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Abstract

Balancing exploitation and exploration is a great challenge in many optimization
problems. Evolutionary algorithms, such as evolutionary strategies and genetic al-
gorithms, are algorithms inspired by biological evolution. They have been used for
various optimization problems, such as combinatorial optimization and continuous
optimization. However, evolutionary algorithms lack fine-tuning near local optima;
in other words, they lack exploitation power. This drawback can be overcome by
hybridization. Hybrid genetic algorithms, or memetic algorithms, are successful ex-
amples of hybridization. Although the solution space is exponentially vast in some
optimization problems, these algorithms successfully find satisfactory solutions.

In the deep learning era, the problem of exploitation and exploration has been
relatively neglected. In deep reinforcement learning problems, however, balancing
exploitation and exploration is more crucial than that in problems with supervision.
Many environments in the real world have an exponentially wide state space that
must be explored by agents. Without sufficient exploration power, agents only reveal
a small portion of the state space and end up with seeking only instant rewards.

In this thesis, a hybridization method is proposed which contains both gradient-
based policy optimization with strong exploitation power and evolutionary policy
optimization with strong exploration power. First, the gradient-based policy optimiza-
tion and evolutionary policy optimization are analyzed in various environments. The
results demonstrate that evolutionary policy optimization is robust for sparse rewards
but weak for instant rewards, whereas gradient-based policy optimization is effec-
tive for instant rewards but weak for sparse rewards. This difference between the two

optimizations reveals the potential of hybridization in policy optimization. Then, a



hybrid search is suggested in the framework of hierarchical reinforcement learning.
The results demonstrate that the hybrid search finds an effective agent for complex

environments with sparse rewards thanks to its balanced exploitation and exploration.

Keywords : Deep reinforcement learning, Evolutionary computation, hierarchical
reinforcement learning, Neuroevolution

Student Number : 2013-20845
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Chapter 1

Introduction

Machine learning has achieved remarkable success with developments in hardware
and various algorithms. One of the most successful approaches is deep reinforcement
learning, and a number of different approaches have been proposed for reinforcement
learning with neural networks. Deep Q-learning [|31]], the policy gradient method [30]
and trust region method [38]] are examples of successful algorithms.

However, there has always been a significant problem that involves balancing the
algorithm’s exploitation and exploration in reinforcement learning. Exploitation and
exploration are two criteria in searching for a solution in the problem space. Exploita-
tion consists of probing a limited region, usually neighborhoods or promising area,
of the given search space. It is also called a local search of the problem space. Ex-
ploration, in contrast, consists of probing an even wider region of the problem space.
It tends to find a solution from a region not yet discovered; however, the region is
not sufficiently refined. The concept of the exploitation exploration trade-off is used
in optimization. Figure [1| presents a visual example to illustrate exploitation and ex-
ploration. In this figure, the curve represents the graph of function f(x), while circle
and square points represent inputs. The red circle points are moved toward neighbor-
ing points that have smaller values. By repeating these operations, a point is moved
to a region in which all neighbors have larger function values, that is, a local opti-
mum. This criterion refers to exploitation of optimization. However, as displayed in
Figure [T} there may exist promising areas other than the local optimum. Searching

with a local search never leads to the discovery of the areas, however, because it only



Exploitation

Figure 1: Exploitation and exploration

moves the probe to a better neighboring area, called hill-climbing. Blue square points,
in contrast, are moved to an entirely new area without considering their original lo-
cation. This criterion refers to exploration of optimization. Exploration may cause a
point to escape from the well of the function, leading to areas with better optima.
However, the points searched by exploration are rarely close to local optima, as they
are not yet sufficiently tuned. There is also no guarantee that repeating exploration
searches moves points to local optima. Therefore, to find the global optimum or a
satisfactory local optimum, balancing exploitation and exploration is critical.

Many metaheuristic algorithms are challenged by the problem of balancing ex-
ploitation and exploration. One method to overcome this problem involves mixing,
or hybridizing, two optimization algorithms that have different strategies. In the ex-
ample in Figure [} if an algorithm performs both exploration and exploitation, the
global optimum can be found in a reasonable time. A hybrid genetic algorithm (GA),
or a memetic algorithm [32], is an example of a hybrid optimization algorithm. Many
hybrid GAs successfully produce good solutions for both benchmark problems [5]]

and real-world problems [26].



(a) (b)

Figure 2: Exploitation and exploration in reinforcement learning

In reinforcement learning, exploitation and exploration are used to describe a strat-
egy for changing how an agent reacts to the given environment, namely the state
space. If all states of the environment are not known in advance, an agent must de-
termine the states from experience. One strategy is to use an agent who acts with a
small difference from the previous agent to maximize the rewards to exploit the state
space. An agent that follows immediate rewards can be found by the exploitation
strategy, but will attempt to avoid the uncertainty of unseen states. However, in many
environments, there exist sparse rewards that cannot be found by slight changes in the
current policy. Instead, they can only be discovered through new policies that differ
significantly from the current policies. Unseen states can thus only be visited with an
entirely new policy. Figure 2 presents an example. Suppose that an agent is rewarded
when it approaches the goal (red square). Its best choice is to move the red arrow in
the left figure, which is achieved by exploitation. However, there exists a wall that
prevents the agent from reaching the goal. To reach the goal, the agent must take a

detour, such as the green arrow in the right figure. The agent with only exploitation



never finds this detour; it may find the detour with exploration. Many experience-
based (i.e., model-free) reinforcement learning algorithms are challenged by the ex-
ploration problem. Different types of methods are adopted, such as e-greedy [48] and
rewarding for uncertainty [12]. However, especially in the deep learning era, the ma-
jority of algorithms tend to use gradient-based optimization. Gradient descent is an
algorithm to find a local minimum when a sufficiently small step size is given. There-
fore, when properly used, gradient descent has strong exploitation power; however, it
lacks exploration power. Gradient-based optimization for reinforcement learning usu-
ally has stronger exploitation power than exploration power. Occasionally, improving
exploitation power improves the agent [40], especially for immediate rewards. How-
ever, exploration becomes crucial in environments with sparse rewards.

Recent studies have suggested that some evolutionary approaches rival gradient-
based optimization algorithms [8}|44]]. GAs and evolutionary strategies display better
performance in many reinforcement tasks. Some studies have also suggested that
even a simple random search performs better than other policy optimization algo-
rithms in some tasks. Interestingly, while gradient-based policy optimization algo-
rithms demonstrate excellent performance in some tasks, they demonstrate poor per-
formance in other tasks for which evolutionary algorithms perform well. These tasks
are notorious for their reward sparsity [[25]. This suggests that gradient-based op-
timizations are not effective for sparse rewards, whereas evolutionary algorithms,
which are known for their exploration ability, are more effective in these environ-
ments.

The goal of this thesis is to propose an effective hybridization method for balanc-
ing exploitation and exploration in reinforcement learning. In Chapter 2 background
knowledge of evolutionary algorithms and reinforcement learning is introduced. A

real-world application of hybrid search is also presented to evaluate the importance



of domain knowledge in balancing exploitation and exploration. Then, in Chapter [3]
experiments are proposed to examine the effects of the characteristics of optimiza-
tion on the exploitation and exploration of environments. Due to the complexity of
reinforcement learning problems, methods for visual inspection and supplementary
experiments are suggested. Finally, in Chapter[d] a hybrid hierarchical reinforcement
learning (HRL) algorithm is suggested that is effective in environments that require

a strategy with both strong exploitation and exploration to obtain sufficient rewards.



Chapter 2

Background

2.1 Evolutionary Computations

Evolutionary computation (EC) algorithms are a family of optimization algorithms
inspired by the evolution of life. All individuals produce offspring that inherit genetic
information from their parents. Some individuals reproduce on their own, while other
individuals mate with others to produce offspring. While producing offspring, some
genes may undergo irregular changes due to internal or external causes, called muta-
tion. With these mechanisms, all living beings compete with each other according to
the law of the survival of the fittest, which is a fundamental law of evolution.

EC methods perform processes similar to those of biological evolution to optimize
their solutions. There are many types of EC algorithms, but all have two common

aspects, as described below.

* Population-based: EC algorithms maintain multiple (at least two) solutions and

manipulate them for optimization.

* Stochastic optimization: EC algorithms produce offspring in a stochastic way;

thus, updates of solutions become stochastic.

Some algorithms, such as the ant colony optimization and particle swarm optimiza-
tion, do not mimic evolution, but rather, other natural phenomena. However, these
algorithms are outside the scope of this thesis, whose focus is evolution-inspired al-

gorithms.



