

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

공학박사학위논문

Exploratory Hybrid Search in
Hierarchical Reinforcement Learning

계층강화학습에서의탐험적혼합탐색

2020년 8월

서울대학교대학원

전기·컴퓨터공학부

이상엽

Exploratory Hybrid Search in
Hierarchical Reinforcement Learning

지도교수문병로

이논문을공학박사학위논문으로제출함

2020년 5월

서울대학교대학원

전기·컴퓨터공학부

이상엽

이상엽의공학박사학위논문을인준함

2020년 6월

위 원 장 신영길 (인)

부위원장 문병로 (인)

위 원 오일석 (인)

위 원 정순철 (인)

위 원 김용혁 (인)

Abstract

Balancing exploitation and exploration is a great challenge in many optimization

problems. Evolutionary algorithms, such as evolutionary strategies and genetic al-

gorithms, are algorithms inspired by biological evolution. They have been used for

various optimization problems, such as combinatorial optimization and continuous

optimization. However, evolutionary algorithms lack fine-tuning near local optima;

in other words, they lack exploitation power. This drawback can be overcome by

hybridization. Hybrid genetic algorithms, or memetic algorithms, are successful ex-

amples of hybridization. Although the solution space is exponentially vast in some

optimization problems, these algorithms successfully find satisfactory solutions.

In the deep learning era, the problem of exploitation and exploration has been

relatively neglected. In deep reinforcement learning problems, however, balancing

exploitation and exploration is more crucial than that in problems with supervision.

Many environments in the real world have an exponentially wide state space that

must be explored by agents. Without sufficient exploration power, agents only reveal

a small portion of the state space and end up with seeking only instant rewards.

In this thesis, a hybridization method is proposed which contains both gradient-

based policy optimization with strong exploitation power and evolutionary policy

optimization with strong exploration power. First, the gradient-based policy optimiza-

tion and evolutionary policy optimization are analyzed in various environments. The

results demonstrate that evolutionary policy optimization is robust for sparse rewards

but weak for instant rewards, whereas gradient-based policy optimization is effec-

tive for instant rewards but weak for sparse rewards. This difference between the two

optimizations reveals the potential of hybridization in policy optimization. Then, a

hybrid search is suggested in the framework of hierarchical reinforcement learning.

The results demonstrate that the hybrid search finds an effective agent for complex

environments with sparse rewards thanks to its balanced exploitation and exploration.

