16 research outputs found

    Efficient Generation of Stable Planar Cages for Chemistry

    Full text link
    In this paper we describe an algorithm which generates all colored planar maps with a good minimum sparsity from simple motifs and rules to connect them. An implementation of this algorithm is available and is used by chemists who want to quickly generate all sound molecules they can obtain by mixing some basic components.Comment: 17 pages, 7 figures. Accepted at the 14th International Symposium on Experimental Algorithms (SEA 2015

    Evaluating a 2-approximation algorithm for edge-separators in planar graphs

    No full text
    In this paper we report on results obtained by an implementation of a 2-approximation algorithm for edge separators in planar graphs. For 374 out of the 435 instances the algorithm returned the optimum solution. For the remaining instances the solution returned was never more than 10.6\% away from the lower bound on the optimum separator. We also improve the worst-case running time of the algorithm from O(n6)O(n^6) to O(n5)O(n^5) and present techniques which improve the running time significantly in practice

    A Polynomial-time Bicriteria Approximation Scheme for Planar Bisection

    Full text link
    Given an undirected graph with edge costs and node weights, the minimum bisection problem asks for a partition of the nodes into two parts of equal weight such that the sum of edge costs between the parts is minimized. We give a polynomial time bicriteria approximation scheme for bisection on planar graphs. Specifically, let WW be the total weight of all nodes in a planar graph GG. For any constant ε>0\varepsilon > 0, our algorithm outputs a bipartition of the nodes such that each part weighs at most W/2+εW/2 + \varepsilon and the total cost of edges crossing the partition is at most (1+ε)(1+\varepsilon) times the total cost of the optimal bisection. The previously best known approximation for planar minimum bisection, even with unit node weights, was O(logn)O(\log n). Our algorithm actually solves a more general problem where the input may include a target weight for the smaller side of the bipartition.Comment: To appear in STOC 201

    Balanced Partitions of Trees and Applications

    Get PDF
    We study the k-BALANCED PARTITIONING problem in which the vertices of a graph are to be partitioned into k sets of size at most ceil(n/k) while minimising the cut size, which is the number of edges connecting vertices in different sets. The problem is well studied for general graphs, for which it cannot be approximated within any factor in polynomial time. However, little is known about restricted graph classes. We show that for trees k-BALANCED PARTITIONING remains surprisingly hard. In particular, approximating the cut size is APX-hard even if the maximum degree of the tree is constant. If instead the diameter of the tree is bounded by a constant, we show that it is NP-hard to approximate the cut size within n^c, for any constant c<1. In the face of the hardness results, we show that allowing near-balanced solutions, in which there are at most (1+eps)ceil(n/k) vertices in any of the k sets, admits a PTAS for trees. Remarkably, the computed cut size is no larger than that of an optimal balanced solution. In the final section of our paper, we harness results on embedding graph metrics into tree metrics to extend our PTAS for trees to general graphs. In addition to being conceptually simpler and easier to analyse, our scheme improves the best factor known on the cut size of near-balanced solutions from O(log^{1.5}(n)/eps^2) [Andreev and Räcke TCS 2006] to 0(log n), for weighted graphs. This also settles a question posed by Andreev and Räcke of whether an algorithm with approximation guarantees on the cut size independent from eps exists.ISSN:1868-896

    On the computational tractability of a geographic clustering problem arising in redistricting

    Get PDF
    Redistricting is the problem of dividing a state into a number kk of regions, called districts. Voters in each district elect a representative. The primary criteria are: each district is connected, district populations are equal (or nearly equal), and districts are "compact". There are multiple competing definitions of compactness, usually minimizing some quantity. One measure that has been recently promoted by Duchin and others is number of cut edges. In redistricting, one is given atomic regions out of which each district must be built. The populations of the atomic regions are given. Consider the graph with one vertex per atomic region (with weight equal to the region's population) and an edge between atomic regions that share a boundary. A districting plan is a partition of vertices into kk parts, each connnected, of nearly equal weight. The districts are considered compact to the extent that the plan minimizes the number of edges crossing between different parts. Consider two problems: find the most compact districting plan, and sample districting plans under a compactness constraint uniformly at random. Both problems are NP-hard so we restrict the input graph to have branchwidth at most ww. (A planar graph's branchwidth is bounded by its diameter.) If both kk and ww are bounded by constants, the problems are solvable in polynomial time. Assume vertices have weight~1. One would like algorithms whose running times are of the form O(f(k,w)nc)O(f(k,w) n^c) for some constant cc independent of kk and ww, in which case the problems are said to be fixed-parameter tractable with respect to kk and ww). We show that, under a complexity-theoretic assumption, no such algorithms exist. However, we do give algorithms with running time O(cwnk+1)O(c^wn^{k+1}). Thus if the diameter of the graph is moderately small and the number of districts is very small, our algorithm is useable

    Towards a better approximation for sparsest cut?

    Full text link
    We give a new (1+ϵ)(1+\epsilon)-approximation for sparsest cut problem on graphs where small sets expand significantly more than the sparsest cut (sets of size n/rn/r expand by a factor lognlogr\sqrt{\log n\log r} bigger, for some small rr; this condition holds for many natural graph families). We give two different algorithms. One involves Guruswami-Sinop rounding on the level-rr Lasserre relaxation. The other is combinatorial and involves a new notion called {\em Small Set Expander Flows} (inspired by the {\em expander flows} of ARV) which we show exists in the input graph. Both algorithms run in time 2O(r)poly(n)2^{O(r)} \mathrm{poly}(n). We also show similar approximation algorithms in graphs with genus gg with an analogous local expansion condition. This is the first algorithm we know of that achieves (1+ϵ)(1+\epsilon)-approximation on such general family of graphs
    corecore