing a separator of size

√
k in the Voronoi diagram of an optimal solution. This is quite a

useful approach, as illustrated by Marx and Pilipczuk [38]. Since this is quite standard, we defer
this result to Section 7.

2 Preliminaries

We frequently use the moment curve throughout our reductions, which we define as follows.

Definition 2.1. The curve R+ → Rd defined by t 7→ (t, t2, . . . , td) is called the moment curve.

All of our lower bounds are conditioned on the Exponential Time Hypothesis (ETH), which
was conjectured in [26].

Definition 2.2 (Exponential Time Hypothesis(ETH) [26]). There exists a positive real value s > 0
such that 3-CNF-SAT, parameterized by n, has no 2sn(n+m)O(1)-time algorithm (where n denotes
the number of variables and m denotes the number of clauses).

The following problem, Partial Vertex Cover, plays a critical role in our reductions. In particular,
we reduce from this problem to show hardness for k-median in d ≥ 4 dimensions, and k-median
with penalties in d ≥ 3 dimensions.

Definition 2.3 (Partial Vertex Cover (PVC)).
Input: A graph G = (V,E), an integer s ∈ N.
Parameter: Integer k.
Output: YES if and only if there exists a set of k vertices that covers at least s edges.

4



Guo et al. [22] showed that Partial Vertex Cover is W[1]-hard, but their reduction actually
yields a lower bound conditional on ETH. Indeed, they reduced from Independent Set, which is
known not to be solvable in time f(k)no(k) assuming ETH [12, Theorem 14.21], and their reduction
does not induce blow-up in the size of the parameter. Hence, they actually proved the following
lower bound.

Theorem 2.4 (PVC Hardness [22]). There is no f(k)no(k)-time algorithm for the Partial Vertex
Cover problem unless ETH fails (for any computable function f), where n is the size of the input.

We now give our definitions for the clustering problems we consider in this paper, beginning
with the version without penalties.

Definition 2.5 (d-Dimensional k-Median).
Input: A set of candidate centers C ⊂ Rd, a set of clients A ⊂ Rd, a cost ν ∈ Q.
Parameter: Integer k.
Output: YES if and only if there exists a set S of k candidate centers such that

∑

a∈A
d(a, S) ≤ ν.

Here, the distance of a point a ∈ Rd to a set S is the minimum distance from a to any point
in the set S (i.e., d(a, S) = minc∈S d(a, c)). Unless stated otherwise, we use n to denote the size of
the input to the problem. In addition, we note that our results extend to objective functions where
distances are taken to some power p, namely d(a, S)p. The important special cases of p = 1 and
p = 2 yield the k-median and k-means objectives, respectively. We now consider a slightly more
general version of the k-median problem, see also [9] for previous definitions.

Definition 2.6 (d-Dimensional k-Median with Penalties).
Input: A set of candidate centers C ⊂ Rd, a set of clients A ⊂ Rd, a penalty pa for each a ∈ A, a
cost ν ∈ Q.
Parameter: Integer k.
Output: YES if and only if there exists a set S of k candidate centers such that

∑

a∈A
min(d(a, S), pa) ≤ ν.

In our reductions, we sometimes set the cost threshold ν to be an irrational number. We can
remedy this issue since, in our reductions, there is always a large gap between the most costly yes-
instances and the least costly no-instances (in particular, the gap is at least an inverse polynomial).
Hence, we can always choose a rational number strictly larger than ν (but smaller than the least
costly no-instance) such that our reductions take time polynomial in the size of the input. By
size of the input, we refer to the number of bits it takes to represent the candidate centers, client
points, and cost bound (for the penalty version, the size of the input also includes the bits used to
represent the penalty amounts).

2.1 Properties of the Moment Curve

We first prove the following property regarding (3-)spheres and the moment curve, which will be
useful in our reduction. The proofs, in particular the use of Descartes’ rule of signs [11], follow the
exposition of Edelsbrunner [15, Section 4.5].
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Lemma 2.7. Fix any 5 positive values 0 < t1 < t2 < t3 < t4 < t5, and consider the corresponding
5 points that lie on the moment curve given by (ti, t

2
i , t

3
i , t

4
i ) for 1 ≤ i ≤ 5. Then the unique 3-sphere

that goes through these 5 points satisfies the following property: the segments on the moment curve
corresponding to t ∈ (t1, t2) ∪ (t3, t4) ∪ (t5,∞) all lie outside of the sphere (i.e., the distance of all
such points from the center of the 3-sphere is strictly more than its radius).

Proof. Consider any such set of 5 positive values ti > 0 and their corresponding 5 points on the
moment curve given by pi = (ti, t

2
i , t

3
i , t

4
i ) for 1 ≤ i ≤ 5. These 5 points on the moment curve define

a unique 3-sphere in R4, with center (a, b, c, d) and radius r. Consider the following function given
by f(t) = (t− a)2 + (t2 − b)2 + (t3 − c)2 + (t4 − d)2 − r2. Observe that the roots of this polynomial
correspond to values of the parameter t where the moment curve intersects the 3-sphere. Moreover,
since the points pi lie on the moment curve and on the 3-sphere by construction, we have f(ti) = 0
for all 1 ≤ i ≤ 5 (i.e., each ti is a root of f(t)).

We consider applying Descartes’ rule of signs, which we will use to upper bound the number
of strictly positive roots of f(t). The rule says that the number of strictly positive roots of a
polynomial is upper bounded by the number of sign changes between non-zero coefficients (assuming
the coefficients are arranged in decreasing order of the degree of their corresponding term). To this
end, we expand the polynomial f(t):

f(t) = t2 − 2at+ a2 + t4 − 2bt2 + b2 + t6 − 2ct3 + c2 + t8 − 2dt4 + d2 − r2

= t8 + t6 + (1− 2d)t4 − 2ct3 + (1− 2b)t2 − 2at+ (a2 + b2 + c2 + d2 − r2).

Hence, the coefficient sequence is given by (1, 1, (1− 2d),−2c, (1− 2b),−2a, (a2 + b2+ c2+ d2− r2)).
Clearly, there are (at most) 5 changes in sign in this sequence, which implies the number of strictly
positive roots is upper bounded by 5. However, we already know of 5 roots to this polynomial, and
hence the only places where the moment curve intersects the 3-sphere for positive values of t are
for t = ti.