Keywords : Deep reinforcement learning, Evolutionary computation, hierarchical

reinforcement learning, Neuroevolution

Student Number : 2013-20845

ii

Contents

Contents . iv

List of Figures . v

List of Tables . vi

I. Introduction . 1

II. Background . 6

2.1 Evolutionary Computations . 6

2.1.1 Hybrid Genetic Algorithm 7

2.1.2 Evolutionary Strategy . 9

2.2 Hybrid Genetic Algorithm Example: Brick Layout Problem 10

2.2.1 Problem Statement . 11

2.2.2 Hybrid Genetic Algorithm 11

2.2.3 Experimental Results . 14

2.2.4 Discussion . 15

2.3 Reinforcement Learning . 16

2.3.1 Policy Optimization . 19

2.3.2 Proximal Policy Optimization 21

2.4 Neuroevolution for Reinforcement Learning 23

2.5 Hierarchical Reinforcement Learning 25

2.5.1 Option-based HRL . 26

2.5.2 Goal-based HRL . 27

2.5.3 Exploitation versus Exploration 27

iii

III. Understanding Features of Evolutionary Policy Optimizations . . . 29

3.1 Experimental Setup . 31

3.2 Feature Analysis . 32

3.2.1 Convolution Filter Inspection 32

3.2.2 Saliency Map . 36

3.3 Discussion . 40

3.3.1 Behavioral Characteristics 40

3.3.2 ES Agent without Inputs 42

IV. Hybrid Search for Hierarchical Reinforcement Learning 44

4.1 Method . 45

4.2 Experimental Setup . 47

4.2.1 Environment . 47

4.2.2 Network Architectures . 50

4.2.3 Training . 50

4.3 Results . 51

4.3.1 Comparison . 51

4.3.2 Experimental Results . 53

4.3.3 Behavior of Low-Level Policy 54

4.4 Conclusion . 55

V. Conclusion . 56

5.1 Summary . 56

5.2 Future Work . 57

Bibliography . 58

iv

List of Figures

Figure 1. Exploitation and exploration 2

Figure 2. Exploitation and exploration in reinforcement learning 3

Figure 3. Crossover and mutation in genetic algorithms 8

Figure 4. Assembling a 3D object with the LEGO® 10

Figure 5. Example of MDP . 16

Figure 6. Basic framework of hierarchical reinforcement learning 25

Figure 7. First convolutional layer filter visualizations 33

Figure 8. Saliency maps for different actions and states trained by A2C . 37

Figure 9. Saliency maps for evolutionary strategy 39

Figure 10. KL-divergence plots of agent trained by ES 40

Figure 11. Four environments in Atari 2600 41

Figure 12. Direction-masking network 46

Figure 13. AntMaze and AntGather environments 47

Figure 14. Wall readings for Maze environment 48

Figure 15. Cycle movement for four directions 54

v

List of Tables

Table 1. Comparison of different mutations in the brick layout problem . 14

Table 2. Convolutional network architecture 30

Table 3. Performance of agents trained by each algorithm 32

Table 4. The number of filters that passed Kolmogorov-Smirnov test . . . 34

Table 5. The number of filter pairs that passed two sample Kolmogorov-

Smirnov test . 35

Table 6. The number of feature map pairs that passed two sample Kolmogorov-

Smirnov test . 35

Table 7. Performance of agents trained by evolutionary strategy (ES) with-

out inputs . 43

Table 8. Results of hybrid hierarchical reinforcement learning 52

vi

Chapter 1

Introduction

Machine learning has achieved remarkable success with developments in hardware

and various algorithms. One of the most successful approaches is deep reinforcement

learning, and a number of different approaches have been proposed for reinforcement

learning with neural networks. Deep Q-learning [31], the policy gradient method [30]

and trust region method [38] are examples of successful algorithms.

However, there has always been a significant problem that involves balancing the

algorithm’s exploitation and exploration in reinforcement learning. Exploitation and

exploration are two criteria in searching for a solution in the problem space. Exploita-

tion consists of probing a limited region, usually neighborhoods or promising area,

of the given search space. It is also called a local search of the problem space. Ex-

ploration, in contrast, consists of probing an even wider region of the problem space.

It tends to find a solution from a region not yet discovered; however, the region is

not sufficiently refined. The concept of the exploitation exploration trade-off is used

in optimization. Figure 1 presents a visual example to illustrate exploitation and ex-

ploration. In this figure, the curve represents the graph of function f (x), while circle

and square points represent inputs. The red circle points are moved toward neighbor-

ing points that have smaller values. By repeating these operations, a point is moved

to a region in which all neighbors have larger function values, that is, a local opti-

mum. This criterion refers to exploitation of optimization. However, as displayed in

Figure 1, there may exist promising areas other than the local optimum. Searching

with a local search never leads to the discovery of the areas, however, because it only

1

Figure 1: Exploitation and exploration

moves the probe to a better neighboring area, called hill-climbing. Blue square points,

in contrast, are moved to an entirely new area without considering their original lo-

cation. This criterion refers to exploration of optimization. Exploration may cause a

point to escape from the well of the function, leading to areas with better optima.

However, the points searched by exploration are rarely close to local optima, as they

are not yet sufficiently tuned. There is also no guarantee that repeating exploration

searches moves points to local optima. Therefore, to find the global optimum or a

satisfactory local optimum, balancing exploitation and exploration is critical.

Many metaheuristic algorithms are challenged by the problem of balancing ex-

ploitation and exploration. One method to overcome this problem involves mixing,

or hybridizing, two optimization algorithms that have different strategies. In the ex-

ample in Figure 1, if an algorithm performs both exploration and exploitation, the

global optimum can be found in a reasonable time. A hybrid genetic algorithm (GA),

or a memetic algorithm [32], is an example of a hybrid optimization algorithm. Many

hybrid GAs successfully produce good solutions for both benchmark problems [5]

and real-world problems [26].