2.1.1 Hybrid Genetic Algorithm

Algorithm 1 Hybrid GA

In: number of chromosome n

In: Operators, select, crossover,mutate

In: Local optimization opt

Initialize the population p

repeatparents < select(p) children < crossover(parents) children <«
mutate(children) p < opt(children)

until stop condition

return the best in p

GAs are algorithms that are remarkably similar to evolution in nature. These algo-
rithms use some evolutionary processes, called operators, to imitate the mechanisms
of biological evolution. GAs select and use some of these operators for various pur-
poses. Basic operators include selection, crossover, and mutation. The selection oper-
ator is used to select individuals from a population for reproduction or survival, thus
generating the selection pressure of the algorithms. If the selection pressure is too
high, the algorithm may experience premature convergence, resulting in a suboptimal
solution. However, if the selection pressure is too low, progress is slower than neces-
sary. Using an appropriate selection pressure is critical for balancing exploration and
exploitation. Crossover is inspired by the crossover of chromosomes, or genetic ma-
terial in nature. This operator takes two or more solutions and combines them to form
new solutions. The purpose of crossover is to create a new solution while maintaining
the good traits, called schema, of parents. In terms of the problem space, crossover
usually limits the search space. For example, geometric crossover always produces
offspring on the line segment defined between two parents. Mutation is a method that
changes genes in a stochastic way, and it is the component that determines the explo-
ration power of algorithms. Sufficient mutation power is essential for maintaining the

genetic diversity of a population. Mutation should allow an algorithm to avoid local



Figure 3: Crossover and mutation in genetic algorithms

minima by preventing individuals in the population from becoming too similar. The
performance of GAs is determined by the representation of solutions and operator
selections. Because there is no panacea for all problems according to the No Free
Lunch theorem [52]], it is crucial to select the most appropriate representations and
operators.

Although GAs have proven to be a versatile approach for global optimization,
they do not perform well in some situations. Most GAs generate new solutions in a
stochastic way and are blind to the locality of the solutions. In terms of the prob-
lem space search, GA has weak exploitation power. Therefore, various methods of
hybridization have been proposed; that combine both GA and other exploitation al-
gorithms. One of the most common forms of hybrid GAs involves incorporating local
optimization in the GA loop [15]}, called memetic algorithms. Algorithm [I]describes
the basic framework of this type of hybrid GA. After performing mutation to off-
spring, a local optimization algorithm optimizes the offspring into a local optimum
[36]. With two algorithms, one effective in exploitation and the other effective in

exploration, the memetic algorithm performs well in various optimization tasks.



Algorithm 2 Simple (1+A) ES

In: number of children A
In: Sample deviation ¢
Initialize u
repeat
fori«+ 1toAdo
Sample €; ~ N(u,0)
F; + fitness(g;)
end for
Normalize F;
p— 7 Fig;
until stop condition
return u

2.1.2 Evolutionary Strategy

The evolutionary strategy (ES) is another EC algorithm, which has a different
mechanism from that of the GA. The ES is also a population-based algorithm that
maintains multiple solutions at the same time. However, unlike the GA, it does not di-
rectly sample offspring from parents with genetic operators. The ES usually encodes
parents into parameters of a distribution, where child solutions are sampled. The ES
is often represented as (4 +,A) — ES, which signifies that the algorithm maintains
u individuals, selects 6 parents, and generates A children. The plus (+) sign indi-
cates that a new population is generated by both the original and generated solutions,
while the comma (,) indicates that a new population is generated only by new solu-
tions. Algorithm [2| describes the basic framework of simple Gaussian (1 +A1) — ES
with fixed variance. It starts with one parent that has the mean of the distribution.
Then, it samples A solutions from the distribution and evaluates their fitness. Using
their fitness, u is updated to a new center, which may generate fitter samples. The ES
does not identify a single solution with good fitness; instead, it finds a distribution

with better expected fitness. This principle is similar to the concept of the search gra-



Figure 4: Assembling a 3D object with the LEGO®

dient [4]], which solves the gradient of distribution by sampling; however, it does not
use the gradient. Although there are many promising types of ESs, neuroevolution is

specifically examined in Chapter [2.4]

2.2 Hybrid Genetic Algorithm Example: Brick Lay-

out Problem

In this section, A real-world problem, LEGO® brick layout problem, is suggested
that can be solved by a hybrid GA to elucidate the balancing exploration and ex-
ploitation in optimization. LEGO® is a line of brick-shaped toys manufactured by
the LEGO® Group, and consists of bricks of a regular size and shape. The bricks can
be attached to one another to assemble three-dimensional objects. Determining a way
to assemble a 3D object with the LEGO® bricks can be divided into two steps. The
first step is to transform a given three-dimensional object into a voxelized model. The
second step, called the brick layout problem, involves assembling a voxelized object
with real bricks, which is the focus of this section.

Some studies have formulated this problem as a combinatorial optimization prob-
lem [17}|35]]. However, this optimization is nontrivial. The brick layout problem has
an exponentially large solution space and also involves balancing exploitation and

exploration.

’;r“‘-'! 'C':l- L ]
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2.2.1 Problem Statement

The brick layout problem is formulated as a combinatorial optimization problem.
The input of the problem is the voxelized model that is represented as a 3D binary
array, A solution to the problem corresponds to a brick layout, and the problem is
to minimize the penalty function. The penalty function is defined as the number of
connected components formed by the layout, and in case of a tie, the number of used
bricks is compared. The first goal is to increase the connectivity, and the second goal
is to increase the efficiency of the layout. The sizes of regular bricks are 1 x n and
2 x n, where n is either 1, 2, 4, 6, or 8. A brick could be rotated, but cannot be placed
diagonally. The layout is regarded as a graph to calculate the number of connected

components.

2.2.2 Hybrid Genetic Algorithm
Local Optimization

A domain-based greedy heuristic algorithm is used for local optimization. For each
layer, it first chooses a voxel and places a brick on that voxel in a greedy manner. All
types of bricks and all feasible arrangements are considered, and the one with the
largest score is selected. The algorithm repeats this step for every voxel in a layer,
and repeat the entire process for each layer. The score is defined in such a way that
maximizing the score of the arrangements may lead to minimizing the penalty of the
entire layout. The score is a weighted sum of three factors, and the factors used are

as follows.

¢ Cover factor evaluates the number of covered bricks and the score is doubled

when bricks are perpendicular.

11



* Size factor encourages the algorithm to use a larger brick providing more

chance of connections to the bricks in the above and below layers.
* Isolation factor is to minimize the number of isolated voxels.

After a significant number of experiments, the weights of the cover, size, and isolation

factors were 10, 1, and 20, respectively.

Hybrid Genetic Algorithm

Algorithm 3 Genetic algorithm

Initialize population
repeat
Select two parents parent 1, parent?2
of fspring <— Crossover(parent1, parent2)
Mutation(of fspring)
Repair(of fspring)
Replace one chromosome with of fspring
until stop condition

A hybrid genetic algorithm is proposed that consists of merge-split model and
boundary split mutation. Merge-split model is to merging bricks into a larger one, or
to split a brick into smaller ones This process is used to modify the solutions. The
merge operator merges two or more bricks into one big brick if possible, and the split
operator split a single brick into several 1x 1 bricks. With a brick layout, it is possible
to create several new solutions by splitting some bricks and merging them again with
various orders and various combinations. . The basic framework of the GA is depicted
in Algorithm [3] The hybrid GA is implemented with a 3000-generation steady-state

method with the following operators:
* Population: 128 chromosomes.

¢ Selection: a rank based roulette-wheel-selection.

12



¢ Crossover: one-line crossover [22]] and RectCrossover [35/ 43]].

e Mutation: boundary split mutation.

* Repair and Optimization: greedy heuristic in local optimization.

Boundary split mutation is the core concept in this algorithm that uses domain knowl-
edge of brick layout problem. Instead of splitting the bricks blindly, it is possible to
guide the operator to split only the bricks, which require modification. One way is
to split blocks near the boundary of the connected components. If a solution is not
connected and there exists more than one connected component, the space that di-
vides the bricks into multiple connected components is defined as the boundary of the
components. To connect the divided parts, adjacent bricks that are from the different
components need to be merged into a single brick. Since these set of bricks resides
near the boundary, choosing the bricks to split from this area might be promising to

improve connectivity.

Algorithm 4 Largest boundary split

1: function LARGESTBOUNDARYSPLIT(layer L, rate r)
2 B < set of all pairs of different connected components in L
3 Bricks < emptylist
4 for all (by,b,) in B do
5: S <— Bricks adjacent to the boundary between b; and b
6 Add the largest brick in S to Bricks
7 end for
8 Choose bricks in Bricks at rate r
9: Split the chosen bricks
10: end function

With this idea, Four different mutation algorithm were developed, namely largest
boundary split(LB), random boundary split(RB), largest boundary with neighbor split(LBN),
and random boundary with neighbor split(RBN). Algorithm [4|illustrates the mecha-

nism of the largest boundary split. It gathers the largest bricks from the boundaries

13



Table 1: Comparison of different mutations in the brick layout problem

Model || Rand | LB RB | LBN | RBN

lamp 1.00 1.00 1.00 1.00 1.00

1533.5 | 1516.7 | 1516.5 | 1523.8 | 1513.9
dragon 1.07 1.00 1.00 1.00 1.00

1733.7 | 1741.8 | 1726.3 | 1737.7 | 17334
lucy 1.27 1.06 1.00 1.00 1.00

800.3 | 802.2 | 798.37 | 8184 | 810.0
airboat || 107.26 | 123.27 | 118.73 | 152.77 | 150.13
2517.1 | 26279 | 2584.8 | 2639.0 | 2623.4
shuttle || 102.27 | 79.00 | 51.30 | 138.10 | 130.07
2322.8 | 2413.6 | 2336.7 | 2422.0 | 2400.3

and splits some of them with a given probability. Random boundary split works in a

similar way but gathers random bricks from the boundaries instead of the largest one.

