3 research outputs found

    ๊ณ„์ธต ๊ฐ•ํ™” ํ•™์Šต์—์„œ์˜ ํƒํ—˜์  ํ˜ผํ•ฉ ํƒ์ƒ‰

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2020. 8. ๋ฌธ๋ณ‘๋กœ.Balancing exploitation and exploration is a great challenge in many optimization problems. Evolutionary algorithms, such as evolutionary strategies and genetic algorithms, are algorithms inspired by biological evolution. They have been used for various optimization problems, such as combinatorial optimization and continuous optimization. However, evolutionary algorithms lack fine-tuning near local optima; in other words, they lack exploitation power. This drawback can be overcome by hybridization. Hybrid genetic algorithms, or memetic algorithms, are successful examples of hybridization. Although the solution space is exponentially vast in some optimization problems, these algorithms successfully find satisfactory solutions. In the deep learning era, the problem of exploitation and exploration has been relatively neglected. In deep reinforcement learning problems, however, balancing exploitation and exploration is more crucial than that in problems with supervision. Many environments in the real world have an exponentially wide state space that must be explored by agents. Without sufficient exploration power, agents only reveal a small portion of the state space and end up with seeking only instant rewards. In this thesis, a hybridization method is proposed which contains both gradientbased policy optimization with strong exploitation power and evolutionary policy optimization with strong exploration power. First, the gradient-based policy optimization and evolutionary policy optimization are analyzed in various environments. The results demonstrate that evolutionary policy optimization is robust for sparse rewards but weak for instant rewards, whereas gradient-based policy optimization is effective for instant rewards but weak for sparse rewards. This difference between the two optimizations reveals the potential of hybridization in policy optimization. Then, a hybrid search is suggested in the framework of hierarchical reinforcement learning. The results demonstrate that the hybrid search finds an effective agent for complex environments with sparse rewards thanks to its balanced exploitation and exploration.๋งŽ์€ ์ตœ์ ํ™” ๋ฌธ์ œ์—์„œ ํƒ์‚ฌ์™€ ํƒํ—˜์˜ ๊ท ํ˜•์„ ๋งž์ถ”๋Š” ๊ฒƒ์€ ๋งค์šฐ ์ค‘์š”ํ•œ ๋ฌธ์ œ์ด๋‹ค. ์ง„ํ™” ์ „๋žต๊ณผ ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ๊ฐ™์€ ์ง„ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ž์—ฐ์—์„œ์˜ ์ง„ํ™”์—์„œ ์˜๊ฐ์„ ์–ป์€ ๋ฉ”ํƒ€ํœด๋ฆฌ์Šคํ‹ฑ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด๋‹ค. ์ด๋“ค์€ ์กฐํ•ฉ ์ตœ์ ํ™”, ์—ฐ์† ์ตœ์ ํ™”์™€ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ์ตœ์ ํ™” ๋ฌธ์ œ๋ฅผ ํ’€๊ธฐ ์œ„ํ•ด ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ํ•˜์ง€๋งŒ ์ง„ํ™” ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ง€์—ญ ์ตœ์ ํ•ด ๊ทผ์ฒ˜์—์„œ์˜ ๋ฏธ์„ธ ์กฐ์ •, ์ฆ‰ ํƒ์‚ฌ์— ์•ฝํ•œ ํŠน์„ฑ์ด ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ฒฐ์ ํ•จ์€ ํ˜ผํ•ฉํ™”๋ฅผ ํ†ตํ•ด ๊ทน๋ณตํ•  ์ˆ˜ ์žˆ๋‹ค. ํ˜ผํ•ฉ ์œ ์ „ ์•Œ๊ณ ๋ฆฌ์ฆ˜, ํ˜น์€ ๋ฏธ๋ฏธํ‹ฑ ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ์„ฑ๊ณต์ ์ธ ํ˜ผํ•ฉํ™”์˜ ์‚ฌ๋ก€์ด๋‹ค. ์ด๋Ÿฌํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ตœ์ ํ™” ๋ฌธ์ œ์˜ ํ•ด ๊ณต๊ฐ„์ด ๊ธฐํ•˜๊ธ‰์ˆ˜์ ์œผ๋กœ ๋„“๋”๋ผ๋„ ์„ฑ๊ณต์ ์œผ๋กœ ๋งŒ์กฑ์Šค๋Ÿฌ์šด ํ•ด๋ฅผ ์ฐพ์•„๋‚ธ๋‹ค. ํ•œํŽธ ์‹ฌ์ธต ํ•™์Šต์˜ ์‹œ๋Œ€์—์„œ, ํƒ์‚ฌ์™€ ํƒํ—˜์˜ ๊ท ํ˜•์„ ๋งž์ถ”๋Š” ๋ฌธ์ œ๋Š” ์ข…์ข… ๋ฌด์‹œ๋˜์—ˆ๋‹ค. ํ•˜์ง€๋งŒ ์‹ฌ์ธต ๊ฐ•ํ™”ํ•™์Šต์—์„œ๋Š” ํƒ์‚ฌ์™€ ํƒํ—˜์˜ ๊ท ํ˜•์„ ๋งž์ถ”๋Š” ์ผ์€ ์ง€๋„ํ•™์Šต์—์„œ๋ณด๋‹ค ํ›จ์”ฌ ๋” ์ค‘์š”ํ•˜๋‹ค. ๋งŽ์€ ์‹ค์ œ ์„ธ๊ณ„์˜ ํ™˜๊ฒฝ์€ ๊ธฐํ•˜๊ธ‰์ˆ˜์ ์œผ๋กœ ํฐ ์ƒํƒœ ๊ณต๊ฐ„์„ ๊ฐ€์ง€๊ณ  ์žˆ๊ณ  ์—์ด์ „ํŠธ๋Š” ์ด๋ฅผ ํƒํ—˜ํ•ด์•ผ๋งŒ ํ•œ๋‹ค. ์ถฉ๋ถ„ํ•œ ํƒํ—˜ ๋Šฅ๋ ฅ์ด ์—†์œผ๋ฉด ์—์ด์ „ํŠธ๋Š” ์ƒํƒœ ๊ณต๊ฐ„์˜ ๊ทนํžˆ ์ผ๋ถ€๋งŒ์„ ๋ฐํ˜€๋‚ด์–ด ๊ฒฐ๊ตญ ์ฆ‰๊ฐ์ ์ธ ๋ณด์ƒ๋งŒ ํƒํ•˜๊ฒŒ ๋  ๊ฒƒ์ด๋‹ค. ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ๊ฐ•ํ•œ ํƒ์‚ฌ ๋Šฅ๋ ฅ์„ ๊ฐ€์ง„ ๊ทธ๋ ˆ๋””์–ธํŠธ ๊ธฐ๋ฐ˜ ์ •์ฑ… ์ตœ์ ํ™”์™€ ๊ฐ•ํ•œ ํƒํ—˜ ๋Šฅ๋ ฅ์„ ๊ฐ€์ง„ ์ง„ํ™”์  ์ •์ฑ… ์ตœ์ ํ™”๋ฅผ ํ˜ผํ•ฉํ•˜๋Š” ๊ธฐ๋ฒ•์„ ์ œ์‹œํ•  ๊ฒƒ์ด๋‹ค. ์šฐ์„  ๊ทธ๋ ˆ๋””์–ธํŠธ ๊ธฐ๋ฐ˜ ์ •์ฑ… ์ตœ์ ํ™”์™€ ์ง„ํ™”์  ์ •์ฑ… ์ตœ์ ํ™”๋ฅผ ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ์—์„œ ๋ถ„์„ํ•œ๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ๊ทธ๋ ˆ๋””์–ธํŠธ ๊ธฐ๋ฐ˜ ์ •์ฑ… ์ตœ์ ํ™”๋Š” ์ฆ‰๊ฐ์  ๋ณด์ƒ์— ํšจ๊ณผ์ ์ด์ง€๋งŒ ๋ณด์ƒ์˜ ๋ฐ€๋„๊ฐ€ ๋‚ฎ์„๋•Œ ์ทจ์•ฝํ•œ ๋ฐ˜๋ฉด ์ง„ํ™”์  ์ •์ฑ… ์ตœ์ ํ™”๊ฐ€ ๋ฐ€๋„๊ฐ€ ๋‚ฎ์€ ๋ณด์ƒ์— ๋Œ€ํ•ด ๊ฐ•ํ•˜์ง€๋งŒ ์ฆ‰๊ฐ์ ์ธ ๋ณด์ƒ์— ๋Œ€ํ•ด ์ทจ์•ฝํ•˜๋‹ค๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค. ๋‘ ๊ฐ€์ง€ ์ตœ์ ํ™”์˜ ํŠน์ง• ์ƒ ์ฐจ์ด์ ์ด ํ˜ผํ•ฉ์  ์ •์ฑ… ์ตœ์ ํ™”์˜ ๊ฐ€๋Šฅ์„ฑ์„ ๋ณด์—ฌ์ค€๋‹ค. ๊ทธ๋ฆฌ๊ณ  ๊ณ„์ธต์  ๊ฐ•ํ™” ํ•™์Šต ํ”„๋ ˆ์ž„์›Œํฌ์—์„œ์˜ ํ˜ผํ•ฉ ํƒ์ƒ‰ ๊ธฐ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ํ˜ผํ•ฉ ํƒ์ƒ‰ ๊ธฐ๋ฒ•์ด ๊ท ํ˜•์žกํžŒ ํƒ์‚ฌ์™€ ํƒํ—˜ ๋•๋ถ„์— ๋ฐ€๋„๊ฐ€ ๋‚ฎ์€ ๋ณด์ƒ์„ ์ฃผ๋Š” ๋ณต์žกํ•œ ํ™˜๊ฒฝ์—์„œ ํšจ๊ณผ์ ์ธ ์—์ด์ „ํŠธ๋ฅผ ์ฐพ์•„๋‚ธ ๋‹ค๋Š” ๊ฒƒ์„ ๋ณด์—ฌ์ค€๋‹ค.I. Introduction 1 II. Background 6 2.1 Evolutionary Computations 6 2.1.1 Hybrid Genetic Algorithm 7 2.1.2 Evolutionary Strategy 9 2.2 Hybrid Genetic Algorithm Example: Brick Layout Problem 10 2.2.1 Problem Statement 11 2.2.2 Hybrid Genetic Algorithm 11 2.2.3 Experimental Results 14 2.2.4 Discussion 15 2.3 Reinforcement Learning 16 2.3.1 Policy Optimization 19 2.3.2 Proximal Policy Optimization 21 2.4 Neuroevolution for Reinforcement Learning 23 2.5 Hierarchical Reinforcement Learning 25 2.5.1 Option-based HRL 26 2.5.2 Goal-based