2

(a) (b)

Figure 2: Exploitation and exploration in reinforcement learning

In reinforcement learning, exploitation and exploration are used to describe a strat-

egy for changing how an agent reacts to the given environment, namely the state

space. If all states of the environment are not known in advance, an agent must de-

termine the states from experience. One strategy is to use an agent who acts with a

small difference from the previous agent to maximize the rewards to exploit the state

space. An agent that follows immediate rewards can be found by the exploitation

strategy, but will attempt to avoid the uncertainty of unseen states. However, in many

environments, there exist sparse rewards that cannot be found by slight changes in the

current policy. Instead, they can only be discovered through new policies that differ

significantly from the current policies. Unseen states can thus only be visited with an

entirely new policy. Figure 2 presents an example. Suppose that an agent is rewarded

when it approaches the goal (red square). Its best choice is to move the red arrow in

the left figure, which is achieved by exploitation. However, there exists a wall that

prevents the agent from reaching the goal. To reach the goal, the agent must take a

detour, such as the green arrow in the right figure. The agent with only exploitation

3

never finds this detour; it may find the detour with exploration. Many experience-

based (i.e., model-free) reinforcement learning algorithms are challenged by the ex-

ploration problem. Different types of methods are adopted, such as ε-greedy [48] and

rewarding for uncertainty [12]. However, especially in the deep learning era, the ma-

jority of algorithms tend to use gradient-based optimization. Gradient descent is an

algorithm to find a local minimum when a sufficiently small step size is given. There-

fore, when properly used, gradient descent has strong exploitation power; however, it

lacks exploration power. Gradient-based optimization for reinforcement learning usu-

ally has stronger exploitation power than exploration power. Occasionally, improving

exploitation power improves the agent [40], especially for immediate rewards. How-

ever, exploration becomes crucial in environments with sparse rewards.

Recent studies have suggested that some evolutionary approaches rival gradient-

based optimization algorithms [8, 44]. GAs and evolutionary strategies display better

performance in many reinforcement tasks. Some studies have also suggested that

even a simple random search performs better than other policy optimization algo-

rithms in some tasks. Interestingly, while gradient-based policy optimization algo-

rithms demonstrate excellent performance in some tasks, they demonstrate poor per-

formance in other tasks for which evolutionary algorithms perform well. These tasks

are notorious for their reward sparsity [25]. This suggests that gradient-based op-

timizations are not effective for sparse rewards, whereas evolutionary algorithms,

which are known for their exploration ability, are more effective in these environ-

ments.

The goal of this thesis is to propose an effective hybridization method for balanc-

ing exploitation and exploration in reinforcement learning. In Chapter 2, background

knowledge of evolutionary algorithms and reinforcement learning is introduced. A

real-world application of hybrid search is also presented to evaluate the importance

4

of domain knowledge in balancing exploitation and exploration. Then, in Chapter 3,

experiments are proposed to examine the effects of the characteristics of optimiza-

tion on the exploitation and exploration of environments. Due to the complexity of

reinforcement learning problems, methods for visual inspection and supplementary

experiments are suggested. Finally, in Chapter 4, a hybrid hierarchical reinforcement

learning (HRL) algorithm is suggested that is effective in environments that require

a strategy with both strong exploitation and exploration to obtain sufficient rewards.

5

Chapter 2

Background

2.1 Evolutionary Computations

Evolutionary computation (EC) algorithms are a family of optimization algorithms

inspired by the evolution of life. All individuals produce offspring that inherit genetic

information from their parents. Some individuals reproduce on their own, while other

individuals mate with others to produce offspring. While producing offspring, some

genes may undergo irregular changes due to internal or external causes, called muta-

tion. With these mechanisms, all living beings compete with each other according to

the law of the survival of the fittest, which is a fundamental law of evolution.

EC methods perform processes similar to those of biological evolution to optimize

their solutions. There are many types of EC algorithms, but all have two common

aspects, as described below.

• Population-based: EC algorithms maintain multiple (at least two) solutions and

manipulate them for optimization.

• Stochastic optimization: EC algorithms produce offspring in a stochastic way;

thus, updates of solutions become stochastic.

Some algorithms, such as the ant colony optimization and particle swarm optimiza-

tion, do not mimic evolution, but rather, other natural phenomena. However, these

algorithms are outside the scope of this thesis, whose focus is evolution-inspired al-

gorithms.