2.2.3 [Experimental Results

The dataset consists of 17 different voxelized models. Five of them (armadillo,
bunny, dragon, happy, and lucy) are from the Stanford 3D scanning repositoryﬂ and
the rest are from data files maintained by John Burkardﬂ

Interestingly, different crossovers and mutations demonstrate different performance.
RectCrossover outperformed one-line crossover in general. In the case of the brick
layout problem, one-line crossover, which includes zigzag random walks, is suit-
able for perturbing a solution, but it is vulnerable to loss of a schema. In contrast,
RectCrossover will preserve the solution compared to the one-line crossover, because
it is less likely that straight lines of the rectangle cross huge bricks. The excellence

of RectCrossover over one-line crossover reveals that it is much more essential to

Ihttp://graphics.stanford.edu/data/3Dscanrep/
2http ://people.sc.fsu.edu/~Jburkardt/data/obj/obj.html
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preserve useful schemata for problem space search, which in turn better leads the
creation of new attractive schemata.

Five types of mutations are also compared. One selects bricks to split randomly,
and the others use LB, RB, LBN, and RBN mutation operators, respectively. Table
[T] presents the result of the experiments. The upper denotes the number of connected
components, and the lower indicates the number of bricks. RandomBoundarySplit
showed the best performance over other mutations. Since other mutation operators
choose bricks to split in a deterministic policy, these operators tend to split similar
bricks, which in turn generate solutions similar to their parents. It is interesting that
splitting the neighbors of boundary bricks did never improve the performance. In-
stead, it dropped the fitness even worse than the random mutation. This result points
out that it is enough to split only boundary bricks to connect the components. In
fact, this result is consistent with the result of the experiment on crossover operators.
Splitting neighbors of boundary bricks will perturb the solution even more than LB
or RB, end up destroying much of proper schema.

With the best operators of GA, RectCrossover, and RB mutation, and the best pa-
rameters for all models, overall experiments were conducted. For some models which
are hard to assemble, an algorithm that increases the thickness of the voxel structure
was adopted. After careful selection of operators, the hybrid GA managed to assem-

ble all voxelized models into single connected components.

2.2.4 Discussion

The hybrid algorithm of both greedy-based heuristic and a genetic algorithm could
assemble even the hardest models into one component without using an excessive
number of bricks nor expensive time resources. The optimization for the brick layout

problem shows that balancing exploitation-exploration in a problem needs a deep

15
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Figure 5: Example of MDP

understanding of domain knowledge. In solving the brick layout problem, domain-

specific operators and local optimization work critical parts.

2.3 Reinforcement Learning

Reinforcement learning is an area of machine learning that focuses on developing
an autonomous agent that takes actions in a given environment to maximize cumula-
tive rewards. Unlike supervised learning, input-output data pairs are not available, and
the agent attempts to learn the best strategy from information from the environment
or experience. Reinforcement learning can be applied to many difficult real-world
problems, such as gaming, robot controls, and self-driving vehicles. In reinforce-
ment learning, a given environment is modeled as a mathematical framework called

a Markov decision process (MDP).

-
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Some terminology and notation in MDP are introduced as follows. A state s in a
state space S is defined as a variable that captures all relevant information from both
the present and past. If a state s; is given at time ¢, past information is not required
because it is included in s;. The action space A is the set of all possible actions.
We then have the state transition probability matrix P,(s,s’) as the probability of
the next state s after taking action a in the current state s. The reward function R,(s)
denotes the expected reward of taking action a in state s. The discount factor y € [0, 1]
determines the present value of future rewards. It is adopted because delayed rewards
must be underestimated, considering the uncertainty. The MDP is defined by the
following five parameters, S, A, P, R, and Y. Figure[5|presents a graphical example of
the MDP. In an MDP, a policy ©t(als) is defined as the probability of taking an action
a in a given state s. The policy T generates a trajectory T, which is a sequence of states

and actions (s, ao,S1,d1,...). Trajectory T follows the distribution p(t):

T-1

p(t) = po(so) HPa,(St,StH)n(at’St)) (2.1

t=1

A partial trajectory from time ¢ is denoted rau,. Given trajectory T we can calculate the
cumulative reward over it. However, we generally use discounted cumulative rewards,

or returns G, instead of original cumulative rewards:
T-1
k
G(u) = ZYtJr Ray (St Stk1) (2.2)

k=0

With policy 7 and trajectory T, the value function Vy(s) is defined as the expected

return in state s given policy 7

Va(st) = Eqop(e)) [G(T) 5] (2.3)

17



Similarly, the action value function Qx(s,a) is defined as the expected return of taking

action a in state s and following 7:

Or(s,ar) = B o) [G(T)[51, 4] (2.4)

The goal of reinforcement learning is to predict the value function Vg(s) or to find
the policy m(a|s) that maximizes the expected return E[G]. There are two types of
reinforcement learning algorithms that differ based on the knowledge about the given
MDP; model-based reinforcement learning and model-free reinforcement learning. In
model-based reinforcement learning, all parameters of the MDP, that is (S, A, P,R,Y),
are revealed. Because all information of the MDP is known, model-based reinforce-

ment learning can be solved with the Bellman equation as follows:

Vi(st) = Egoms,.y Plr(s,ae) +YVa(si41)] (2.5)

Some dynamic programming algorithms, such as value iteration, Q-value iteration,
and policy iteration, use Bellman equation to determine the optimal policy ©T* of the
MDP. In contrast, in model-free reinforcement learning, the parameters of the MDP
are unknown. Estimating the value function can only be achieved from experience.
The focus of this thesis is on model-free reinforcement learning because it is difficult
to define a proper MDP for many problems, and it is often necessary to learn from
experience.

Reinforcement learning algorithms can also be categorized depending on the use
of the value function. Some algorithms, called value-based reinforcement learning al-
gorithms, estimate the value function to improve the policy. These algorithms usually
estimate the action-value function Q(s,a) and update the policy, which takes action

with a maximum Q(s, a) using greedy-based methods. Other algorithms, called policy
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optimization algorithms, do not estimate the value function but optimize the policy
directly. Value-based reinforcement learning is outside the scope of this thesis, whose

focus is on various policy optimizations.

2.3.1 Policy Optimization

A policy optimization method is a class of reinforcement learning methods that
do not maintain value models but directly search for the optimal policy. Let a policy
be parameterized by 6 and denoted m(als;0). Policy search methods search for the

optimal parameter 0" to maximize the expectation of returns:

0" = argmax J(0) = E; (1) [G(T)] (2.6)
0

The simplest approach for policy optimization is the policy gradient method [46].
The policy gradient method is a technique for deriving the gradient of the expected
return with respect to the model parameter 6, called the policy gradient, for gradi-
ent ascent optimization. The policy gradient with respect to 0 can be expressed as

follows:

Ve](e) = VGEINpe(‘c) [G(’C)] (2.7)
:Ve /peG(’C)d’E (2.8)
= / VopeG(t)dt (2.9)

Using log derivative properties, Vgpe(T) can be represented as follows:

Vepe(T) = Vope(T) (2.10)

(T)
Po(T)Velog pe(T) (2.11)
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The log function changes products in pg(t) into a summation as follows:

T-1
Volog pe(t) = Volog(po(so) | | Par(ses041)me(arls:)) (2.12)
t=1
T-1
= Vo) (logmo(ails:)) (2.13)
t=1
T-1
=Y Vplogmg(als;) (2.14)

1

_,
Il

The policy gradient can now be represented as follows:

T-1
VoI (6) / po()(S_ Velogma(ails:))G(x)d (2.15)

T =1

T—-1
= Eepo(r) (O VelogTa(arls:))G(t)] (2.16)

t=1

T—1

= Eno[() _ Vologma(a:|s:))G(7)] (2.17)

t=1

The expectation over trajectories in can be approximated with the Monte-
Carlo method with empirical trajectories. This Monte-Carlo policy gradient method
is called REINFORCE. Equation implies that as the reward increases, gradient
ascent updates the parameters so that the probability of the action increases.

The Monte Carlo policy gradient relies on empirical returns, which have a high
variance. To reduce the variance in empirical returns, we use a method called the
actor-critic algorithm [23]. Assume that G(T;) can be represented as the action-value
function Qx, (s;,a;). In the actor-critic algorithm, the action-value function is approx-
imated with Q(s,a|w) where w represents the model parameters. This can reduce the
high variance of empirical return.