HRL 27 2.5.3 Exploitation versus Exploration 27 III. Understanding Features of Evolutionary Policy Optimizations 29 3.1 Experimental Setup 31 3.2 Feature Analysis 32 3.2.1 Convolution Filter Inspection 32 3.2.2 Saliency Map 36 3.3 Discussion 40 3.3.1 Behavioral Characteristics 40 3.3.2 ES Agent without Inputs 42 IV. Hybrid Search for Hierarchical Reinforcement Learning 44 4.1 Method 45 4.2 Experimental Setup 47 4.2.1 Environment 47 4.2.2 Network Architectures 50 4.2.3 Training 50 4.3 Results 51 4.3.1 Comparison 51 4.3.2 Experimental Results 53 4.3.3 Behavior of Low-Level Policy 54 4.4 Conclusion 55 V. Conclusion 56 5.1 Summary 56 5.2 Future Work 57 Bibliography 58Docto

    Design of decorative 3D models: from geodesic ornaments to tangible assemblies

    Get PDF
    L'obiettivo di questa tesi รจ sviluppare strumenti utili per creare opere d'arte decorative digitali in 3D. Uno dei processi decorativi piรน comunemente usati prevede la creazione di pattern decorativi, al fine di abbellire gli oggetti. Questi pattern possono essere dipinti sull'oggetto di base o realizzati con l'applicazione di piccoli elementi decorativi. Tuttavia, la loro realizzazione nei media digitali non รจ banale. Da un lato, gli utenti esperti possono eseguire manualmente la pittura delle texture o scolpire ogni decorazione, ma questo processo puรฒ richiedere ore per produrre un singolo pezzo e deve essere ripetuto da zero per ogni modello da decorare. D'altra parte, gli approcci automatici allo stato dell'arte si basano sull'approssimazione di questi processi con texturing basato su esempi o texturing procedurale, o con sistemi di riproiezione 3D. Tuttavia, questi approcci possono introdurre importanti limiti nei modelli utilizzabili e nella qualitร  dei risultati. Il nostro lavoro sfrutta invece i recenti progressi e miglioramenti delle prestazioni nel campo dell'elaborazione geometrica per creare modelli decorativi direttamente sulle superfici. Presentiamo una pipeline per i pattern 2D e una per quelli 3D, e dimostriamo come ognuna di esse possa ricreare una vasta gamma di risultati con minime modifiche dei parametri. Inoltre, studiamo la possibilitร  di creare modelli decorativi tangibili. I pattern 3D generati possono essere stampati in 3D e applicati a oggetti realmente esistenti precedentemente scansionati. Discutiamo anche la creazione di modelli con mattoncini da costruzione, e la possibilitร  di mescolare mattoncini standard e mattoncini custom stampati in 3D. Ciรฒ consente una rappresentazione precisa indipendentemente da quanto la voxelizzazione sia approssimativa. I principali contributi di questa tesi sono l'implementazione di due diverse pipeline decorative, un approccio euristico alla costruzione con mattoncini