6

2.1.1 Hybrid Genetic Algorithm

Algorithm 1 Hybrid GA
In: number of chromosome n
In: Operators, select,crossover,mutate
In: Local optimization opt
Initialize the population p
repeatparents ← select(p) children ← crossover(parents) children ←
mutate(children) p← opt(children)
until stop condition
return the best in p

GAs are algorithms that are remarkably similar to evolution in nature. These algo-

rithms use some evolutionary processes, called operators, to imitate the mechanisms

of biological evolution. GAs select and use some of these operators for various pur-

poses. Basic operators include selection, crossover, and mutation. The selection oper-

ator is used to select individuals from a population for reproduction or survival, thus

generating the selection pressure of the algorithms. If the selection pressure is too

high, the algorithm may experience premature convergence, resulting in a suboptimal

solution. However, if the selection pressure is too low, progress is slower than neces-

sary. Using an appropriate selection pressure is critical for balancing exploration and

exploitation. Crossover is inspired by the crossover of chromosomes, or genetic ma-

terial in nature. This operator takes two or more solutions and combines them to form

new solutions. The purpose of crossover is to create a new solution while maintaining

the good traits, called schema, of parents. In terms of the problem space, crossover

usually limits the search space. For example, geometric crossover always produces

offspring on the line segment defined between two parents. Mutation is a method that

changes genes in a stochastic way, and it is the component that determines the explo-

ration power of algorithms. Sufficient mutation power is essential for maintaining the

genetic diversity of a population. Mutation should allow an algorithm to avoid local

7

Figure 3: Crossover and mutation in genetic algorithms

minima by preventing individuals in the population from becoming too similar. The

performance of GAs is determined by the representation of solutions and operator

selections. Because there is no panacea for all problems according to the No Free

Lunch theorem [52], it is crucial to select the most appropriate representations and

operators.

Although GAs have proven to be a versatile approach for global optimization,

they do not perform well in some situations. Most GAs generate new solutions in a

stochastic way and are blind to the locality of the solutions. In terms of the prob-

lem space search, GA has weak exploitation power. Therefore, various methods of

hybridization have been proposed; that combine both GA and other exploitation al-

gorithms. One of the most common forms of hybrid GAs involves incorporating local

optimization in the GA loop [15], called memetic algorithms. Algorithm 1 describes

the basic framework of this type of hybrid GA. After performing mutation to off-

spring, a local optimization algorithm optimizes the offspring into a local optimum

[36]. With two algorithms, one effective in exploitation and the other effective in

exploration, the memetic algorithm performs well in various optimization tasks.

8

Algorithm 2 Simple (1+Λ) ES

In: number of children λ

In: Sample deviation σ

Initialize µ
repeat

for i← 1 to λ do
Sample εi ∼ N(µ,σ)
Fi← fitness(εi)

end for
Normalize Fi

µ←
∑n

i Fiεi

until stop condition
return µ

2.1.2 Evolutionary Strategy

The evolutionary strategy (ES) is another EC algorithm, which has a different

mechanism from that of the GA. The ES is also a population-based algorithm that

maintains multiple solutions at the same time. However, unlike the GA, it does not di-

rectly sample offspring from parents with genetic operators. The ES usually encodes

parents into parameters of a distribution, where child solutions are sampled. The ES

is often represented as (µ
σ
+, λ)−ES, which signifies that the algorithm maintains

µ individuals, selects σ parents, and generates λ children. The plus (+) sign indi-

cates that a new population is generated by both the original and generated solutions,

while the comma (,) indicates that a new population is generated only by new solu-

tions. Algorithm 2 describes the basic framework of simple Gaussian (1+λ)−ES

with fixed variance. It starts with one parent that has the mean of the distribution.

Then, it samples λ solutions from the distribution and evaluates their fitness. Using

their fitness, µ is updated to a new center, which may generate fitter samples. The ES

does not identify a single solution with good fitness; instead, it finds a distribution

with better expected fitness. This principle is similar to the concept of the search gra-

9

Figure 4: Assembling a 3D object with the LEGO®

dient [4], which solves the gradient of distribution by sampling; however, it does not

use the gradient. Although there are many promising types of ESs, neuroevolution is

specifically examined in Chapter 2.4.