Another way to reduce the variance is by adopting a baseline b(s). Baseline b(s)

is a function that is independent of the policy mg; therefore, its expectation becomes
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ZE€ro:

T—-1
E[() _ Velogma(ai|s:))b(s;)] =0 (2.18)

t=1

Subtracting the baseline from Qg (s, a;) in the policy gradient does not change the

expectation:

T-1
VoJ (8) = Ex,[(Y _ VologTe(ar|s:))(Qne (s, ar) — b(st)] (2.19)

t=1

One popular baseline function is the state value function Vg, (s;). The advantage func-

tion A, (s, a;) can be defined as follows:

Any(st,ar) = Ong (St,a1) — Vi (51) (2.20)

Using the advantage function instead of G retains the expectation in the policy gra-
dient while reducing the variance.

An algorithm that uses Q or V as an advantage function is called the advantage
actor-critic algorithm. The advantage actor-critic algorithm is implemented in several
ways, including asynchronous advantage actor-critic (A3C) [30] and synchronous

advantage actor-critic (A2C).

2.3.2 Proximal Policy Optimization

The policy gradient updates parameters with the gradient ascent method with ex-
pected returns. The gradient ascent method takes small steps in the parameter space,
aiming to achieve small changes in the corresponding policy. However, determining

the exact size of a small step is not a trivial problem. Because the policy space is not a
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simple Euclidean space, small steps in the parameter space may lead to large changes
in the policy space.

Trust region policy optimization (TRPO) offers a safe policy update algorithm that
guarantees monotonic policy improvements [38]. The principle idea of TRPO is to

optimize the surrogate function in a Kullback-Leibler (KL) divergence constraint.

We(at’St)

argmax Ecn, | )Anenl (se,a)]

) To,, (arst (2.21)

S.t. ]ETNTESOM [KL[TEGOM ) 750]] S 8

In (2.21]) inside expectation, the surrogate function is an approximation for obtaining

the current advantages with trajectories sampled from the old policy g ,, by impor-
tance sampling.
The constraint term can be changed into a penalty function by the Lagrange multi-

plier method to solve unconstrained optimization:

Aneold (Sl’ar) - BKL[TCGOM ) neH (222)

The Lagrange multiplier method ensures that there exists a proper 3 such that both
optimizations have the same optima. However, in practice, an appropriate 3 cannot be
easily determined, and experiments have demonstrated that using a fixed [ is insuf-
ficient. Therefore, TRPO solves constrained optimization; however, it has a complex

structure and is difficult to implement.
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Proximal policy optimization (PPO) is a simple version of TRPO that retains the

core principle of TRPO [40]. It also uses the surrogate function in TRPO:

B o (a|s;)
L(0) = Erom, [ 20 1o (2.23)
= Eron, [(B)A] (2.24)

Instead of solving constrained optimization, PPO simply clip the surrogate function

with a given hyperparameter as follows:
LHP(8) = Bowry  [min(r1(0)A;,clip(r:(8),1—¢,1+€)A,)] (2.25)

In practice, PPO uses not only surrogate function clipping, but also value function

clipping when training the baseline state value function:

LY = (Vo = Viarger) (2.26)

LY HP = min [LV7 (clip(Ve, Ve, — €, Vo, +€) — Vtargef)z] (2.27)

With this simple concept, PPO maintains the gradient step in a safe range without
complex methods. PPO can be easily implemented because it has no constraint and
does not require second-order derivatives. In addition, it displays better performance

than that of other policy optimization methods, including the original TRPO.

2.4 Neuroevolution for Reinforcement Learning

Neuroevolution (NE) is a research domain in which EC is used to train neural
networks [44]]. In the past, many NE algorithms focused on learning the topology

of neural networks, as back-propagation is highly effective in weight optimization.
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Therefore, NE algorithms focused on encoding the network topologies into genes.
Neuroevolution through Augmenting Topologies (NEAT) is a famous topology en-
coding. With the NEAT algorithm, the topology of neural networks can be evolved
with traditional GA operators, such as crossover and mutation. There have been many
variations of NEAT that demonstrated impressive results [44]. However, the algo-
rithms involved very small neural networks compared to those used in the modern
deep learning era. Specifically, they only used hundreds or thousands of connections,
while deep learning uses millions of connections.

In modern NE, scalability has become crucial for competing with other deep learn-
ing algorithms, and studies have demonstrated that the NE algorithm has better per-
formance when they are sufficiently scaled. In many supervised tasks, such as vision,
speech, and language models, gradient descent with back-propagation works excep-
tionally well and it is difficult for NE to outperform. This is because in supervised
tasks, there is a smaller need to explore the search space, as the loss function is fixed,
dense, and its local optima display sufficiently good performance [/]]. Gradient de-
scent, a type of hill-climbing algorithm, can efficiently find any local optima because
it has strong good exploitation power.

However, in reinforcement learning, there is no direct supervision. Furthermore,
the environments are sometimes stochastic and sparse. A major challenge in rein-
forcement learning is to explore the environment to attempt to discover rewards and
find optimal actions. As mentioned in Section [2.3] many gradient-based deep rein-
forcement learning algorithms have been proposed; however, they often suffer from
sparse and stochastic environments. In contrast, most EC algorithms have stronger
exploration power than that of hill-climbing algorithms.

One notable development in modern NE is the ES algorithm proposed by Salimans

et al. [37], who used a new form of ES, called natural ES (NES) to optimize the
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Figure 6: Basic framework of hierarchical reinforcement learning

network weights. This algorithm performs competitively with the most effective deep
reinforcement learning algorithms, including deep Q-network (DQN) [31]] and A3C
in Atari games.

Whereas NES involves the fundamental concept of gradient descent, another NE
algorithm based on the GA was proposed [45]]. This algorithm uses a simple GA with
top-k selection, elitism, no crossover, and Gaussian mutation. It also demonstrates
results similar to those of DQN and A2C in Atari games. Furthermore, EC can be
more easily parallelized than gradient-based policy optimization.

However, it is notable that in Atari games, NEs outperformed gradient-based policy
optimization in some games, while gradient-based policy optimization outperformed
NEs in other games. It appears that the two algorithms have a different method of
optimization in terms of exploitation versus exploration. This topic is explored further

in Chapter

2.5 Hierarchical Reinforcement Learning

Many reinforcement learning algorithms have achieved success on various bench-

mark tasks. However, real-world problems involve large-scale planning, which re-
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quires various forms of abstraction. Abstraction allows systems to focus on rele-
vant tasks while micro-controllers handle details. Hierarchical reinforcement learning
(HRL) is based on this concept of abstraction [2]]. HRL decomposes a reinforcement
learning problem into several subproblems, each of which is solved by a different
agent. One agent, called the low-level agent, directly takes actions in the environ-
ment, while other agents, called high-level agents, work as macro-operators. From the
viewpoint of balancing exploitation and exploration, the lowest-level agent exploits
the environment for dense and immediate rewards, while high-level agents explore
the environment for sparse and delayed rewards. In terms of the MDP, high-level
agents consider both environmental observations and the lowest-level agent as a vir-
tual environment. High-level agents take actions to the low level receives signals from
both the lowest level agent and the environment. Figure [6] presents the basic frame-
work of HRL. Based on the characteristics of high-level actions, HRL is divided into

two categories; option-based HRL and goal-based HRL.

2.5.1 Option-based HRL

Sutton et al. [47] formalized HRL to include activities of reinforcement learning
with options. One straightforward concept of an option is to select the lowest-level
policy with a high-level agent’s actions. Suppose that we have k different policies,
Ty,...,M,. The action space of the high-level agent is a k dimensional categorical
space. If the action of the high-level agent is i, 7; acts. In this case, the high-level
agent and low-level agent share the same state space.

However, some algorithms do not use options as a policy selector but rather, as
a low-level observation. If the high-level action is o, the low-level policy uses both
the environmental observations and options as input, u(s,0). When there are differ-

ent policies and the option must select one of them, the option must be categorical.
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However, when the options are inputs to the lower-level policy, they can be in any
representation: categorical [49], multinoulli [34], or continuous valued [9}20]. When

an option is used as a lower level input, it is also called a modulation signal.

2.5.2 Goal-based HRL

When a modulation signal has special meaning in the observation space or feature
space, it is called a goal signal. Nachum et al. [33]] proposed a high-level policy that
has the action space of (x,y) coordinates for the environment and provides the (x,y)
location of the agent in the observation. The lower-level agent is given penalties in
proportion to its distance to the goal location, causing the agent to move toward the
goal. Because the modulation signal is in the same space as a subset of the envi-
ronmental space, the concept from multi-goal reinforcement learning algorithms can
be used [1f]. In contrast, some algorithms use goal in the latent space [51]] for the

environment with the explicit location in the observation.

2.5.3 Exploitation versus Exploration

The structure of HRL is designed for the division of task into macro-management
and micro-control. However, the structure itself does not necessarily improve the
exploration power of the agent [11]]. Balancing exploitation and exploration remains
a significant challenge in HRL. In some algorithms, both agents are fixated on the
micro-control and rarely explore, while other algorithms have difficulty training a
low-level policy to perform micro-control. Pretraining the agent step by step may be
effective for some environment, but fails in environments with sparse rewards.