In particular, since Descartes’ rule of signs counts roots of multiplicity separately, the moment
curve is not tangent to the sphere for any t > 0. Now, consider the moment curve in the open
interval (t5,∞). It must be the case that the entire curve in this interval lies outside the 3-sphere.
If not, it would have to exit the sphere again at some point, which would result in an additional root
(a contradiction). In the following, we imagine going along the curve backwards (i.e., for decreasing
values of the parameter t). For the open interval (t4, t5), since the moment curve is not tangent to
the sphere at t = t5, it must go inside the sphere. The next time the curve intersects the 3-sphere
is at t = t4, and hence the curve lies inside the 3-sphere in the open interval (t4, t5). Similarly,
since the curve is not tangent at t = t4, it must exit the 3-sphere at t = t4 and then intersect the
3-sphere next at t = t3, implying that the curve lies outside of the 3-sphere in the open interval
(t3, t4). Using the same reasoning, we conclude that the 3-sphere lies completely inside the 3-sphere
in the open interval (t2, t3), and then completely outside of the 3-sphere in the open interval (t1, t2),
giving the lemma.

We now prove (in a very similar manner) an analogous result for spheres in R3. In the following,
we denote by O the origin.

Lemma 2.8. Fix any 4 positive values 0 < t1 < t2 < t3 < t4, and consider the corresponding
4 points that lie on the moment curve given by (ti, t

2
i , t

3
i ) for 1 ≤ i ≤ 4. Then the unique sphere

that goes through these 4 points satisfies the following property: the segments on the moment curve
corresponding to t ∈ (O, t1) ∪ (t2, t3) ∪ (t4,∞) all lie outside of the sphere (i.e., the distance of all
such points from the center of the sphere is strictly more than its radius).
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O

p1

p2 p3

p4

Figure 1: In R4 (left), the unique 3-sphere through the points p1, . . . , p5 on the moment curve has
no other intersections with the moment curve after the origin. In R3 (right), the unique sphere
through the points p1, . . . , p4 on the moment curve has no other intersections with the moment
curve.

Proof. Similarly to the proof of Lemma 2.7, let Sr(a, b, c) be the unique sphere with center (a, b, c)
and radius r through the points. We then analyze the function

f(t) = (t− a)2 + (t2 − b)2 + (t3 − c)2 − r2

= t2 − 2at+ a2 + t4 − 2bt2 + b2 + t6 − 2ct3 + c2 − r2

= t6 + t4 − 2ct3 + (1− 2b)t2 − 2at+ (a2 + b2 + c2 − r2).

The coefficients are (1, 1,−2c, (1 − 2b),−2a, (a2 + b2 + c2 − r2)), which has (at most) 4 changes
of sign, which by Descartes’ rule means that there are at most 4 roots. But then, since p1, . . . , p4
already constitute 4 roots, there are no other roots. Then, the segment (t4,∞) of the moment curve
must lie entirely outside the sphere. Furthermore, since the roots are counted with multiplicity, the
section (t3, t4) lies inside the sphere, the section (t2, t3) lies outside the sphere, the section (t1, t2)
lies inside the sphere, and, finally, the section (O, t1) lies outside the sphere.

3 Warm-up: Hardness of k-Median for General Metric Spaces

In this section, we show that assuming ETH, there is no f(k)no(k)-time exact algorithm for k-
median in general metric spaces (for any computable function f). In Section 5, we show how to
make this reduction work in R4.

Theorem 3.1. There is no f(k)no(k)-time algorithm that solves the k-median problem in general
metric spaces unless ETH fails (for any computable function f), where n is the size of the input.

We now describe the reduction (see Figure 2). Let G = (V,E), s, and k be an instance of
PVC. We denote by m the number of edges, namely m = |E|. We build the following metric space:
for each vertex v ∈ V we create a point xv. For each edge (u, v) ∈ E we create a point y(u,v).
The distances are the following: for each xz, y(u,v), we have d(xz , y(u,v)) = 1 if z ∈ {u, v} or 3 if
z /∈ {u, v}. Finally, the remaining distances are given by the shortest path metric induced by the
distances already defined.

We now define an instance of the k′-median problem. We let k′ = k, C = {xu | u ∈ V },
A = {y(u,v) | (u, v) ∈ E}, and ν = s+ 3(m− s).

We show the following claim, which implies Theorem 3.1.
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e1 = (u,w) e2
· · ·

em

v1
· · ·

u
· · ·

w
· · ·

vn

3 3 1 13 3 3 3· · · · · · · · ·

Figure 2: The distance from (u,w) to u and to w is 1, and to all other vertices it is 3.

Claim 3.2. G has a PVC with k vertices covering at least s edges if and only if there exists a
solution to the k′-median instance of cost at most s+ 3(m− s).

Proof. Consider first an instance of PVC with k vertices {v1, . . . , vk} covering at least s edges. We
claim that the solution to the k′-median instance in which we open the k′ candidates given by
S0 = {xv1 , . . . , xvk} has cost at most ν. Observe that for the edges (u, v) covered in the PVC
solution, the points y(u,v) are at distance exactly one from a center of S0. Moreover, the points
y(u,v) that correspond to an edge (u, v) that are not covered by the PVC solution are at distance
exactly 3 from a center of S0. Since there are at most m − s such points, we have a k′-median
solution of cost at most s+ 3(m− s).

Now consider a k′-median solution given by S0 = {xv1 , . . . , xvk} of cost at most s+3(m−s). By
definition, each point is at distance either 1 or 3 from a center and the total number of points is m.
It follows that the total number of points at distance 1 is at least s. Each such point represents
an edge that has an endpoint in the set {v1, . . . , vk}. Thus, the vertices v1, . . . , vk induce a partial
vertex cover of size k covering at least s edges.

4 Hardness of k-Median with Penalties in Three Dimensions

In the following two sections, we establish f(k)no(k)-time lower bounds for the k-median problem
in Euclidean spaces of low dimension (for any computable function f). It seems easier to establish
hardness for the k-median problem with penalties, and thus our first result is Theorem 4.1, which
works in any dimension of at least three. We first give details on the reduction before proving
structural properties. We follow the same structure as in the proof of Theorem 3.1 in Section 3.
Namely, we reduce from Partial Vertex Cover and create a candidate center for each vertex of
the input graph, along with a client for each edge of the input graph G = (V,E). For each edge,
we ensure that the client corresponding to that edge is closer to the two centers representing the
endpoints of the edge than to any other candidate center. This is the key property in our reduction
and we show how it can be satisfied in R3 for all edges of the input graph.