2.2 Hybrid Genetic Algorithm Example: Brick Lay-
out Problem

In this section, A real-world problem, LEGO® brick layout problem, is suggested

that can be solved by a hybrid GA to elucidate the balancing exploration and ex-

ploitation in optimization. LEGO® is a line of brick-shaped toys manufactured by

the LEGO® Group, and consists of bricks of a regular size and shape. The bricks can

be attached to one another to assemble three-dimensional objects. Determining a way

to assemble a 3D object with the LEGO® bricks can be divided into two steps. The

first step is to transform a given three-dimensional object into a voxelized model. The

second step, called the brick layout problem, involves assembling a voxelized object

with real bricks, which is the focus of this section.

Some studies have formulated this problem as a combinatorial optimization prob-

lem [17, 35]. However, this optimization is nontrivial. The brick layout problem has

an exponentially large solution space and also involves balancing exploitation and

exploration.

10

2.2.1 Problem Statement

The brick layout problem is formulated as a combinatorial optimization problem.

The input of the problem is the voxelized model that is represented as a 3D binary

array, A solution to the problem corresponds to a brick layout, and the problem is

to minimize the penalty function. The penalty function is defined as the number of

connected components formed by the layout, and in case of a tie, the number of used

bricks is compared. The first goal is to increase the connectivity, and the second goal

is to increase the efficiency of the layout. The sizes of regular bricks are 1× n and

2×n, where n is either 1, 2, 4, 6, or 8. A brick could be rotated, but cannot be placed

diagonally. The layout is regarded as a graph to calculate the number of connected

components.

2.2.2 Hybrid Genetic Algorithm

Local Optimization

A domain-based greedy heuristic algorithm is used for local optimization. For each

layer, it first chooses a voxel and places a brick on that voxel in a greedy manner. All

types of bricks and all feasible arrangements are considered, and the one with the

largest score is selected. The algorithm repeats this step for every voxel in a layer,

and repeat the entire process for each layer. The score is defined in such a way that

maximizing the score of the arrangements may lead to minimizing the penalty of the

entire layout. The score is a weighted sum of three factors, and the factors used are

as follows.

• Cover factor evaluates the number of covered bricks and the score is doubled

when bricks are perpendicular.

11

• Size factor encourages the algorithm to use a larger brick providing more

chance of connections to the bricks in the above and below layers.

• Isolation factor is to minimize the number of isolated voxels.

After a significant number of experiments, the weights of the cover, size, and isolation

factors were 10, 1, and 20, respectively.

Hybrid Genetic Algorithm

Algorithm 3 Genetic algorithm
Initialize population
repeat

Select two parents parent1, parent2
o f f spring←Crossover(parent1, parent2)
Mutation(o f f spring)
Repair(o f f spring)
Replace one chromosome with o f f spring

until stop condition

A hybrid genetic algorithm is proposed that consists of merge-split model and

boundary split mutation. Merge-split model is to merging bricks into a larger one, or

to split a brick into smaller ones This process is used to modify the solutions. The

merge operator merges two or more bricks into one big brick if possible, and the split

operator split a single brick into several 1×1 bricks. With a brick layout, it is possible

to create several new solutions by splitting some bricks and merging them again with

various orders and various combinations. . The basic framework of the GA is depicted

in Algorithm 3. The hybrid GA is implemented with a 3000-generation steady-state

method with the following operators:

• Population: 128 chromosomes.

• Selection: a rank based roulette-wheel-selection.

12

• Crossover: one-line crossover [22] and RectCrossover [35, 43].

• Mutation: boundary split mutation.

• Repair and Optimization: greedy heuristic in local optimization.

Boundary split mutation is the core concept in this algorithm that uses domain knowl-

edge of brick layout problem. Instead of splitting the bricks blindly, it is possible to

guide the operator to split only the bricks, which require modification. One way is

to split blocks near the boundary of the connected components. If a solution is not

connected and there exists more than one connected component, the space that di-

vides the bricks into multiple connected components is defined as the boundary of the

components. To connect the divided parts, adjacent bricks that are from the different

components need to be merged into a single brick. Since these set of bricks resides

near the boundary, choosing the bricks to split from this area might be promising to

improve connectivity.

