430 research outputs found

    Methodology and Algorithms for Pedestrian Network Construction

    Get PDF
    With the advanced capabilities of mobile devices and the success of car navigation systems, interest in pedestrian navigation systems is on the rise. A critical component of any navigation system is a map database which represents a network (e.g., road networks in car navigation systems) and supports key functionality such as map display, geocoding, and routing. Road networks, mainly due to the popularity of car navigation systems, are well defined and publicly available. However, in pedestrian navigation systems, as well as other applications including urban planning and physical activities studies, road networks do not adequately represent the paths that pedestrians usually travel. Currently, there are no techniques to automatically construct pedestrian networks, impeding research and development of applications requiring pedestrian data. This coupled with the increased demand for pedestrian networks is the prime motivation for this dissertation which is focused on development of a methodology and algorithms that can construct pedestrian networks automatically. A methodology, which involves three independent approaches, network buffering (using existing road networks), collaborative mapping (using GPS traces collected by volunteers), and image processing (using high-resolution satellite and laser imageries) was developed. Experiments were conducted to evaluate the pedestrian networks constructed by these approaches with a pedestrian network baseline as a ground truth. The results of the experiments indicate that these three approaches, while differing in complexity and outcome, are viable for automatically constructing pedestrian networks

    Algorithms for learning from spatial and mobility data

    Get PDF
    Data from the numerous mobile devices, location-based applications, and collection sensors used currently can provide important insights about human and natural processes. These insights can inform decision making in designing and optimising in frastructure such as transportation or energy. However, extracting patterns related to spatial properties is challenging due to the large quantity of the data produced and the complexity of the processes it describes. We propose scalable, multi-resolution approximation and heuristic algorithms that make use of spatial proximity properties to solve fundamental data mining and optimisation problems with a better running time and accuracy. We observe that abstracting from individual data points and working with units of neighbouring points based on various measures on similarity, improves computational efficiency and diminishes the effects of noise and overfitting. We consider applications in: mobility data compression, transit network planning, and solar power output prediction. Firstly, in order to understand transportation needs, it is essential to have efficient ways to represent large amounts of travel data. In analysing spatial trajectories (for example taxis travelling in a city), one of the main challenges is computing distances between trajectories efficiently; due to their size and complexity this task is computationally expensive. We build data structures and algorithms to sketch trajectory data that make queries such as distance computation, nearest neighbour search and clustering, which are key to finding mobility patterns, more computationally efficient. We use locality sensitive hashing, a technique that associates similar objects to the same hash. Secondly, to build efficient infrastructure it is necessary to satisfy travel demand by placing resources optimally. This is difficult due to external constraints (such as limits on budget) and the complexity of existing road networks that allow for a large number of candidate locations. For this purpose, we present heuristic algorithms for efficient transit network design with a case study on cycling lane placement. The heuristic is based on a new type of clustering by projection, that is both computationally efficient and gives good results in practice. Lastly, we devise a novel method to forecast solar power output based on numerical weather predictions, clear sky predictions and persistence data. The ensemble of a multivariate linear regression model, support vector machines model, and an artificial neural network gives more accurate predictions than any of the individual models. Analysing the performance of the models in a suite of frameworks reveals that building separate models for each self-contained area based on weather patterns gives a better accuracy than a single model that predicts the total. The ensemble can be further improved by giving performance-based weights to the individual models. This suggests that the models identify different patterns in the data, which motivated the choice of an ensemble architecture

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: vehicular ad-hoc networks, security and caching, TCP in ad-hoc networks and emerging applications. It is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Towards efficacy and efficiency in sparse delay tolerant networks