Many HRL methods use reward function design to address the exploration prob-
lem. Some studies have used virtual rewards, called intrinsic rewards or motivations,

to encourage an agent to explore [34} |6]. These methods usually evaluate current
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states according to their novelty. An agent receives small motivations if the current
state has been visited frequently, but receives large motivations when the current state
has not yet been visited. Another study has proposed the advantage estimation of a
high-level policy to a low-level policy as rewards, called auxiliary reward [28], to
improve the exploitation power of the low-level policy.

Most algorithms have attempted to solve the exploitation exploration balancing
problem while maintaining the framework of gradient-based policy optimization and
modifying other aspects of the problem. This problem is addressed with hybridization

of optimization in Chapter 4]
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Chapter 3

Understanding Features of Evolutionary

Policy Optimizations

Deep learning has achieved impressive performance thanks to powerful hardware
and various algorithms [[16]]. By stacking multiple neural-network layers into spe-
cific architectures, deep neural networks can efficiently represent inductive biases for
high-dimensional data [3]]. However, understanding how deep neural networks work
is nontrivial. Deep neural networks usually have a large number of parameters, caus-
ing high complexity. Many methods have been suggested to figure out the essential
aspects of neural networks, especially for computer vision tasks. Various saliency
methods have been used to examine the logical or abstract relations between input
and hidden or output nodes. Data gradient methods [42], class activation maps [54}
41|, and DeConvNet [53]] have been used to provide useful analysis of convolution
neural networks (ConvNets) for image data.

Recent advances in deep learning have also had a huge impact on reinforcement
learning studies. Reinforcement learning with deep neural networks (i.e. deep rein-
forcement learning) can help overcome the curse of dimensionality. Policy gradient
methods [30] and trust region-based methods [40] are some successful examples.
In addition, recent studies have also suggested that some evolutionary methods may
rival gradient-based optimization algorithms [37,45]]. It is well-known that evolution-
ary methods have significantly different properties from gradient-based optimization.

They also demonstrate different behavior in various machine learning tasks [|37].
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Table 2: Convolutional network architecture

Layer Input Output
Conv 8 x 8 stride 4 | 84 x84 x4 | 20 x20x 32
Conv4 x4stride2 | 20x20x32 | 9x9x 64
Conv 3 x3stride]l | 9x9x64 7Tx7Tx64
Flatten Tx7Tx64 3136
Fully connected 3136 # of actions

However, not much information is known on the type of features learned by deep
reinforcement learning methods. Several studies have used visual inspection to pro-
vide qualitative information on features in reinforcement learning [[18]]. There has also
been a lack of studies examining evolutionary algorithms for reinforcement learning.
Although evolutionary algorithms demonstrate competitive performance, how they
function in complex reinforcement learning tasks remains largely unknown.

In this chapter, a sequence of experiments is described to examine the features of
deep reinforcement learning networks. Visual analysis of the networks with various
feature explanation methods is performed, including filter visualization, activation
visualization, and data-gradient saliency mapping. The way how networks work in
various situations is explained using several supplemental experiments. Agents ob-
tained by both gradient-based policy optimization and evolutionary policy optimiza-
tion are evaluated, and additional inspection of evolutionary policy optimization is
performed with several experiments and behavioral analysis. The primary goal of
this chapter is to reveal the reinforcement learning properties of evolutionary policy
optimization. The results suggest that evolutionary policy optimization works differ-

ently from gradient-based policy optimization in terms of features and search space.
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Algorithm 5 (1+A) ES for NE

In: number of children A
In: Sample deviation ¢
In: Learning Rate o
Initialize network parameters u
repeat
fori«+ 1toAdo
Sample €; ~ N(u,0)
F; + fitness(g;)
end for
Normalize F;
Adjust learning rate al pha by Rectified Adam
pi—u+ o> Fig
until stop condition
return u

3.1 Experimental Setup

Deep neural networks trained for tasks in Atari 2600 benchmarks were gathered.
Considering the computation resource limits, eight different tasks were selected. The
networks were trained with A2C and ES to compare the gradient-based method and
evolutionary algorithm. The same ConvNet as the network used in a previous study
[30] was used, as depicted in Table 2| For A2C, mini-batch training with a batch size
of 128 and the RMSProp optimizer [50] were used. For ES, some modifications were
applied to implement natural ES as in [37]]. This process is described in Algorithm [5]
ES sampled n = 100 solutions with a noise level of 6 = 0.1, and parameters were
updated with a learning rate o0 = 0.01. Each solution was evaluated eight times, and
the average results were used as fitness. Both algorithms were trained for 10,000,000
environment steps for a fair comparison. The performance of the networks in the
given tasks is presented in Table [3] While networks trained by A2C demonstrated
better performance in some tasks, they were outperformed by networks trained by

ES in other tasks.
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Table 3: Performance of agents trained by each algorithm

Environment A2C ES
Assault 1753.62 575.88
Asteroids 596.25 725.55
BattleZone 375.00 | 10375.00
BeamRider 4930.00 671.00
Centipede 3041.25 8108.75
Gravitar 0.00 243.75
Frostbite 300.50 585.30
Seaquest 1830.00 427.50
Spacelnvaders 881.88 358.75

3.2 Feature Analysis

3.2.1 Convolution Filter Inspection

Because convolution filter weights in a ConvNet contain feature information trained
from data, the filter weights can be visualized to examine the features of the network.
It can be useful to plot the filter weights of the convolution filters in ConvNets. Fig-
ure /| depicts some of the first layer filters of ConvNets trained by both A2C and ES
for two tasks; Spacelnvaders and Centipede. On visual inspection, the difference be-
tween the two algorithms is clear. In the filters trained by A2C, sparsity and patterns
appear. Some filters appear to have intuitive features such as edge detectors. In con-
trast, in filters trained by ES, noticeable patterns are not easily observed. It is thus
difficult to distinguish filters trained by ES from pure random noises.

Visual assessment, however, is not sufficient for a clear analysis and can be mis-
leading. Therefore, further statistical analysis is required to find out whether weights
in filters have regular patterns or are random. Here, completely random noise is con-
sidered a normal distribution because a normal distribution is the maximum entropy

distribution given finite mean and variance. A simple test was performed to compare
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Figure 7: First convolutional layer filter visualizations

filters trained by A2C and ES. For each filter in the first convolutional layer, which
consisted of 4 x 8 x 8 = 256 weights, the weights were standardized by subtracting
their mean and dividing by their standard deviations. Then, a Kolmogorov-Smirnov
test was applied to determine whether the weights can be sampled from a normal dis-
tribution. If the test rejects the null hypothesis, it can be concluded that the weights
are not entirely random. However, if the test accepts the null hypothesis, it is diffi-

cult to claim that the weights are not random. If the test with filter weights rejects
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Table 4: The number of filters that passed Kolmogorov-Smirnov test

Algorithm A2C ES
Layer 1[2]1]2
Assault 81 21010
Asteroids 221131010
BattleZone 41291010
BeamRider 4 11010
Centipede 16 010
Gravitar 51 7|00
Frostbite 4161100
Seaquest 71 81010
Spacelnvaders | 27 | 5|0 |0

the null hypothesis, it can be stated that the filter passes the randomness test. Table 4]
presents the result of the experiments, displaying the number of filters that passed
the randomness test. The first convolutional layers trained by A2C have filters that
passed the test. Especially for several tasks, more than half of the filters were not
entirely random. In contrast, no filters trained by ES passed the test. Even in a task
in which networks trained by ES performed better than networks trained by A2C, the
filters trained by ES did not pass the test, whereas some filters trained by A2C did
pass the test. The filters trained by ES were thus relatively random compared to those
trained by A2C. The second layer filter weights, which consisted of 32 x4 x4 =512
weights, were also tested by the Kolmogorov-Smirnov test, which is presented in Ta-
ble 4] While many filters trained by A2C passed the test, no filters trained ES passed
the second layer’s test.

Another approach is to compare each filter with another and test whether those fil-
ters have different distributions. If each filter learned different features, their weights
must have different distributions. Kolmogorov-Smirnov tests were conducted on 496
pairs from 32 filters in the first convolutional layer and counted the number of pairs

that passed the test. If a pair of filters pass the test, the two filters have different dis-
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Table 5: The number of filter pairs that passed two sample Kolmogorov-Smirnov test

A2C | ES
Assault 217 | 55
Asteroids 276 | 67

BattleZone 280 | 61
BeamRider 262 | 57

Centipede 288 | 56
Gravitar 171 | 44
Frostbite 299 | 47
Seaquest 192 | 53

Spacelnvaders | 123 | 48

Table 6: The number of feature map pairs that passed two sample Kolmogorov-
Smirnov test

A2C ES
Layer 1 2 3 1 2 3
Assault 258.1 | 5634 18.8 | 427.7 | 1496.0 | 264.4
Asteroids 2222 | 2386 | 207.9 | 417.6 | 13544 | 174.6
BattleZone 175.5 | 568.1 0.0 | 420.6 | 1258.3 | 250.1
BeamRider 377.9 | 482.6 9.0 | 479.1 | 1238.5 | 254.0
Centipede 292.2 | 409.1 | 1135 | 421.3 | 1124.6 | 266.3
Gravitar 287.2 | 608.7 | 112.0 | 386.2 | 1237.7 | 277.8
Frostbite 132.0 | 670.3 0.0 | 451.0 | 1603.0 | 384.1
Seaquest 165.8 | 390.3 23.0 | 430.3 | 1289.3 | 296.7
Spacelnvaders | 204.7 | 181.2 341 | 462.3 | 1242.6 | 298.4

tributions, so they have learned different features. Table [5] demonstrates the result
of this analysis. At least 40 pairs passed the test for filters trained by ES. This result
implies that some filters have different weight distribution than other filters and there-
fore learned different features. However, many more A2C trained filter pairs passed
the test, while relatively fewer ES trained filter pairs passed the test.