Theorem 4.1. There is no f(k)no(k)-time exact algorithm for the 3-dimensional k-median with
penalties problem, unless ETH fails (for any computable function f), where n is the size of the
input.

We now provide the location of the candidate centers created. For each vertex vi of the input
graph, we create a candidate center ṽi. We call vi the corresponding vertex of ṽi. We place the
candidate centers on the moment curve: the candidate center ṽi is placed at (2i, (2i)2 , (2i)3). We
also associate a dummy point di with each candidate center ṽi. The di are not part of the k-median
instance and only used to generate the instance. We place di at (2i + 1, (2i + 1)2, (2i + 1)3). Let
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C be the set of candidate centers {(2i, (2i)2 , (2i)3) | i ∈ {1, . . . , |V |}} and let C+ = C ∪ ⋃

i{di}.
By construction, we have the following fact: for all i, there is no candidate on the moment curve
between ṽi (i.e., t = 2i) and di (i.e., t = 2i+ 1).

We now explain how to create client points that correspond to edges. Let ei,j = (vi, vj) be an
edge of G, of which there are m = |E|. Since points on the moment curve are in general position,
there is a unique sphere Si,j that intersects the moment curve at the points ṽi, di, ṽj , dj , the center
and radius of which we denote by ci,j and ri,j, respectively. By Lemma 2.8, we know that there is
no point p ∈ C+ − {ṽi, di, ṽj , dj} that is contained in the ball of center ci,j and radius ri,j.

Let q be an index pair that gives rise to the maximum radius ri,j, namely q = argmaxi,j(ri,j)
(i.e., q is of the form “i, j”). We also let δ > 0 be some inverse polynomially small fraction to
be defined (i.e., δ = 1

|V |c for some constant c > 0). We place nq = ⌈1δ ⌉ client points at cq, and

ni,j = ⌈nq
rq
ri,j
⌉ client points at all other centers ci,j 6= cq. We let costi,j = ni,j · ri,j and µ = nq · rq.

Lemma 4.2. For any pair i, j such that (vi, vj) is an edge, costi,j satisfies µ ≤ costi,j ≤ (1 + δ)µ.
In addition, µ and ni,j (corresponding to each center ci,j) are polynomially bounded in |V |.
Proof. Fix any such pair i, j. Clearly, the claim is true for ci,j = cq (since costq = nq · rq), so
consider any such center ci,j 6= cq. For the first inequality (i.e., the lower bound), we have the
following:

costi,j = ri,j · ni,j = ri,j

⌈

rq
ri,j
· nq

⌉

≥ ri,j ·
rq
ri,j
· nq = rq · nq = µ.

For the second inequality (i.e., the upper bound), we get:

costi,j = ri,j · ni,j = ri,j

⌈

rq
ri,j
· nq

⌉

≤ ri,j

(

rq
ri,j
· nq + 1

)

= rq · nq + ri,j ≤ rq · nq + rq

≤ rq · nq + rq · δ
⌈

1

δ

⌉

= rq · nq + rq · δ · nq = (1 + δ)rq · nq = (1 + δ)µ.

To obtain our polynomial bound claims, we first note that nq is polynomially bounded since δ is
an inverse polynomial. To argue that ni,j is polynomially bounded for all other centers ci,j 6= cq, it
suffices to upper bound rq and lower bound ri,j. We observe that for any edge (vi, vj), ci,j is the
circumcenter of four points, and is thus the intersection of three hyperplanes (the perpendicular
bisectors of these points). Therefore, it is the solution of a linear system of equations of constant
dimension with entries that are integers or half-integers, because the points ṽk and dk have integer
coordinates. It follows that ci,j has coordinates described by a constant degree rational fraction of
the coordinates of the points ṽk and dk. Therefore the maximal radius is polynomially bounded, and
similarly, the radii ri,j cannot be exponentially small. Finally, note that µmust also be polynomially
bounded, since it is the product of two polynomials, namely nq and rq.

We let the set of client points A be the set of all copies of all ci,j . We now define the price of
a copy of ci,j to be pi,j = ri,j + ε/ni,j for some small enough constant ε. Let P denote the set of
prices (i.e., penalties). For a small enough ε, the following fact follows from Lemma 2.8.

Fact 4.3. For any ci,j , and for any solution S such that ṽi, ṽj 6∈ S, we have dist(ci,j, S) > ri,j +
ε/ni,j .

It follows that the cost of serving the copies of ci,j in a solution S such that ṽi, ṽj /∈ S is
pricei,j = costi,j+ε. Moreover, we have that for any solution, either all the copies of ci,j are served
by ṽi or ṽj or they are all paying a price pricei,j .
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Lemma 4.4. For any k-median solution S, and for any ci,j, we have that the cost induced by the
copies of ci,j is:

• costi,j if ṽi ∈ S or ṽj ∈ S,

• costi,j + ε otherwise.

Proof. If ṽi ∈ S or ṽj ∈ S, we have by Lemma 2.8, that the distance from any copy of ci,j to S is
ri,j < pi,j. Therefore the cost induced by each copy of ci,j is ri,j and so the total cost is costi,j.

Now, if ṽi, ṽj /∈ S, we have by Fact 4.3 that the cost induced by each copy of ci,j is given by
min(dist(ci,j , S), pi,j) = pi,j. Therefore, we conclude that the total cost induced by the copies of
ci,j is ni,jpij = costi,j + ε.

We can now complete the proof of the theorem.

Proof of Theorem 4.1. First, by Lemma 4.2, we have that the size of the instance is |V |O(1).
We show that the answer to the k-median instance (C,A,P, ν) described above, where ν =

(1 + δ) (µ · s+ (m− s)(µ+ ε)), is YES if and only if there exists a partial vertex cover with k
vertices covering at least s edges.

First, if there exists such a partial vertex cover, we claim that we can pick the k candidate centers
corresponding to the k vertices and obtain a solution of cost at most ν. Indeed, by Lemma 4.2,
each set of clients corresponding to an edge (vi, vj) can be served by ṽi or ṽj and induces a cost of
at most costi,j ≤ (1+ δ)µ. Each set of clients corresponding to an edge (vi, vj) not covered induces
a cost of pricei,j ≤ (1 + δ)µ + ε. It follows that the induced solution to the k-median problem has
cost at most ν.