    Get PDF
    The ubiquitous adoption of portable smart devices has enabled a new way of communication via Delay Tolerant Networks (DTNs), whereby messages are routed by the personal devices carried by ever-moving people. Although a DTN is a type of Mobile Ad Hoc Network (MANET), traditional MANET solutions are ill-equipped to accommodate message delivery in DTNs due to the dynamic and unpredictable nature of people\u27s movements and their spatio-temporal sparsity. More so, such DTNs are susceptible to catastrophic congestion and are inherently chaotic and arduous. This manuscript proposes approaches to handle message delivery in notably sparse DTNs. First, the ChitChat system [69] employs the social interests of individuals participating in a DTN to accurately model multi-hop relationships and to make opportunistic routing decisions for interest-annotated messages. Second, the ChitChat system is hybridized [70] to consider both social context and geographic information for learning the social semantics of locations so as to identify worthwhile routing opportunities to destinations and areas of interest. Network density analyses of five real-world datasets is conducted to identify sparse datasets on which to conduct simulations, finding that commonly-used datasets in past DTN research are notably dense and well connected, and suggests two rarely used datasets are appropriate for research into sparse DTNs. Finally, the Catora system is proposed to address congestive-driven degradation of service in DTNs by accomplishing two simultaneous tasks: (i) expedite the delivery of higher quality messages by uniquely ordering messages for transfer and delivery, and (ii) avoid congestion through strategic buffer management and message removal. Through dataset-driven simulations, these systems are found to outperform the state-of-the-art, with ChitChat facilitating delivery in sparse DTNs and Catora unencumbered by congestive conditions --Abstract, page iv

    Intelligent Tourist Routes

    Get PDF
    A maior parte das pessoas gosta de viajar e o Porto foi eleita a cidade da Europa mais interessante para visitar em 2019. Com grande potencial de atratividade, o Porto conta com infindáveis opções de rotas turísticas. Investigações recentes mostram que um operador eficiente de viagens não só deve ter em conta as necessidades e constrangimentos do utilizador, mas também permitir algum grau de livre exploração da cidade, adaptando a oferta de acordo com as preferências do utilizador. A imagem global do contexto é um bom ponto de partida para uma viagem memorável. Nesta dissertação pretende-se desenvolver sistema inteligente capaz de maximizar a satisfação do visitante, criando percursos dinâmicos e personalizados em função de preferências e interesses dos utilizadores. Estes serão aferidos diretamente através de técnicas modernas de segmentação e descoberta de perfil e indiretamente através da pontuação atribuída pelos utilizadores a sets de fotografias (normais e 360) dos locais de interesse. Ao longo do percurso o utilizador poderá dar feedback sobre os locais de interesse sugeridos por forma a potenciar a aprendizagem do sistema

    Global connectivity architecture of mobile personal devices

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 193-207).The Internet's architecture, designed in the days of large, stationary computers tended by technically savvy and accountable administrators, fails to meet the demands of the emerging ubiquitous computing era. Nontechnical users now routinely own multiple personal devices, many of them mobile, and need to share information securely among them using interactive, delay-sensitive applications.Unmanaged Internet Architecture (UIA) is a novel, incrementally deployable network architecture for modern personal devices, which reconsiders three architectural cornerstones: naming, routing, and transport. UIA augments the Internet's global name system with a personal name system, enabling users to build personal administrative groups easily and intuitively, to establish secure bindings between his devices and with other users' devices, and to name his devices and his friends much like using a cell phone's address book. To connect personal devices reliably, even while mobile, behind NATs or firewalls, or connected via isolated ad hoc networks, UIA gives each device a persistent, location-independent identity, and builds an overlay routing service atop IP to resolve and route among these identities. Finally, to support today's interactive applications built using concurrent transactions and delay-sensitive media streams, UIA introduces a new structured stream transport abstraction, which solves the efficiency and responsiveness problems of TCP streams and the functionality limitations of UDP datagrams. Preliminary protocol designs and implementations demonstrate UIA's features and benefits. A personal naming prototype supports easy and portable group management, allowing use of personal names alongside global names in unmodified Internet applications. A prototype overlay router leverages the naming layer's social network to provide efficient ad hoc connectivity in restricted but important common-case scenarios.(cont) Simulations of more general routing protocols--one inspired by distributed hash tables, one based on recent compact routing theory--explore promising generalizations to UIA's overlay routing. A library-based prototype of UIA's structured stream transport enables incremental deployment in either OS infrastructure or applications, and demonstrates the responsiveness benefits of the new transport abstraction via dynamic prioritization of interactive web downloads. Finally, an exposition and experimental evaluation of NAT traversal techniques provides insight into routing optimizations useful in UIA and elsewhere.by Bryan Alexander Ford.Ph.D