The pairwise Kolmogorov-Smirnov test for the activation map was also conducted
to make sure that different filters generated different feature maps. If feature maps

are similar, they will never pass the test. For example, four consecutive frames of
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observation cannot pass the test because they have the same value in general. How-
ever, if feature maps have different features, they can pass the test. These exper-
iments were conducted in 10 different timesteps, and their average is reported in
Table [6] Interestingly, unlike filter pair tests, the result of feature map pair tests pre-
sented that the much more feature map pairs of the network trained by ES passed the
Kolmogorov-Smirnov test. Especially in the third convolutional layer, feature maps
of the ES trained network were even more diverse than A2C trained networks. This
result seems consistent with the assumption about the exploitation and exploration.
A2C, a gradient-based optimization, tends to learn important features by exploitation.
Therefore, there is a possibility that several channels learn the same feature. These
characteristics lead to less diverse feature maps in many environments. In some en-
vironments, no feature map pairs passed the Kolmogorov-Smirnov test in the third
convolutional layer This implies that there were small diversities in feature maps.
However, ES tends to train weights by exploration, resulting in diverse feature maps.

It seems that ES was effective in several environments, thanks to these diversities.

3.2.2 Saliency Map

A saliency map using data gradient was generated, as described in this section.
Data gradient is a way to visualize saliency maps to explain the spatial information
of the feature usage in a given image in a ConvNet. Suppose that image I, a target
class c, and a class score function S, of a ConvNet are given. The gradient of S, with

respect to / given an image Iy can be calculated as follows.
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Figure 8: Saliency maps for different actions and states trained by A2C

This shows how much class score changes given small changes in pixels. As it is easy
to calculate gradient with back-propagation in neural networks, saliency map can
be applied to various networks without limitations. The data gradient saliency map
was plotted for the given a series of states and actions. In Atari 2600 environments,
a channel of images represents a time sequence of images, not a color encoding;
therefore, the channel-wise maximum magnitude was not used. Instead, four images
were placed into a 2 x 2 shape.

In the agents trained by A2C, interpretable features were not observed by their
saliency maps. Let us use a Spacelnvaders agent as an example. Figure [§| presents in-
put images, corresponding actions, and saliency maps. The agents generally focused
more on the latest frame among the four frames. This is a natural phenomenon, con-
sidering that the latest frame plays a more decisive role in the impending action and
return. In addition, depending on the task, an agent could represent saliency accord-

ing to the given states and actions. The Spacelnvaders task had six different actions,
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NOOP, FIRE, LEFT, RIGHT, LEFTFIRE, and RIGHTFIRE. When the agent took
action RIGHT as in Figure it focused heavily on the position of the player but
focused less on other pixels. In contrast, when it took action FIRE as in Figure [3b]
it focused not only on the position of the player but also on the shooting target po-
sition. Moreover, the agent appeared to understand the semantic difference between
actions given in different states. In Spacelnvaders, the action FIRE does not function
the same all the time. After firing a bullet, FIRE does not fire another bullet for a
short time (16 frames in the current environment). For a short time, FIRE works as
NOOP, LEFTFIRE works as LEFT, and RIGHTFIRE works as RIGHT. The saliency
maps demonstrate that the agent was able to understand this mechanism. When FIRE
was available, as in Figure the agent focused on both the player and the target;
however, when FIRE was not available, as in Figure [8d] the agent focused only on
the player.

The saliency maps of agents trained by ES had different characteristics, however.
Figure [9] presents the saliency maps of agents for Centipede trained by ES. On visual
inspection, no patterns in the saliency maps of the agents were found. Even in some
tasks in which agents trained by ES worked better, such as Centipede, their saliency
maps appeared random. However, as in the filter weight analysis, visual inspection is
not sufficiently precise and can be misleading. To verify whether the saliency maps
of ES agents are random, a quantitative experiment was conducted. Let us assume
that one cannot find out any pattern in the maps due to harsh noise. If it is possible to
find some signals over noise in some areas, those areas may have meaningful features.
Suppose that there are small patches (5 x 5) of the given image. The episodic saliency
distribution of the patch can be defined as the distribution of data-gradients of the
patch through the entire episode. Let the frame saliency distribution of the patch be

the distribution of data gradients of the patch in a specific frame. For a given time step,
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Figure 9: Saliency maps for evolutionary strategy

if the frame saliency distribution of a patch is different from the episodic distribution
of the patch, which can be measured by the Kullback-Leibler (KL) divergence [24],
the patch is considered to have meaningful features.

The KL divergence between the frame saliency distribution and the episodic dis-
tribution was plotted, sliding a 5 x 5 patch at a given time step. Figure[I0] presents the
plots of the input image, the KL. divergence, and the KL divergence larger than 1.0
in a specific time step. The agent was trained for Centipede trained by ES. The plot
reveals that the lower-right part of the image has an entirely different saliency distri-
bution than that of the episodic distribution, which is the location of the player. This
result reveals that although the original saliency maps appear completely random,

there may be patterns in the noise that are related to some meaningful features.
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Figure 10: KL-divergence plots of agent trained by ES

3.3 Discussion

3.3.1 Behavioral Characteristics

To gain further insights, the behavioral characteristics of the agent in each environ-

ment were examined.

Centipede Agents trained by ES attempted to move to the lower-right corner and
continued to fire by performing the action RIGHTDOWNFIRE, while agents trained
by A2C attempted to track the movement of the centipede. A centipede (long blue
object in Figure [TTa) moves in a certain way; it sweeps the area from left to right
or from right to left and moves down when it confronts obstacles or the right or
the left edge of the playable area. If there are not too many obstacles, the centipede
tends to visit the right or left edge frequently. Moreover, when a centipede is hit
by bullets, it splits into two centipedes that move separately. Therefore, if an agent
does not know the location of the centipedes or the player, it is unwise to move
around in an attempt to track the centipedes. As all centipedes tend to move toward
edges, it is reasonable to move toward the right or left side and continue firing, by

performing RIGHTDOWNFIRE. The A2C agents attempted to follow the centipedes
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Figure 11: Four environments in Atari 2600

and did not have high scores. In contrast, the ES agents, which continued performing

RIGHTDOWNFIRE and a few other movements, had much higher scores.

Asteroids In the Asteroids task, many asteroids (white and brown objects in Fig-
ure appear on the left or right side of the player and move from top to bottom or
bottom to top. The environment never gives the location of asteroids and the player
at the same time. It only gives visual information of the player for a time and then
it only gives visual information of asteroids. If an agent does not know the location

of the asteroids or the player, the best strategy is to continue turning around and fir-
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ing. While the A2C agents clumsily attempted to follow the asteroids, the ES agents,
which performed 56% of UPLEFTFIRE and other firing actions, scored more than

the A2C agents.

Gravitar In the Gravitar environment, an agent must first move to one of planets
(small objects in Figure to start a game. Before reaching the start point, no
rewards are given. The A2C agents could not learn anything because rewards are
extremely sparse. The ES agents, however, managed to find the starting point and gain

scores. It appears that strong exploration power of ES achieved better performance.

Frostbite In the Frostbite environment, an agent first has to jump on ice planks
(white objects in Figure[I1d) on the water. Every jump gives the agent small rewards.
After several jumps, an igloo is built and the agent must enter it to gain large rewards.
When igloo building is finished, jumping on ice planks does not give any rewards.
The A2C agent continued to jumping across ice planks even after the igloo is built.
Because of exploitation nature of gradient-based optimization, A2C cannot find the
state of entering the igloo. In contrast, the ES agents occasionally entered the igloo
and were rewarded with huge scores. It also appears that strong exploration power of

ES achieved better performance.

3.3.2 ES Agent without Inputs

In some environments, such as Centipede and Asteroids, the ES agents rarely re-
acted to the states but obtained much more scores. A simple additional experiment
was conducted to figure out the reason for this result. In four different tasks in which
ES agents performed better, I also trained an agent by ES without inputs. The agent
was provided not the exact state images, but an image tiled with the mean values of

the original states; therefore, their outputs were always the same. Table 7| presents the
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Table 7: Performance of agents trained by evolutionary strategy (ES) without inputs

Environment A2C ES ES without inputs
Asteroids 596.25 725.55 813.75
BattleZone 375.00 | 10375.00 5875.00
Centipede 3041.25 8108.75 4516.63
Gravitar 0.00 243.75 187.50
Frostbite 300.50 585.30 127.70

results of ES without inputs. Without inputs, agents trained by ES displayed worse
performance than the agent trained with proper inputs. However, in all four tasks, the
ES without inputs performed better than A2C. Especially in the Asteroids task, ES
without inputs performed better than ES with inputs.