Now assume that there is a solution S of cost at most ν to the k-median problem on the instance
(C,A,P, ν). By Lemma 4.4, for each ci,j, we have that either all the copies of ci,j are served by a
single center which is either ṽi or ṽj or all of them are paying a price pi,j. It follows that for each
ci,j such that ṽi, ṽj /∈ S, the cost induced by the copies of ci,j is at least µ+ ε.

We now argue that at least s pairs i, j (corresponding to ci,j) are being served either by ṽi or
ṽj . We denote by E1 the set of edges ei,j for which a candidate center is open at one of ṽi or ṽj.
Then the cost of the k-median instance is

∑

ei,j∈E1

costi,j +
∑

ei,j∈E\E1

(costi,j + ε) ≥ µ|E1|+ (m− |E1|)(µ + ε),

where the inequality comes from Lemma 4.2. By hypothesis, the cost is bounded by ν, which
means:

µ|E1|+ (m− |E1|)(µ + ε) ≤ (1 + δ)(µm+ ε(m− s)) ⇐⇒ |E1| ≥ s− δmµ

ε
− δ(m− s).

As long as the last expression, s− δmµ
ε − δ(m− s), is strictly more than s−1, then we can conclude

that |E1| > s − 1. Since |E1| is an integer, this would yield our desired bound |E1| ≥ s. For
δ < ε

m(µ+ε) , this holds. Note that since m and µ are polynomially bounded (by Lemma 4.2), δ
can be taken to be an inverse polynomial. Hence, taking the vertices corresponding to the centers
of the k-median solution yields a partial vertex cover consisting of k vertices covering at least s
edges.
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5 Hardness of k-Median in Four Dimensions

In this section, we prove that for any fixed d ≥ 4, and for any fixed k, there does not exist an
f(k)no(k)-time algorithm that solves k-median in d-dimensional space exactly, unless ETH fails (for
any computable function f). Our proof is similar in spirit to the reduction given as a warm-up in
Section 3, and even more similar to the one of Theorem 4.1, yet the absence of penalties makes the
reduction more delicate. We only prove our hardness result for d = 4 dimensions, which in turn
implies our result for dimensions larger than 4.

Theorem 5.1. For any dimension d ≥ 4, there is no f(k)no(k)-time exact algorithm for the d-
dimensional k-median problem, unless ETH fails (for any computable function f), where n is the
size of the input.

For a fixed parameter k, we are given a graph G = (V,E) on n = |V | vertices and m = |E|
edges, along with an integer s. Arbitrarily index the vertices v1, . . . , vn. We construct a k′-median
instance with candidate set C, client set A, and cost bound ν as follows. We let k′ = k + 1, and
consider the moment curve (t, t2, t3, t4). In particular, we add n + 1 candidate points to C, which
all lie on the moment curve. There is one special candidate center, which we denote by z∗, placed
on the curve at t = 1 (i.e., z∗ = (1, 1, 1, 1)). For each vertex vi, we add a candidate center on the
curve at t = 2i for 1 ≤ i ≤ n (i.e., (2i, (2i)2 , (2i)3, (2i)4)), denoted by ṽi.

For each edge ei,j = (vi, vj) in G, consider the unique 3-sphere, which we denote by Si,j, defined
by the following 5 points: z∗, ṽi, ṽj , and the two points on the moment curve given by t = 2i + 1
and t = 2j + 1. Let ci,j and ri,j denote the center and radius of the 3-sphere Si,j, respectively. In
the following, we slightly perturb the center ci,j of each such sphere such that it remains equidistant
to ṽi and ṽj (though farther away from z∗), and denote the new (perturbed) position by c′i,j , and
the corresponding distance to ṽi and ṽj by r′i,j.

Lemma 5.2. There exists ε > 0 such that for all i, j where ei,j = (vi, vj) ∈ E, there is a point c′i,j
such that:

• r′i,j := d(c′i,j , ṽi) = d(c′i,j , ṽj),

• d(c′i,j , z
∗) = (1 + ε)r′i,j , and

• for all k 6= i, j, d(c′i,j , ṽk) ≥ (1 + ε)r′i,j.

Proof. First, let us observe that by Lemma 2.7, for an edge ei,j = (vi, vj), the ball centered at ci,j
of radius ri,j contains no candidate center in its interior, and only z∗, ṽi, and ṽj on its boundary.

The strategy of the proof is to perturb ci,j in a very small ball to obtain c′i,j. Since the number
of points ṽk is bounded, and for any k 6= i, j, d(ci,j , ṽk) > ri,j, there exists η > 0 such that for all
k 6= i, j, d(ci,j , ṽk) > (1+η)ri,j . Therefore, any point in a ball centered at ci,j of radius r ≤ ri,jη/2 is
at distance at least (1+ η/2)ri,j from any ṽk for k 6= i, j. Now, we consider the intersection of such
a small ball with the 3-dimensional hyperplane H equidistant to ṽi and ṽj. In this 3-dimensional
space, the inequality d(x, ṽi) < d(x, z∗) defines a 3-dimensional subspace that is nonempty (because
z is different from ṽi and ṽj) from which we take a point c′i,j such that d(c′i,j , z

∗) ≤ (1 + η/2)ri,j .
This can be done since we can take it arbitrarily close to ci,j . Finally, this can be done consistently
for all the edges (vi, vj), so that for all of these, there is an ε > 0 such that d(c′i,j , z

∗) = (1 + ε)r′i,j .
This proves the lemma.
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Let q be an index pair that gives rise to the maximum r′i,j, namely q = argmaxi,j r
′
i,j (i.e., q is

of the form “i, j”). Let δ > 0 be some inverse polynomially small fraction to be defined, nq = ⌈1δ ⌉,
and ni,j = ⌈nq

r′q
r′i,j
⌉ for all i, j 6= q. We place ni,j client points at c′i,j for each edge (vi, vj). Finally,

we place nz∗ = |E|nqr
′
q client points at z∗. We write costi,j = ni,jr

′
i,j and µ = nqr

′
q.

Lemma 5.3. For any pair i, j such that (vi, vj) is an edge, costi,j satisfies µ ≤ costi,j ≤ (1 + δ)µ.

