5,927 research outputs found

    Constrained Reinforcement Learning from Intrinsic and Extrinsic Rewards

    Get PDF

    Intrinsic Motivation Systems for Autonomous Mental Development

    Get PDF
    Exploratory activities seem to be intrinsically rewarding for children and crucial for their cognitive development. Can a machine be endowed with such an intrinsic motivation system? This is the question we study in this paper, presenting a number of computational systems that try to capture this drive towards novel or curious situations. After discussing related research coming from developmental psychology, neuroscience, developmental robotics, and active learning, this paper presents the mechanism of Intelligent Adaptive Curiosity, an intrinsic motivation system which pushes a robot towards situations in which it maximizes its learning progress. This drive makes the robot focus on situations which are neither too predictable nor too unpredictable, thus permitting autonomous mental development.The complexity of the robot’s activities autonomously increases and complex developmental sequences self-organize without being constructed in a supervised manner. Two experiments are presented illustrating the stage-like organization emerging with this mechanism. In one of them, a physical robot is placed on a baby play mat with objects that it can learn to manipulate. Experimental results show that the robot first spends time in situations which are easy to learn, then shifts its attention progressively to situations of increasing difficulty, avoiding situations in which nothing can be learned. Finally, these various results are discussed in relation to more complex forms of behavioral organization and data coming from developmental psychology. Key words: Active learning, autonomy, behavior, complexity, curiosity, development, developmental trajectory, epigenetic robotics, intrinsic motivation, learning, reinforcement learning, values

    Toward evolutionary and developmental intelligence

    Get PDF
    Given the phenomenal advances in artificial intelligence in specific domains like visual object recognition and game playing by deep learning, expectations are rising for building artificial general intelligence (AGI) that can flexibly find solutions in unknown task domains. One approach to AGI is to set up a variety of tasks and design AI agents that perform well in many of them, including those the agent faces for the first time. One caveat for such an approach is that the best performing agent may be just a collection of domain-specific AI agents switched for a given domain. Here we propose an alternative approach of focusing on the process of acquisition of intelligence through active interactions in an environment. We call this approach evolutionary and developmental intelligence (EDI). We first review the current status of artificial intelligence, brain-inspired computing and developmental robotics and define the conceptual framework of EDI. We then explore how we can integrate advances in neuroscience, machine learning, and robotics to construct EDI systems and how building such systems can help us understand animal and human intelligence

    Final report key contents: main results accomplished by the EU-Funded project IM-CLeVeR - Intrinsically Motivated Cumulative Learning Versatile Robots

    Get PDF
    This document has the goal of presenting the main scientific and technological achievements of the project IM-CLeVeR. The document is organised as follows: 1. Project executive summary: a brief overview of the project vision, objectives and keywords. 2. Beneficiaries of the project and contacts: list of Teams (partners) of the project, Team Leaders and contacts. 3. Project context and objectives: the vision of the project and its overall objectives 4. Overview of work performed and main results achieved: a one page overview of the main results of the project 5. Overview of main results per partner: a bullet-point list of main results per partners 6. Main achievements in detail, per partner: a throughout explanation of the main results per partner (but including collaboration work), with also reference to the main publications supporting them

    Reinforcement-based Robotic Memory Controller

    Get PDF

    A Multi-Objective Deep Reinforcement Learning Framework

    Get PDF
    This paper introduces a new scalable multi-objective deep reinforcement learning (MODRL) framework based on deep Q-networks. We develop a high-performance MODRL framework that supports both single-policy and multi-policy strategies, as well as both linear and non-linear approaches to action selection. The experimental results on two benchmark problems (two-objective deep sea treasure environment and three-objective Mountain Car problem) indicate that the proposed framework is able to find the Pareto-optimal solutions effectively. The proposed framework is generic and highly modularized, which allows the integration of different deep reinforcement learning algorithms in different complex problem domains. This therefore overcomes many disadvantages involved with standard multi-objective reinforcement learning methods in the current literature. The proposed framework acts as a testbed platform that accelerates the development of MODRL for solving increasingly complicated multi-objective problems.Comment: 21 page

    Learning to Visually Navigate in Photorealistic Environments Without any Supervision

    Full text link
    Learning to navigate in a realistic setting where an agent must rely solely on visual inputs is a challenging task, in part because the lack of position information makes it difficult to provide supervision during training. In this paper, we introduce a novel approach for learning to navigate from image inputs without external supervision or reward. Our approach consists of three stages: learning a good representation of first-person views, then learning to explore using memory, and finally learning to navigate by setting its own goals. The model is trained with intrinsic rewards only so that it can be applied to any environment with image observations. We show the benefits of our approach by training an agent to navigate challenging photo-realistic environments from the Gibson dataset with RGB inputs only

    Trustworthy Reinforcement Learning Against Intrinsic Vulnerabilities: Robustness, Safety, and Generalizability

    Full text link
    A trustworthy reinforcement learning algorithm should be competent in solving challenging real-world problems, including {robustly} handling uncertainties, satisfying {safety} constraints to avoid catastrophic failures, and {generalizing} to unseen scenarios during deployments. This study aims to overview these main perspectives of trustworthy reinforcement learning considering its intrinsic vulnerabilities on robustness, safety, and generalizability. In particular, we give rigorous formulations, categorize corresponding methodologies, and discuss benchmarks for each perspective. Moreover, we provide an outlook section to spur promising future directions with a brief discussion on extrinsic vulnerabilities considering human feedback. We hope this survey could bring together separate threads of studies together in a unified framework and promote the trustworthiness of reinforcement learning.Comment: 36 pages, 5 figure

    Exploring Criticality as a Generic Adaptive Mechanism

    Get PDF
    The activity of many biological and cognitive systems is not poised deep within a specific regime of activity. Instead, they operate near points of critical behavior located at the boundary between different phases. Certain authors link some of the properties of criticality with the ability of living systems to generate autonomous or intrinsically generated behavior. However, these claims remain highly speculative. In this paper, we intend to explore the connection between criticality and autonomous behavior through conceptual models that show how embodied agents may adapt themselves toward critical points. We propose to exploit maximum entropy models and their formal descriptions of indicators of criticality to present a learning model that drives generic agents toward critical points. Specifically, we derive such a learning model in an embodied Boltzmann machine by implementing a gradient ascent rule that maximizes the heat capacity of the controller in order to make the network maximally sensitive to external perturbations. We test and corroborate the model by implementing an embodied agent in the Mountain Car benchmark test, which is controlled by a Boltzmann machine that adjusts its weights according to the model. We find that the neural controller reaches an apparent point of criticality, which coincides with a transition point of the behavior of the agent between two regimes of behavior, maximizing the synergistic information between its sensors and the combination of hidden and motor neurons. Finally, we discuss the potential of our learning model to answer questions about the connection between criticality and the capabilities of living systems to autonomously generate intrinsic constraints on their behavior. We suggest that these "critical agents" are able to acquire flexible behavioral patterns that are useful for the development of successful strategies in different contexts.Research was supported in part by the Spanish National Programme for Fostering Excellence in Scientific and Technical Research project PSI2014-62092-EXP and by the project TIN2016-80347-R funded by the Spanish Ministry of Economy and Competitiveness. MA was supported by the UPV/EHU postdoctoral training program ESPDOC17/17
    • …
    corecore