This discovery offers new knowledge about the way ES trains agents. These agents
make use of macro-knowledge of tasks to learn useful action rather than learning
detailed understanding of the way to respond to corresponding states. ES leads to
only slightly better performance than the agent, which can be trained even without
detailed inputs. Agents trained by ES do not seem to respond to states because macro-
knowledge dominates their policies. ES does not work well in tasks in which macro-
knowledge is not crucial, such as in Assault, Spacelnvaders, and BeamRider. Instead,

A2C demonstrated superior performance on those tasks by learning proper features.
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Chapter 4

Hybrid Search for Hierarchical

Reinforcement Learning

For reinforcement learning, learning policies over a long-time with delayed re-
wards is a major challenge. Hierarchical reinforcement learning (HRL) can be used
to solve these challenges. However, hierarchical policies do not necessarily help the
exploration of skills [11]]. Even with the HRL framework, gradient-based policy op-
timization cannot overcome the sparsity of rewards. Many different algorithms have
been proposed, such as careful goal design [33]], dense reward design [28, [34]], the
lower level pretraining [[14]], task dividing [20] and entropy-based exploration [[11].

Most HRL algorithms still function in the paradigm of gradient-based policy op-
timization. However, as mentioned in Chapter |3} evolutionary policy optimizations
perform better in sparse-reward environments. If they are supported by suitable ex-
ploitation methods, they can be useful in various complex tasks. It appears that the
hybridization of policy optimization can result in an algorithm with balanced ex-
ploration and exploitation. Therefore, in this chapter, a hybrid search algorithm is
proposed for the HRL framework. Based on the deep neural network HRL frame-
work, different optimization strategies are applied to the low-level policy network and
high-level policy network. The high level, which requires strong exploration power,
is optimized by an evolutionary strategy while the low level, which requires strong
exploitation power, is optimized by gradient-based optimization, PPO. A technique
called a direction-masking network is used to improve low-level control performance.

The experimental results demonstrate that the hybridization of policy optimizations
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generated an effective agent performing both macro-management and micro-control

without pretraining or goal designing.

4.1 Method

Hybrid Optimization for HRL The HRL framework for hybrid search consists
of two levels, the high-level policy and low-level policy. The low-level policy deals
with the micro-control for the agent’s actions, while the high-level policy suggests the
movement directions of the agent. There are eight directions; up, down, left, right, and
an additional four directions in between. The high-level policy produces categorical
signals with a dimension of 8. Then, the low-level policy is trained to move in that
direction.

It is clear that the high-level policy requires strong exploration power, while the
low-level policy requires strong exploration power. Therefore, a different optimiza-
tion algorithm for each policy level is proposed. For the low-level policy which re-
quires intensive exploitation, a state-of-the-art gradient-based policy optimization
(PPO) is performed to train micro-control of the agent. In contrast, the high-level
policy, which requires exploration, is trained with evolutionary algorithms. Two dif-
ferent algorithms are used, ES and GA, that have different exploitation and explo-
ration characteristics. ES tends to have more exploitation power than the GA, while
the GA has more exploration power than ES. In this study, only simple ES are used
because complex ES implementation needs larger time complexity. For example, co-
variance matrix adaptation evolutionary strategy (CMA-ES) [19] needs O(n?) com-
plexity given the number of parameter n. In deep neural network, the number 7 is
usually large, more than 60k in this chapter. Performing an O(n?) algorithm for this
size is impractical. In contrast, simple ES only needs O(n) complexity so it can be

performed in efficient time.
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Figure 12: Direction-masking network

Direction-Masking Network Training a policy that moves in a given direction
is also a nontrivial task. PPO with a simple multi-layer perceptron cannot handle
this task, and various sophisticated algorithms, such as meta-learning[/13]] and reward
function evolution [21]], are used instead. In this chapter, this problem is overcome
with a new architecture design, called a direction-masking network for the low level.
The direction-masking network uses robot observations and directions and consists
of eight branch networks. Each branch network is a feature-extracting multi-layer
perceptron for each direction with robot observation inputs. The eight feature vectors
are masked with the target direction inputs. Only features corresponding to the given
direction survive while the remaining features are changed to zeros. The surviving
features are used to determine the actions. Figure [[2]illustrates the mechanism of the
direction-masking network. The direction-masking network allows the low level pol-
icy to solve a challenging task without multiple policy networks or complex training

algorithms.
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Figure 13: AntMaze and AntGather environments

Adaptive Mutation for Exploration There exist some environments with extremely
sparse rewards that even an evolutionary algorithm cannot handle. Therefore, evolu-
tionary algorithms are modified to increase the exploration power when the rewards
are too sparse. When all children of evolutionary algorithms have no rewards in an
episode, the mutation power is increased to produce children to search a broader
space in the next generation. However, if all children receive some rewards in an
episode, the mutation power is decreased to search a narrower space in the next gen-
eration. With this adaption method, the algorithm can search the problem space with

sufficient exploration power.

4.2 Experimental Setup

4.2.1 Environment

To ensure that both macro-management and micro-control are performed well, a

complex environment is required. Rllab [10] is known to have various environments
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SEeNnsors: sensors

Figure 14: Wall readings for Maze environment

with high complexity. The environments used were AntMaze and AntGather. In these
environments, agents must control their joints to continue moving. In addition, they
must manage a long-term strategy to overcome obstacles and approach the appropri-
ate targets. In AntMaze, there is a large wall between the agent and destination, as
illustrated in Figure [I3a] Therefore, the agent must use a D-shaped detour to reach
its destination. There is a scaling parameter that determines the size of the maze, and
a width of 4 was used for the experiments. An agent is considered successful when
it is sufficiently close to the destination. The success rate of the agent is assessed for
the evaluation. An ant has four legs attached to its torso, and each leg has two joints,
one on its hip and one on its knee.

Unlike most other experiments [|33}27]], the agent does not have access to its abso-
Iute coordinates. Instead, it uses a sensor with 20 different rays originating from its
agent, which is the default observation given in [[10]. Assume that the agent has a ray
with a length of 10.0. If there is a wall in the ray’s direction and its distance is 7.0,

the wall reading for the ray becomes 7.0/10.0 = 0.7. If there is no wall within 10.0 in
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the ray direction, the wall reading is 0.0. The goal readings work similarly to the wall
readings, except that the target is the goal, not the walls. In addition to the agent’s lo-
comotion observations, 20 wall readings and 20 goal readings are given to the agent
as observations. In the experiments the sensor range 10.0 was used, and the sensor
span was 27 (the agent shot 20 rays in 360°). Figure[I4] presents the operation of the
sensor in the Maze environments. In AntGather, an ant must gather green ball-shaped
objects, or apples, while avoiding red ball-shaped objects, or bombs as illustrated in
Figure [I3b] The agent in the AntGather environment uses a sensor similar to that of
AntMaze agent. It shoots 20 rays originating from the agent in all directions, and
gathers apple readings and bomb readings. With the ant’s locomotion observations,
20 apple readings and 20 bomb readings are given.

The high-level policy and low-level policy are given with different observations
and rewards. The low-level policy is given only with the locomotion observations
of the agent. In the Ant environments, AntMaze and AntGather, it is given 15 posi-
tional, 14 velocity, and 84 contract force observations. The low level is rewarded with
its forward velocity reward to the direction given by the high level. The high level,
in contrast, is given both locomotion observations and sensor observations. In Ant
environments, the agent is given 113 locomotion observations and 40 sensor obser-
vations. It is rewarded with the actual environmental rewards; a goal arrival reward
for Maze, and +1 for apples, and -1 for bombs in Gather. In addition, to encourage
exploration, the high level is also rewarded with the moving distance of agents in a
cycle. An action is represented by eight continuous values in the range [—150, 150]

for the joint controls of the ant
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4.2.2 Network Architectures

Multilayer perceptron networks parameterize both high-level and low-level poli-
cies. A high-level network consists of two hidden layers with 256 nodes activated by
the ranh function. The output of the high-level policy is eight logits for a categorical
distribution. Each category denotes the direction that the agent should follow.

The low-level network consists of eight branch networks with two 64-node hidden
layers and tanh activation function. The features of these networks are masked by
the direction given by the high level network. If the given direction is zero, only
one branch network’s feature is used, and features from other networks become zero.
Then, with the 64 nodes (64 x 7 zeros), the action is calculated. The action values are
sampled from independent normal distributions whose means are the output of the

network, and standard deviations are learnable parameters initialized to one.

4.2.3 Training

The low-level policy was optimized with the PPO [40] algorithm, which is known
for its performance in simple locomotion tasks. The algorithm sampled 4000 steps of
(s,a,r)s and their returns were calculated with a discount y = 0.99. In addition, the
advantages were calculated with generalized advantage estimation of A = 0.95 [39].
Then, the algorithm trained the advantages in mini-batches with a size of 128 for 10
mini-epochs. Both surrogate functions and value predictions were clipped into the
€ = (.2 range. The gradient was optimized with the Rectified Adam [29] optimizer
with an initial learning rate of 0.003.