Proof. Fix any such pair i, j. Clearly, the claim is true for ei,j = eq, so consider any such edge
ei,j 6= eq. For the first inequality (i.e., the lower bound), we have the following:

r′i,j · ni,j = r′i,j

⌈

r′q
r′i,j
· nq

⌉

≥ r′i,j ·
r′q
r′i,j
· nq = r′q · nq.

For the second inequality (i.e., the upper bound), we get:

r′i,j · ni,j = r′i,j

⌈

r′q
r′i,j
· nq

⌉

≤ r′i,j

(

r′q
ri,j
· nq + 1

)

= r′q · nq + r′i,j ≤ r′q · nq + r′q

≤ r′q · nq + r′q · δ
⌈

1

δ

⌉

= r′q · nq + r′q · δ · nq = (1 + δ)r′q · nq.

We have thus defined an instance I(G, s, k) of k′-median, consisting of n+1 candidates C, and
|E|nqr

′
q +

∑

i,j ni,jr
′
i,j clients A (where the sum is taken over pairs i, j such that (vi, vj) ∈ E). The

following lemma shows that the k′-median instance I(G, s, k) has a small cost if and only if the
initial graph has a small partial vertex cover.

Lemma 5.4. The graph G has a partial vertex cover of size k covering at least s edges if and only
if I(G, s, k) has a k′-median solution of cost at most ν = µ(1 + δ)(s + (m− s)(1 + ε)).

Proof. For the first direction, assume that G has a partial vertex cover of size k covering at least
s edges, and denote by S the partial vertex cover solution. Then for each vertex in the solution
vi ∈ S, we open a center at ṽi, as well as one at z∗ (hence, we open k′ = k + 1 candidate centers
in total). Let ei,j = (vi, vj) be one of the s edges that is covered in G, which corresponds in the
reduction to ni,j client points placed at c′i,j . By construction, ei,j is covered either by vi or vj , and
thus one center is opened either at ṽi or ṽj . We have d(c′i,j , ṽi) = d(c′i,j , ṽj) = r′i,j, and thus the cost
induced by the client points placed at c′i,j is at most costi,j, which is at most (1+δ)µ by Lemma 5.3.
On the other hand, for the edges ei,j that are not covered in G, the associated client points can be
served by the candidate center at z∗, inducing a cost of (1 + ε)costi,j ≤ (1 + δ)(1 + ε)µ. Finally,
the client points at z∗ have no cost since z∗ is also an open center. Thus the cost of the instance
is bounded by ν.

For the other direction, assume that we have a (k + 1)-median solution for I(G, s, k) of cost at
most ν. We first claim that this means that a center is opened at z∗. Indeed, the closest other
candidate center is at ṽ1, which is at distance at least 2 from z∗. Serving all the client points located
at z∗ would therefore cost at least nz∗2 = 2mµ, which is strictly larger than ν for a sufficiently
small ε > 0. Thus, there is a center open at z∗, which serves the clients located there, so in the
rest of the proof we can ignore the cost of such clients.

By construction, for each edge ei,j = (vi, vj), the two closest candidate centers to c′i,j are at
distance r′i,j, while all the other candidate centers are at distance at least (1 + ε)r′i,j . Thus, the
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cost of covering the ni,j client points located at c′i,j is costi,j if a center is opened at ṽi or ṽj , and
(1+ ε)costi,j otherwise (since in such a case it can be served by the center at z∗). We denote by E1

the set of edges ei,j for which a candidate center is open at one of the nearby candidate locations
ṽi or ṽj. Then the cost of the (k + 1)-median instance is

∑

ei,j∈E1

costi,j +
∑

ei,j∈E\E1

(1 + ε)costi,j ≥ µ(|E1|+ (m− |E1|)(1 + ε)),

where the inequality comes from Lemma 5.3. By hypothesis, the cost is bounded by ν, and for
δ < ε

m(1+ε) , this shows that |E1| ≥ s. Thus, we can cover at least s edges of G by taking the vertices
vi for which a candidate center is opened at the corresponding candidate center ṽi, and therefore
G has a partial vertex cover of size k covering at least s edges.

It remains to show that the reduction takes time polynomial in n and linear in k.

Lemma 5.5. Starting from a graph G on n nodes and a parameter k, we can compute the corre-
sponding instance I(G, s, k) of k′-median in time k + poly(n).

Proof. Note that since the parameter k is never used in the reduction (other than for determining
k′), the only cost associated with it is essentially copying it from one instance to the other, so the
overhead is at most k (actually it is much less). Then, placing the candidate centers z∗ and ṽi on
the moment curve is straightforward since their coordinates are polynomials. However, placing the
clients is a more delicate matter. We claim that all the computation associated with them only
involves rational fractions of constant degree, and they can be carried out in polynomial time.

We first compute the points ci,j, which are circumcenters of five points on the moment curve.
This can be done in polynomial time since it amounts to computing the intersections of four bisector
hyperplanes, and hence solving a linear system of constant size. Furthermore, since the points ṽi
have integer coordinates, the solution of the system is a rational fraction. In particular, the squares
of the circumradii are rational as well. Finally, in the perturbation scheme of Lemma 5.2, the
radius r of the ball in which we perturb can be taken to be a rational fraction of the input as
well since the squares of the distances between ci,j and the ṽk are rational fractions. Therefore,
one can also choose ε and c′i,j to be rational fractions, and thus δ can be taken to be inverse
polynomially bounded in the input. This bounds the size of the set of clients by a polynomial.
Since all the variables in the cost ν of the I(G, s, k) instance are rational fractions of the input, it
can be computed in polynomial time as well, which concludes the proof.

This concludes the proof of Theorem 5.1.

6 Hardness of k-Median with Penalties in Two Dimensions

In this section, we show that there is no algorithm running in time less than f(k)no(
√
k) for any

computable function f that solves the k-median with penalties problem in two dimensions (under
the ETH assumption). We do so by reduction from a problem called Grid Tiling introduced in [37],
which we now define.

Definition 6.1 (Grid Tiling).
Input: Integer n, collection S of k2 nonempty sets Si,j ⊆ [n]× [n] (where 1 ≤ i, j ≤ k).
Parameter: Integer k.
Output: YES if and only if there exists a set of k2 pairs si,j ∈ Si,j such that
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• If si,j = (a, b) and si+1,j = (a′, b′), then a = a′.

• If si,j = (a, b) and si,j+1 = (a′, b′), then b = b′.

