63,936 research outputs found

    Finding Streams in Knowledge Graphs to Support Fact Checking

    Full text link
    The volume and velocity of information that gets generated online limits current journalistic practices to fact-check claims at the same rate. Computational approaches for fact checking may be the key to help mitigate the risks of massive misinformation spread. Such approaches can be designed to not only be scalable and effective at assessing veracity of dubious claims, but also to boost a human fact checker's productivity by surfacing relevant facts and patterns to aid their analysis. To this end, we present a novel, unsupervised network-flow based approach to determine the truthfulness of a statement of fact expressed in the form of a (subject, predicate, object) triple. We view a knowledge graph of background information about real-world entities as a flow network, and knowledge as a fluid, abstract commodity. We show that computational fact checking of such a triple then amounts to finding a "knowledge stream" that emanates from the subject node and flows toward the object node through paths connecting them. Evaluation on a range of real-world and hand-crafted datasets of facts related to entertainment, business, sports, geography and more reveals that this network-flow model can be very effective in discerning true statements from false ones, outperforming existing algorithms on many test cases. Moreover, the model is expressive in its ability to automatically discover several useful path patterns and surface relevant facts that may help a human fact checker corroborate or refute a claim.Comment: Extended version of the paper in proceedings of ICDM 201

    Modeling of Phenomena and Dynamic Logic of Phenomena

    Get PDF
    Modeling of complex phenomena such as the mind presents tremendous computational complexity challenges. Modeling field theory (MFT) addresses these challenges in a non-traditional way. The main idea behind MFT is to match levels of uncertainty of the model (also, problem or theory) with levels of uncertainty of the evaluation criterion used to identify that model. When a model becomes more certain, then the evaluation criterion is adjusted dynamically to match that change to the model. This process is called the Dynamic Logic of Phenomena (DLP) for model construction and it mimics processes of the mind and natural evolution. This paper provides a formal description of DLP by specifying its syntax, semantics, and reasoning system. We also outline links between DLP and other logical approaches. Computational complexity issues that motivate this work are presented using an example of polynomial models

    Ranking relations using analogies in biological and information networks

    Get PDF
    Analogical reasoning depends fundamentally on the ability to learn and generalize about relations between objects. We develop an approach to relational learning which, given a set of pairs of objects S={A(1):B(1),A(2):B(2),…,A(N):B(N)}\mathbf{S}=\{A^{(1)}:B^{(1)},A^{(2)}:B^{(2)},\ldots,A^{(N)}:B ^{(N)}\}, measures how well other pairs A:B fit in with the set S\mathbf{S}. Our work addresses the following question: is the relation between objects A and B analogous to those relations found in S\mathbf{S}? Such questions are particularly relevant in information retrieval, where an investigator might want to search for analogous pairs of objects that match the query set of interest. There are many ways in which objects can be related, making the task of measuring analogies very challenging. Our approach combines a similarity measure on function spaces with Bayesian analysis to produce a ranking. It requires data containing features of the objects of interest and a link matrix specifying which relationships exist; no further attributes of such relationships are necessary. We illustrate the potential of our method on text analysis and information networks. An application on discovering functional interactions between pairs of proteins is discussed in detail, where we show that our approach can work in practice even if a small set of protein pairs is provided.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS321 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    LOGICAL AND PSYCHOLOGICAL PARTITIONING OF MIND: DEPICTING THE SAME MAP?

    Get PDF
    The aim of this paper is to demonstrate that empirically delimited structures of mind are also differentiable by means of systematic logical analysis. In the sake of this aim, the paper first summarizes Demetriou's theory of cognitive organization and growth. This theory assumes that the mind is a multistructural entity that develops across three fronts: the processing system that constrains processing potentials, a set of specialized structural systems (SSSs) that guide processing within different reality and knowledge domains, and a hypecognitive system that monitors and controls the functioning of all other systems. In the second part the paper focuses on the SSSs, which are the target of our logical analysis, and it summarizes a series of empirical studies demonstrating their autonomous operation. The third part develops the logical proof showing that each SSS involves a kernel element that cannot be reduced to standard logic or to any other SSS. The implications of this analysis for the general theory of knowledge and cognitive development are discussed in the concluding part of the paper
    • …
    corecore