Algorithm 4 Largest boundary split

1: function LARGESTBOUNDARYSPLIT(layer L, rate r)
2: B← set of all pairs of different connected components in L
3: Bricks← emptylist
4: for all (b1,b2) in B do
5: S← Bricks adjacent to the boundary between b1 and b2
6: Add the largest brick in S to Bricks
7: end for
8: Choose bricks in Bricks at rate r
9: Split the chosen bricks

10: end function

With this idea, Four different mutation algorithm were developed, namely largest

boundary split(LB), random boundary split(RB), largest boundary with neighbor split(LBN),

and random boundary with neighbor split(RBN). Algorithm 4 illustrates the mecha-

nism of the largest boundary split. It gathers the largest bricks from the boundaries

13

Table 1: Comparison of different mutations in the brick layout problem

Model Rand LB RB LBN RBN
lamp 1.00 1.00 1.00 1.00 1.00

1533.5 1516.7 1516.5 1523.8 1513.9
dragon 1.07 1.00 1.00 1.00 1.00

1733.7 1741.8 1726.3 1737.7 1733.4
lucy 1.27 1.06 1.00 1.00 1.00

800.3 802.2 798.37 818.4 810.0
airboat 107.26 123.27 118.73 152.77 150.13

2517.1 2627.9 2584.8 2639.0 2623.4
shuttle 102.27 79.00 51.30 138.10 130.07

2322.8 2413.6 2336.7 2422.0 2400.3

and splits some of them with a given probability. Random boundary split works in a

similar way but gathers random bricks from the boundaries instead of the largest one.

2.2.3 Experimental Results

The dataset consists of 17 different voxelized models. Five of them (armadillo,

bunny, dragon, happy, and lucy) are from the Stanford 3D scanning repository1 and

the rest are from data files maintained by John Burkardt2.

Interestingly, different crossovers and mutations demonstrate different performance.

RectCrossover outperformed one-line crossover in general. In the case of the brick

layout problem, one-line crossover, which includes zigzag random walks, is suit-

able for perturbing a solution, but it is vulnerable to loss of a schema. In contrast,

RectCrossover will preserve the solution compared to the one-line crossover, because

it is less likely that straight lines of the rectangle cross huge bricks. The excellence

of RectCrossover over one-line crossover reveals that it is much more essential to
1http://graphics.stanford.edu/data/3Dscanrep/
2http://people.sc.fsu.edu/˜jburkardt/data/obj/obj.html

14

http://graphics.stanford.edu/data/3Dscanrep/
http://people.sc.fsu.edu/~jburkardt/data/obj/obj.html

preserve useful schemata for problem space search, which in turn better leads the

creation of new attractive schemata.

Five types of mutations are also compared. One selects bricks to split randomly,

and the others use LB, RB, LBN, and RBN mutation operators, respectively. Table

1 presents the result of the experiments. The upper denotes the number of connected

components, and the lower indicates the number of bricks. RandomBoundarySplit

showed the best performance over other mutations. Since other mutation operators

choose bricks to split in a deterministic policy, these operators tend to split similar

bricks, which in turn generate solutions similar to their parents. It is interesting that

splitting the neighbors of boundary bricks did never improve the performance. In-

stead, it dropped the fitness even worse than the random mutation. This result points

out that it is enough to split only boundary bricks to connect the components. In

fact, this result is consistent with the result of the experiment on crossover operators.

Splitting neighbors of boundary bricks will perturb the solution even more than LB

or RB, end up destroying much of proper schema.

With the best operators of GA, RectCrossover, and RB mutation, and the best pa-

rameters for all models, overall experiments were conducted. For some models which

are hard to assemble, an algorithm that increases the thickness of the voxel structure

was adopted. After careful selection of operators, the hybrid GA managed to assem-

ble all voxelized models into single connected components.

2.2.4 Discussion

The hybrid algorithm of both greedy-based heuristic and a genetic algorithm could

assemble even the hardest models into one component without using an excessive

number of bricks nor expensive time resources. The optimization for the brick layout

problem shows that balancing exploitation-exploration in a problem needs a deep

15

Figure 5: Example of MDP

understanding of domain knowledge. In solving the brick layout problem, domain-

specific operators and local optimization work critical parts.