It is known that this problem has no f(k)no(k)-time algorithm unless ETH fails [12]. In fact, we
reduce from a slightly different version of the problem where, instead of equality, we have inequality
constraints of the following form:

• If si,j = (a, b) and si+1,j = (a′, b′), then a ≤ a′.

• If si,j = (a, b) and si,j+1 = (a′, b′), then b ≤ b′.

We call this problem Grid Tiling Inequality, and it is also known that this problem has no f(k)no(k)-
time algorithm unless ETH fails [12].

Our reduction is similar in spirit to one given by Marx [37] for Independent Set of Unit Disks.
In the following, it is helpful to imagine the reduction in a continuous setting in which the client
points are infinite and uniformly placed in some region (ultimately, we discretize this region so that
we work with finitely many client points). Note that the cost of a point is either the distance to its
closest open center or its penalty, whichever is smaller.

Theorem 6.2. There is no f(k)no(
√
k)-time algorithm for the k-median with penalties problem in

d = 2 dimensions (for any computable function f), unless ETH fails, where n is the size of the
input.

Proof. As mentioned, we reduce from the Grid Tiling Inequality problem. For a fixed parameter
k, we are given as input an integer n and a collection of sets S of k2 nonempty sets Si,j ⊆ [n]× [n]
for all 1 ≤ i, j ≤ k. We show how to construct a k′-median with penalties instance that is a
yes-instance if and only if the input to Grid Tiling Inequality is a yes-instance. We set k′ = k2,
which shows the claimed lower bound: suppose towards a contradiction there exists an algorithm

running in time f(k′)no(
√
k′) for the k′-median with penalties problem (where f is some computable

function). Then this means there is an algorithm running in time f(k2)no(
√
k2) = f(k2)no(k) that

solves the Grid Tiling Inequality problem (with parameter k), yielding a contradiction under the
ETH assumption.

The instance for the k′-median with penalties problem is as follows. As mentioned, we have
k′ = k2, and we fix ε = 1/n3. The client points lie in the region consisting of a square of side
length 2k + ε(n − 1), where the lower left corner of the square is on the origin (i.e., A = {(x, y) |
0 ≤ x, y ≤ 2k + ε(n− 1)}). They are spaced evenly in a grid G, where two consecutive (horizontal
or vertical) clients are at a distance ε from each other, and thus there are Σ = (2k/ε + n)2 clients.
Each client point a has a penalty of pa = 1. We think of this grid as a discrete approximation
of the uniform measure on the square A, and in line with this analogy, we work with the discrete
measure µ carried by the client points, where each client is weighted 1, so that

∫∫

A dµ = Σ.
For each set Si,j, we introduce |Si,j| ≤ n2 candidate centers, and we let Ci,j denote the set of such

candidate centers (note that there are k2 such sets), where Ci,j = {(2i− 1, 2j − 1)+ ε(u− 1, v− 1) |
(u, v) ∈ Si,j}. Note that the candidate centers are also placed on vertices of G, and that, if Si,j has
all possible pairs so that Si,j = [n] × [n], then Ci,j precisely forms a subgrid of n2 evenly spaced
points in which consecutive points are at distance ε from each other and the lower left point of the
subgrid lies at (2i − 1, 2j − 1). The final set of candidates is given by C = ∪1≤i,j≤kCi,j. For now,
we defer defining the cost threshold ν.

Note that, when opening a candidate center, it can only serve client points that are within a
distance of 1 to it, since all other client points a would rather pay the penalty pa = 1. Moreover,

14



for each candidate center c ∈ C, we have the property that the entire disk D of radius 1 centered
at c is completely contained in the square region A. Indeed, consider any candidate center ci,j
corresponding to the pair (u, v) ∈ Si,j (for 1 ≤ i, j ≤ k, 1 ≤ u, v ≤ n), so that ci,j = (2i − 1, 2j −
1)+ ε(u− 1, v− 1). The leftmost point possible is given by u = 1, i = 1, which yields a point of the
form (1, 2j − 1 + ε(v − 1)). Hence, no disk of radius 1 centered at a candidate center goes beyond
the left edge of the square A. The rightmost possible point is given by i = k, u = n, which yields
a point of the form (2k − 1 + ε(n − 1), 2j − 1 + ε(v − 1)). Hence, no disk of radius 1 centered at
a candidate center goes beyond the right edge of the square (which lies at x = 2k + ε(n − 1)). A
similar argument shows that no such disk goes beyond the upper or lower edges of A.

We now seek to understand the costs of solutions in which such disks intersect, and compare
them to solutions in which they do not intersect. Consider a collection ∆ of k2 pairwise disjoint
disks centered on candidate centers (with the possible exception that pairs may intersect at exactly
one point on the boundary, so that they are tangent to each other), each of which has radius 1 and
is fully contained in A. We claim that any such solution (obtained by opening a candidate at the
center of each disk) has the same cost. To see this, note that each candidate center c contributes
the same amount to the cost of the solution: this contribution is given by the double integral
∫∫

D d((x, y), c)dµ, where D denotes the disk of radius 1 centered at c. Since the candidate centers
are placed on vertices of G, any candidate center sees exactly the same configuration of clients in
D, and thus this integral does not depend on c.

Now, all other points that do not belong to one of these k2 disks pay a penalty of 1. Hence,
such points contribute

∫∫

A\∆ dµ to the cost, since A \ ∆ is the region of the square A that they
occupy. Similarly as before, since the disks are pairwise disjoint and the candidate centers are
placed on vertices of G, this quantity does not depend on the actual placement of the centers. In
total, the cost of a solution where the candidate centers induce a family of disjoint disks ∆ is
k2

∫∫

D d((x, y), c)dµ +
∫∫

A\∆ dµ. This quantity does not depend on the placement of the center,
and we set the cost threshold ν of our instance to be this value. Note that since µ is a discrete
measure, the integrals are actually sums, and thus ν can trivially be computed in polynomial time
from the input instance of Grid Tiling Inequality. Actually, the value of ν is in general irrational,
and hence we need to slightly increase it to make it rational. We briefly discuss how to deal with
this issue after the following discussion of costs of solutions where disks intersect.