Meanwhile, the high level was optimized with the same ES as in Algorithm [5]and
the GA in [45]. Both algorithms generated A = 10 children with a mutation power of
sigma = 0.001, with adaptive modification. In the case of ES, instead of sampling 10

random steps, ES sampled five random steps and their negative values as children.
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Then, it updated u with the learning rate of o was 0.0001 with the episodic fitness. It
used the rank of children normalized into [—0.5,0.5]; the fitness of the best child be-
came 0.5, while the fitness of the worst child became -0.5. Selecting the best learning
rate in ES is also a large challenge. ES updated u with the Rectified Adam optimizer
assuming that the evolving step 6GA Y F;¢; was the actual gradient of the point u.
With this technique, the learning rate of o was selected adaptively. In contrast, in
the GA, top three children were selected and used for reproduction. The elite (best-
performing) individual was always kept intact while training. No crossover was used
in this GA.

The networks were trained for 10,000,000 steps in the environments, divided into
2,000-step episodes, and repeated five times. Each episode contained 20 sub-episodes,
or cycles, of a step length of 100. The genes were updated every 500 steps. Therefore,

there were 500 generations in both ES and the GA.

4.3 Results

4.3.1 Comparison

For comparison, four different algorithms were used for training in the same envi-
ronment. Two algorithms were used as baseline algorithms to verify the effectiveness

of hybrid search, while the other two algorithms were alternative.

PPO only A network was trained with only a PPO, which is the low-level part of
the networks, without the HRL framework. Because the environments do not pro-
vide rewards from directional velocity without the HRL framework, merely using
raw rewards is unfair. Therefore, raw rewards and directional velocity rewards were

scalarized into a single value.
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Table 8: Results of hybrid hierarchical reinforcement learning

Task AntGather AntMaze
Random walk 0.14+£1.07 | 0.00£0.00
Hybrid HRL (ES) 2.20+£1.38 | 0.35+0.47
Hybrid HRL (GA) 0.45+1.44 | 0.00£0.00
PPO only 0.044+0.90 | 0.00+0.00

PPO+Random Move HL —0.10£1.54 | 0.00+0.00
PPO+Random Search HL 0.76+1.70 | 0.00£0.00
SNN4HRL 1.92+0.52 | 0.00+£0.00

Random Move In the hybrid algorithm, the contribution of ES in the high level
was uncertain because the low level was trained with a PPO. An algorithm was used
in which random one-hot vector generators replaced the high level. This experiment

clarified the contribution of the ES-optimized high level.

Random Search Some studies have suggested that a simple random search may
be as good as evolutionary algorithms [45]]. Therefore, a random search was used for
high-level policy optimization. This experiment can reveal the difference between a

simple random search and evolutionary search.

SNN4HRL SNN4HRL, a stochastic neural network for hierarchical reinforcement
learning [|14]], which uses a similar categorical modulation signal, was used for com-
parison to the gradient-based HRL algorithm. The results were taken from the report
by Nachum et al. [33]] as the original paper did not provide the results for the current

environments.
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4.3.2 Experimental Results

The experimental results are depicted in Table [8| Every result is reported by 100
evaluations with the trained model. The first value denotes the mean of the episodic
rewards, where + indicates the standard deviation.

The hybrid HRL with ES produced favorable results in both AntGather and AntMaze.
Compared to PPO only, the hybrid HRL had superior performance in both environ-
ments. The PPO-only agent could not reach the goal in AntMaze at all, whereas the
hybrid HRL managed to reach the goal. In the AntGather environment, the results
of the PPO-only agent were not better than those of the random walk, whereas the
hybrid HRL produced better results. It is evident the agent benefitted from the hier-
archical structure. The comparison between hybrid HRL and PPO plus random move
revealed the contribution of ES to the high level policy. PPO plus random move agent
performed as well as the random walk agent. This result indicates that ES did not find
a good policy by chance; instead, it optimized the policy according to the rewards.
The hybrid HRL with ES also outperformed SNN4HRL, a gradient-based HRL al-
gorithm. SNN4HRL did not reach the goal at all in AntMaze, whereas hybrid HRL
reached the goal in nearly 50% of trials. In addition, it is notable that the hybrid HRL
used no pretraining at all, whereas SNN4HRL used pretraining for the low level.

In contrast, hybrid HRL with GA did not produce impressive results. Its perfor-
mance was worse than SNN4HRL in AntGather. It was also unable to find any good
agents in AntMaze. Interestingly, the random search high level agent produced better
results than hybrid HRL with GA in AntGather; however, the results were not better
than those of hybrid HRL with ES. It thus appears that the optimization power of the
GA is not better than that of a random search, whereas ES has excellent optimization

power in HRL.
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Figure 15: Cycle movement for four directions

Meanwhile, the hybrid HRL had a large variance in both environments, while
SNN4HRL had a much smaller variance. It thus appears that the high level has diffi-

culty fine-tuning the high level policy, resulting in a high variance in performance.

4.3.3 Behavior of Low-Level Policy

The function of the low-level policy is to accurately walk toward the direction. To
ensure that the low-level policy is trained as designed, the cyclic movement of the

agent was plotted given an action. Figure [T5]illustrates the cyclic movement of the
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ant agent in the AntGather environment. Figure and depicts the

cyclic movement of agents for the up, down, left and right directions, respectively.
The agents moved from round shaped markers to triangle-shaped markers. The low
level moved toward the given direction quite well, but with some errors. It appears
that the low level policy was trained as designed with the hybrid HRL without any

pretraining.

4.4 Conclusion

In this chapter, I proposed a hybrid HRL algorithm to generate successful agents
for complex tasks. Several techniques were used to overcome the sparsity of rewards
and the complexity of tasks. The direction-masking network was used for the agent to
learn how to move in a given direction without complex learning algorithms Adaptive
mutation power was used to overcome the sparsity of rewards by enlarging or reduc-
ing the search space. The results indicate that the hybrid HRL was more effective
than simple gradient-based reinforcement learning and had better performance than
a gradient-based HRL algorithm. In some environments in which exploration is cru-
cial, the hybrid HRL produced better results than gradient-based HRL. Furthermore,
the hybrid HRL used no pretraining techniques, while the gradient-based HRL used
a pretraining technique. However, in hybrid HRL, there was a large variance in the
results, while the results of gradient-based HRL had a small variance. The variance
of hybrid HRL was even larger than that of the random walk agent, which may be a
critical drawback. This result was likely due to the lack of fine-tuning in the high level
policy which was trained with an evolutionary algorithm. These results demonstrate
that even for the high level policy, a proper balance between exploitation and explo-
ration is critical. Therefore, this algorithm can be further improved by hybridizing

the high level optimization itself.
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Chapter 5

Conclusion

5.1 Summary

In this thesis, a hybrid search algorithm was proposed for complex reinforcement
learning tasks. In balancing exploitation and exploration in the optimization prob-
lem, domain knowledge is one of the most critical factors in designing optimization
algorithms.

Many reinforcement learning algorithms have been suggested to overcome the ex-
ploration problem. But most of them do not consider other optimization methods
than gradient-based optimizations. Gradient-based optimization is a powerful local
optimizer, but it lacks exploration power. Most studies use modification other than
changing the optimization algorithm, which is critical to the exploration power. No
free lunch theorem is also applied to the field of optimization. In Chapter [3] both
gradient-based policy optimization and evolutionary policy optimization were ana-
lyzed with various environments with different characteristics. The results demon-
strate that while gradient-based optimizations are good at following immediate re-
wards, it fails to find the big picture of the environment. However, the evolutionary
policy optimizations are good at finding the macro-knowledge of the environments,
even with lesser observation.

A hybrid hierarchical reinforcement learning algorithm is proposed in Chapter
In the hybrid HRL, an evolutionary algorithm, which is strong for finding the macro-

knowledge of the environment, is used to train the high-level macro-management
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agent and a gradient-based algorithm, which is strong for following immediate re-
wards, is used to train the low-level micro-controller. The result showed that the hy-
brid HRL worked better than the gradient-only HRL algorithm. Even without any
pretraining, the hybrid HRL trained the low level as it was designed. The high level

also had enough exploration power to overcome extremely sparse rewards.

5.2 Future Work

While showing a good result, more improvement for the hybrid algorithm can be
made. In the hybrid HRL, the high-level policy trained by an evolutionary algorithm
suffers from huge variance, which is not found in gradient-based HRL algorithms. It
seems that even for the macro-manager in HRL, fine-tuning the policy is still needed
to reduce the variance of policy. Hybridizing the high level itself may be a solution to
the problem. Another topic is to design a domain-specific evolutionary optimization.
In this thesis, only a typical evolutionary strategy was used for high-level optimiza-
tion in HRL. However, as it is cleared in this thesis, domain knowledge is always
critical to the optimization algorithm design. The adaptive mutation was used in the
hybrid HRL, but it is still room to improve the optimization with more domain knowl-

edge.
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