2.3 Reinforcement Learning

Reinforcement learning is an area of machine learning that focuses on developing

an autonomous agent that takes actions in a given environment to maximize cumula-

tive rewards. Unlike supervised learning, input-output data pairs are not available, and

the agent attempts to learn the best strategy from information from the environment

or experience. Reinforcement learning can be applied to many difficult real-world

problems, such as gaming, robot controls, and self-driving vehicles. In reinforce-

ment learning, a given environment is modeled as a mathematical framework called

a Markov decision process (MDP).

16

Some terminology and notation in MDP are introduced as follows. A state s in a

state space S is defined as a variable that captures all relevant information from both

the present and past. If a state st is given at time t, past information is not required

because it is included in st . The action space A is the set of all possible actions.

We then have the state transition probability matrix Pa(s,s′) as the probability of

the next state s after taking action a in the current state s. The reward function Ra(s)

denotes the expected reward of taking action a in state s. The discount factor γ∈ [0,1]

determines the present value of future rewards. It is adopted because delayed rewards

must be underestimated, considering the uncertainty. The MDP is defined by the

following five parameters, S, A, P, R, and γ. Figure 5 presents a graphical example of

the MDP. In an MDP, a policy π(a|s) is defined as the probability of taking an action

a in a given state s. The policy π generates a trajectory τ, which is a sequence of states

and actions (s0,a0,s1,a1, ...). Trajectory τ follows the distribution p(τ):

p(τ) = p0(s0)
T−1∏
t=1

Pat (st ,st+1)π(at |st)) (2.1)

A partial trajectory from time t is denoted taut . Given trajectory τ we can calculate the

cumulative reward over it. However, we generally use discounted cumulative rewards,

or returns G, instead of original cumulative rewards:

G(τt) =
T−1∑
k=0

γ
t+kRat+k(st+k,st+k+1) (2.2)

With policy π and trajectory τt , the value function Vπ(s) is defined as the expected

return in state s given policy π:

Vπ(st) = Eτt∼p(τt)[G(τt)|st] (2.3)

17

Similarly, the action value function Qπ(s,a) is defined as the expected return of taking

action a in state s and following π:

Qπ(st ,at) = Eτt∼p(τ)[G(τt)|st ,at] (2.4)

The goal of reinforcement learning is to predict the value function Vπ(s) or to find

the policy π(a|s) that maximizes the expected return E[G]. There are two types of

reinforcement learning algorithms that differ based on the knowledge about the given

MDP; model-based reinforcement learning and model-free reinforcement learning. In

model-based reinforcement learning, all parameters of the MDP, that is 〈S,A,P,R,γ〉,

are revealed. Because all information of the MDP is known, model-based reinforce-

ment learning can be solved with the Bellman equation as follows:

Vπ(st) = Eat∼π,st+1 P[r(s,at)+ γVπ(st+1)] (2.5)

Some dynamic programming algorithms, such as value iteration, Q-value iteration,

and policy iteration, use Bellman equation to determine the optimal policy π∗ of the

MDP. In contrast, in model-free reinforcement learning, the parameters of the MDP

are unknown. Estimating the value function can only be achieved from experience.

The focus of this thesis is on model-free reinforcement learning because it is difficult

to define a proper MDP for many problems, and it is often necessary to learn from

experience.

Reinforcement learning algorithms can also be categorized depending on the use

of the value function. Some algorithms, called value-based reinforcement learning al-

gorithms, estimate the value function to improve the policy. These algorithms usually

estimate the action-value function Q(s,a) and update the policy, which takes action

with a maximum Q(s,a) using greedy-based methods. Other algorithms, called policy

18

optimization algorithms, do not estimate the value function but optimize the policy

directly. Value-based reinforcement learning is outside the scope of this thesis, whose

focus is on various policy optimizations.

2.3.1 Policy Optimization

A policy optimization method is a class of reinforcement learning methods that

do not maintain value models but directly search for the optimal policy. Let a policy

be parameterized by θ and denoted π(a|s;θ). Policy search methods search for the

optimal parameter θ∗ to maximize the expectation of returns:

θ
∗ = argmax

θ

J(θ) = Eτ∼pθ(τ)[G(τ)] (2.6)

The simplest approach for policy optimization is the policy gradient method [46].