On the other hand, consider a solution S1 in which at least one pair of the k2 disks intersect
each other. We look at the Voronoi diagram induced by the centers opened in this solution, and
denote by Vi the Voronoi region corresponding to a center ci. As before, a center only serves
points at distance at most 1 from it, so it serves points in the region Ri := Vi ∩ D(ci, 1), where
D(ci, 1) denotes the disk of radius 1 centered at ci. The total cost of the solution S1 is thus
∑

i

∫∫

Ri
d((x, y), ci)dµ +

∫∫

A\∪iRi
dµ. Since for all i, Ri ⊆ D(ci, 1), at least one of these inclusions

is strict, and the distance d((x, y), ci) in the integrals is always strictly less than 1, we have:

∑

i

∫∫

Ri

d((x, y), ci)dµ +

∫∫

A\∪iRi

dµ =
∑

i

∫∫

Ri

(d((x, y), ci)− 1)dµ +

∫∫

A

dµ

>
∑

i

∫∫

D(ci,1)

(d((x, y), ci)− 1)dµ +

∫∫

A

dµ

=
∑

i

∫∫

D(ci,1)

d((x, y), ci)dµ +

∫∫

A

dµ −
∑

i

∫∫

D(ci,1)

dµ = ν.

This proves that a solution where disks of radius 1 (centered at the opened candidate centers)
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intersect always has a cost strictly greater than the cost threshold ν. Regarding irrationality of
ν, note that the minimum possible cost of a solution in which disks intersect is attained when
all disks centered at candidates are disjoint, with the exception of one pair that intersect (in the
smallest area possible). Since candidates are placed on a grid, the smallest such intersection that
can be obtained is when two candidate centers are opened that are at distance 2− Ω(ε) from one
another. Hence, we can choose ν to be a rational number in between the cost of such a solution
and k2

∫∫

D d((x, y), c)dµ +
∫∫

A\∆ dµ.
To finish the theorem, we need only argue that there is a solution to the Grid Tiling Inequality

input if and only if it is possible to select k2 pairwise disjoint disks of radius 1, where each disk
is centered at some candidate. This is proved in the aforementioned reduction of Marx [37], but
we include it here for completeness. Note that we allow intersection at exactly one point. To
this end, suppose we are given a yes-instance for the Grid Tiling Inequality problem. For each
1 ≤ i, j ≤ k, let si,j = (u, v) denote the chosen pair in Si,j, and open a candidate center ci,j at the
point (2i−1, 2j−1)+ε(u−1, v−1). Now, the only possible disks that can intersect with the disk of
radius 1 centered at ci,j, denoted by Di,j , are Di+1,j ,Di−1,j,Di,j+1, and Di,j−1 (if such disks exist).
This holds since all other candidates have distance at least

√

2(2− ε(n− 1))2 =
√
2(2 − ε(n − 1))

to ci,j , which is at least 2 for sufficiently small ε. We only argue that the disks Di,j and Di+1,j

do not intersect, since the other cases follow by a similar argument. In particular, let si,j = (u, v)
and si+1,j = (u′, v′), and note that u ≤ u′ (since the input is a yes-instance). Hence, the distance
between ci,j and ci+1,j is given by:

√

(2i+ 1 + ε(u′ − 1)− (2i− 1 + ε(u− 1)))2 + (2j − 1 + ε(v′ − 1)− (2j − 1 + ε(v − 1)))2

≥
√

(2 + ε(u′ − u))2 ≥ 2,

and hence the disks do not intersect (since both of them have a radius of 1).
Now suppose we have a yes-instance for the k′-median with penalties problem. We seek to show

that we have a yes-instance for the Grid Tiling Inequality problem. In particular, since the cost is
at most ν, we know that there is a way of selecting k2 candidate centers ci,j (for 1 ≤ i, j ≤ k) where
their corresponding disks Di,j of radius 1 are pairwise disjoint. This implies that, from each set Ci,j,
we have selected exactly one candidate center which is of the form ci,j = (2i−1, 2j−1)+ε(u−1, v−1)
for some (u, v) ∈ Si,j. We claim that, for each Si,j, taking such a pair (u, v) satisfies the conditions
of the Grid Tiling Inequality problem. In particular, consider any (u, v) ∈ Si,j and (u′, v′) ∈ Si+1,j.
We want to show that u ≤ u′. Since the disks Di,j and Di+1,j do not intersect, the distance between
them is at least 2, which means:

2 ≤
√

(2i+ 1 + ε(u′ − 1)− (2i− 1 + ε(u− 1)))2 + (2j − 1 + ε(v′ − 1)− (2j − 1 + ε(v − 1)))2

=
√

(2 + ε(u′ − u))2 + (ε(v′ − v))2 ≤
√

4 + 4ε(u′ − u) + 2ε2(n− 1)2.

Squaring both sides, we see that

4 ≤ 4 + 4ε(u′ − u) + 2ε2(n − 1)2 ⇐⇒ −2ε2(n− 1)2 ≤ 4ε(u′ − u)⇐⇒ u− ε(n− 1)2

2
≤ u′.

As long as ε(n−1)2

2 < 1, then we know that u′ > u− 1. Since u′ is an integer, we must have u′ ≥ u.
This holds for a sufficiently small ε (e.g., ε < 2

(n−1)2
). The case regarding si,j = (u, v) ∈ Si,j and

si,j+1 = (u′, v′) ∈ Si,j+1 implying v ≤ v′ is symmetric, and hence the proof is complete.
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7 An Algorithm for k-Median in Two Dimensions

We define an instance of the 2-dimensional k-median optimization problem to be a triple (C,A, k)
where C denotes the set of candidates and A denotes the set of clients. The output is a set K of
k candidates, which has a cost of

∑

a∈A d(a,K), such that no other set of k candidates obtains a
lower cost. (See Definition 2.5 for the decision version of the problem.) We show:

Theorem 7.1. There exists an exact algorithm that finds an optimal solution to any instance

(C,A, k) of the 2-dimensional k-median optimization problem in time |A| · |C|O(
√
k).

Our algorithm is quite standard as it uses similar ideas as the ones in the work of Marx and
Pilipczuk [38]. Since it consists of guessing the set of candidate centers and their Voronoi cells, it
also works verbatim for k-means, as well as for the versions of k-means and k-median with penalties.