    Mobile phone technology as an aid to contemporary transport questions in walkability, in the context of developing countries

    Get PDF
    The emerging global middle class, which is expected to double by 2050 desires more walkable, liveable neighbourhoods, and as distances between work and other amenities increases, cities are becoming less monocentric and becoming more polycentric. African cities could be described as walking cities, based on the number of people that walk to their destinations as opposed to other means of mobility but are often not walkable. Walking is by far the most popular form of transportation in Africa’s rapidly urbanising cities, although it is not often by choice rather a necessity. Facilitating this primary mode, while curbing the growth of less sustainable mobility uses requires special attention for the safety and convenience of walking in view of a Global South context. In this regard, to further promote walking as a sustainable mobility option, there is a need to assess the current state of its supporting infrastructure and begin giving it higher priority, focus and emphasis. Mobile phones have emerged as a useful alternative tool to collect this data and audit the state of walkability in cities. They eliminate the inaccuracies and inefficiencies of human memories because smartphone sensors such as GPS provides information with accuracies within 5m, providing superior accuracy and precision compared to other traditional methods. The data is also spatial in nature, allowing for a range of possible applications and use cases. Traditional inventory approaches in walkability often only revealed the perceived walkability and accessibility for only a subset of journeys. Crowdsourcing the perceived walkability and accessibility of points of interest in African cities could address this, albeit aspects such as ease-of-use and road safety should also be considered. A tool that crowdsources individual pedestrian experiences; availability and state of pedestrian infrastructure and amenities, using state-of-the-art smartphone technology, would over time also result in complete surveys of the walking environment provided such a tool is popular and safe. This research will illustrate how mobile phone applications currently in the market can be improved to offer more functionality that factors in multiple sensory modalities for enhanced visual appeal, ease of use, and aesthetics. The overarching aim of this research is, therefore, to develop the framework for and test a pilot-version mobile phone-based data collection tool that incorporates emerging technologies in collecting data on walkability. This research project will assess the effectiveness of the mobile application and test the technical capabilities of the system to experience how it operates within an existing infrastructure. It will continue to investigate the use of mobile phone technology in the collection of user perceptions of walkability, and the limitations of current transportation-based mobile applications, with the aim of developing an application that is an improvement to current offerings in the market. The prototype application will be tested and later piloted in different locations around the globe. Past studies are primarily focused on the development of transport-based mobile phone applications with basic features and limited functionality. Although limited progress has been made in integrating emerging advanced technologies such as Augmented Reality (AR), Machine Learning (ML), Big Data analytics, amongst others into mobile phone applications; what is missing from these past examples is a comprehensive and structured application in the transportation sphere. In turn, the full research will offer a broader understanding of the iii information gathered from these smart devices, and how that large volume of varied data can be better and more quickly interpreted to discover trends, patterns, and aid in decision making and planning. This research project attempts to fill this gap and also bring new insights, thus promote the research field of transportation data collection audits, with particular emphasis on walkability audits. In this regard, this research seeks to provide insights into how such a tool could be applied in assessing and promoting walkability as a sustainable and equitable mobility option. In order to get policy-makers, analysts, and practitioners in urban transport planning and provision in cities to pay closer attention to making better, more walkable places, appealing to them from an efficiency and business perspective is vital. This crowdsourced data is of great interest to industry practitioners, local governments and research communities as Big Data, and to urban communities and civil society as an input in their advocacy activities. The general findings from the results of this research show clear evidence that transport-based mobile phone applications currently available in the market are increasingly getting outdated and are not keeping up with new and emerging technologies and innovations. It is also evident from the results that mobile smartphones have revolutionised the collection of transport-related information hence the need for new initiatives to help take advantage of this emerging opportunity. The implications of these findings are that more attention needs to be paid to this niche going forward. This research project recommends that more studies, particularly on what technologies and functionalities can realistically be incorporated into mobile phone applications in the near future be done as well as on improving the hardware specifications of mobile phone devices to facilitate and support these emerging technologies whilst keeping the cost of mobile devices as low as possible
    corecore