e un dataset per testare quest'ultimo.The aim of this thesis is to develop effective tools to create digital decorative 3D artworks. Real-world art often involves the use of decorative patterns to enrich objects. These patterns can be painted on the base or might be realized with the application of small decorative elements. However, their creation in digital media is not trivial. On the one hand, users can manually perform texture paint or sculpt each decoration, in a process that can take hours to produce a single piece and needs to be repeated from the ground up for every model that needs to be decorated. On the other hand, automatic approaches in state of the art rely on approximating these processes with procedural or by-example texturing or with 3D reprojection. However, these approaches can introduce significant limitations in the models that can be used and in the quality of the results. Instead, our work exploits the recent advances and performance improvements in the geometry processing field to create decorative patterns directly on surfaces. We present a pipeline for 2D and one for 3D patterns and demonstrate how each of them can recreate a variety of results with minimal tweaking of the parameters. Furthermore, we investigate the possibility of creating decorative tangible models. The 3D patterns we generate can be 3D printed and applied to previously scanned real-world objects. We also discuss the creation of models with standard building bricks and the possibility of mixing standard and custom 3D-printed bricks. This allows for a precise representation regardless of the coarseness of the voxelization. The main contributions of this thesis are the implementation of two different decorative pipelines, a heuristic approach to brick construction, and a dataset to test the latter

    8th. International congress on archaeology computer graphica. Cultural heritage and innovation

    Full text link
    El lema del Congreso es: 'Documentaciรณn 3D avanzada, modelado y reconstrucciรณn de objetos patrimoniales, monumentos y sitios.Invitamos a investigadores, profesores, arqueรณlogos, arquitectos, ingenieros, historiadores de arte... que se ocupan del patrimonio cultural desde la arqueologรญa, la informรกtica grรกfica y la geomรกtica, a compartir conocimientos y experiencias en el campo de la Arqueologรญa Virtual. La participaciรณn de investigadores y empresas de prestigio serรก muy apreciada. Se ha preparado un atractivo e interesante programa para participantes y visitantes.Lerma Garcรญa, JL. (2016). 8th. International congress on archaeology computer graphica. Cultural heritage and innovation. Editorial Universitat Politรจcnica de Valรจncia. http://hdl.handle.net/10251/73708EDITORIA
    corecore