Let (C,A, k) be an instance of the 2-dimensional k-median problem. By a small perturbation of
the positions of the candidate centers C, we can assume that no point in R2 is equidistant to four
or more centers. Indeed, a small enough perturbation will not change which centers are opened in
an optimal solution, and will slightly change the cost, but this cost can be recomputed afterwards
with the exact positions of the centers. The set of points that are equidistant from 3 candidate
centers is denoted by P , and there are O(|C|3) of them.

We define a separating curve S with respect to C of length r to be a concatenation of segments
of the form (c1, p1), (p1, c2), . . . , (cr, pr), (pr, c1), where the ci are candidate centers, and the pi
are points in P (see Figure 3). A separating curve is valid if it is simple, i.e., there are no self-
intersections. We denote by in(S) and out(S) its respective interior and exterior.

Our algorithm (Algorithm 1) works by enumerating valid separating curves of size O(
√
k), using

them to cut the instance into two subinstances and recursing. The base cases are then solved by
brute-force. The rationale behind this, which we formalize in the next subsection, is that since the
Voronoi diagram of the optimal solution is a planar graph, it admits small balanced separators,
which in this case can be realized by valid separating curves. Therefore, one of the separating
curves we enumerate corresponds to such a small balanced separator, and as we will prove, such a
separator can be easily used to partition the problem into two independent subinstances.

7.1 Correctness

We first recall some notions from topological graph theory that we rely on.
For a plane graph G, a noose of G is a Jordan curve that intersects G only at its vertices,

and visits each of its faces at most once. The length of a noose is the number of vertices that it
intersects. A noose γ is α-face-balanced if the number of faces that are strictly enclosed or strictly
excluded by γ are both not larger than α|F (G)|, where F (G) denotes the set of faces of G. The
following theorem of Marx and Pilipczuk [39, Corollary 4.17] (see also [38]) shows that there exist
nooses that form balanced separators of small size for the faces of G.

Theorem 7.2. Let G be a connected 3-regular graph with n vertices, m ≥ 6 edges embedded on a
sphere. Then there exists a 2/3-face-balanced noose for G that has length at most

√
4.5n.

We apply this theorem to the Voronoi diagram V induced by an optimal solution to the instance
(C,A, k). By our assumption, no point is equidistant to four centers, and therefore this graph is
3-regular. However, V is not a graph embedded on the sphere, and not even a plane graph, since it
has infinite rays. We remedy this by adding three dummy centers to V that are very far from the
rest of the candidate centers and clients, and make it so that there are only 3 rays going to infinity.
Then we compactify the picture by embedding this new graph into a sphere with an additional
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Algorithm 1 ExactClustering: Exact Algorithm for 2-Dimensional k-Median

1: Input: A set of candidate centers C, a set of clients A, a positive integer k, and a set of centers
that are already open Ĉ

2: if k = O(1) then
3: Let S = argminS′⊆C,|S′|≤k

∑

a∈A dist(a, S′ ∪ Ĉ)

4: Return S ∪ Ĉ, cost(S ∪ Ĉ)
5: end if

6: S ← an arbitrary solution
7: P ← set of points equidistant to three candidate centers
8: for each valid separating curve γ = (c1, p1), . . . , (cℓ, pℓ), (pℓ, c1) of length ℓ ≤

√
4.5k do

9: S ′ ← an arbitrary solution
10: C̃ ← {c1, . . . , cℓ}
11: for each k′ ∈ {k/3 − ℓ, . . . , 2k/3} do
12: Sin, cost(Sin)← ExactClustering (C \ C̃ ∩ (in(γ) ∪ γ), A ∩ (in(γ) ∪ γ), k′, Ĉ ∪ C̃)
13: Sout, cost(Sout)← ExactClustering (C \ C̃ ∩ (out(γ)∪ γ), A∩ out(γ), k− ℓ− k′, Ĉ ∪ C̃)
14: if cost(S′) > cost(Sin) + cost(Sout) then
15: S ′ ← Sout ∪ Sin, cost(S ′) = cost(Sin) + cost(Sout)
16: end if

17: end for

18: if cost(S) > cost(S ′) then
19: S ← S ′, cost(S) = cost(S ′)
20: end if

21: end for

22: Return S, cost(S)
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point at the intersection of the three rays. The reader can verify that applying Theorem 7.2 to this
graph yields a noose of the original graph with the same guarantees (for the obvious extension of
the definitions for graphs with infinite rays).

Since the edges of V are straight lines, its faces are convex, and there is a candidate center in
the interior of each face, this particular case also allows for a discrete description of nooses: each
noose can be discretized by replacing a maximal subarc in a face by two straight-line segments
between its endpoints and the candidate center in that face. By Theorem 7.2 applied to V and this
discretization, we obtain that there exists a valid separating curve γ of length at most

√
4.5k that

is a 2/3-face-balanced noose for V.
The following lemma shows that such a separating curve can be used to partition the clients.

In the following, we denote by OPT an optimal solution.

Lemma 7.3. We have that all the clients in in(γ) (respectively out(γ)) are served by a center in
OPT that is in in(γ) ∪ γ (respectively out(γ) ∪ γ).

Proof. Assume towards a contradiction that there is a client a that is in in(γ) and is served in
OPT by a center c in out(γ). Consider the line L from a to c. Since γ is a Jordan curve, L has
to intersect at least one of the line segments defining γ, which links a center c′ to a point p. The
intersection point lies in the Voronoi cell associated with c′, and thus by the triangle inequality a
is closer to c′ than c, a contradiction.

We can thus finish the proof that Algorithm 1 is correct. Among all the sequences of pairs
(ci, pi) ∈ C ×P , one induces γ. Therefore, an immediate induction on the recursive calls yields the
result.

7.2 Running Time

Lemma 7.4. The running time of Algorithm 1 on a 2-dimensional instance (C,A, k) of the k-

median problem is at most |A|(|C|)O(
√
k).

Proof. Recall that we are working in a computational model where sums of square roots can be
compared efficiently, which allows us to compare sums of distances, even though they might be
irrational.

Observe first that the cost of a solution can be evaluated in time O(|A| · k). Hence, the final
recursive call takes time at most |A| · |C|O(1).

Since P has size O(|C|3), there are only O((|C|3)2
√
k) choices of a valid separating curve, which

is at most |C|O(
√
k).

We now consider the general recursive calls, which yield the following recurrence: Tk ≤ |C|O(
√
k)2kT2k/3

(where Tk denotes the running time of the algorithm when given k as input). Hence, the running

time is at most |A||C|O(
√
k).
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