The policy gradient method is a technique for deriving the gradient of the expected

return with respect to the model parameter θ, called the policy gradient, for gradi-

ent ascent optimization. The policy gradient with respect to θ can be expressed as

follows:

∇θJ(θ) = ∇θEτ∼pθ(τ)[G(τ)] (2.7)

= ∇θ

∫
τ

pθG(τ)dτ (2.8)

=

∫
τ

∇θ pθG(τ)dτ (2.9)

Using log derivative properties, ∇θ pθ(τ) can be represented as follows:

∇θ pθ(τ) =
pθ(τ)

pθ(τ)
∇θ pθ(τ) (2.10)

= pθ(τ)∇θlog pθ(τ) (2.11)

19

The log function changes products in pθ(τ) into a summation as follows:

∇θ log pθ(τ) = ∇θ log(p0(s0)
T−1∏
t=1

Pat (st ,st+1)πθ(at |st)) (2.12)

= ∇θ

T−1∑
t=1

(logπθ(at |st)) (2.13)

=
T−1∑
t=1

∇θlogπθ(at |st) (2.14)

The policy gradient can now be represented as follows:

∇θJ(θ) =
∫

τ

pθ(τ)(
T−1∑
t=1

∇θlogπθ(at |st))G(τ)dτ (2.15)

= Eτ∼pθ(τ)[(
T−1∑
t=1

∇θlogπθ(at |st))G(τ)] (2.16)

= Eπθ
[(

T−1∑
t=1

∇θlogπθ(at |st))G(τ)] (2.17)

The expectation over trajectories in (2.17) can be approximated with the Monte-

Carlo method with empirical trajectories. This Monte-Carlo policy gradient method

is called REINFORCE. Equation (2.17) implies that as the reward increases, gradient

ascent updates the parameters so that the probability of the action increases.

The Monte Carlo policy gradient relies on empirical returns, which have a high

variance. To reduce the variance in empirical returns, we use a method called the

actor-critic algorithm [23]. Assume that G(τt) can be represented as the action-value

function Qπθ
(st ,at). In the actor-critic algorithm, the action-value function is approx-

imated with Q(s,a|w) where w represents the model parameters. This can reduce the

high variance of empirical return.

Another way to reduce the variance is by adopting a baseline b(s). Baseline b(s)

is a function that is independent of the policy πθ; therefore, its expectation becomes

20

zero:

E[(
T−1∑
t=1

∇θlogπθ(at |st))b(st)] = 0 (2.18)

Subtracting the baseline from Qπθ
(st ,at) in the policy gradient does not change the

expectation:

∇θJ(θ) = Eπθ
[(

T−1∑
t=1

∇θlogπθ(at |st))(Qπθ
(st ,at)−b(st)] (2.19)

One popular baseline function is the state value function Vπθ
(st). The advantage func-

tion Aπθ
(st ,at) can be defined as follows:

Aπθ
(st ,at) = Qπθ

(st ,at)−Vπθ
(st) (2.20)

Using the advantage function instead of Gτ retains the expectation in the policy gra-

dient while reducing the variance.

An algorithm that uses Q or V as an advantage function is called the advantage

actor-critic algorithm. The advantage actor-critic algorithm is implemented in several

ways, including asynchronous advantage actor-critic (A3C) [30] and synchronous

advantage actor-critic (A2C).

2.3.2 Proximal Policy Optimization

The policy gradient updates parameters with the gradient ascent method with ex-

pected returns. The gradient ascent method takes small steps in the parameter space,

aiming to achieve small changes in the corresponding policy. However, determining

the exact size of a small step is not a trivial problem. Because the policy space is not a

21

simple Euclidean space, small steps in the parameter space may lead to large changes

in the policy space.

Trust region policy optimization (TRPO) offers a safe policy update algorithm that

guarantees monotonic policy improvements [38]. The principle idea of TRPO is to

optimize the surrogate function in a Kullback-Leibler (KL) divergence constraint.

argmax
θ

Eτ∼πθold
[

πθ(at |st)

πθold (at |st)
Aπθold

(st ,at)]

s.t. Eτ∼πθold
[KL[πθold ,πθ]]≤ δ

(2.21)

In (2.21) inside expectation, the surrogate function is an approximation for obtaining

the current advantages with trajectories sampled from the old policy πθold by impor-

tance sampling.

The constraint term can be changed into a penalty function by the Lagrange multi-

plier method to solve unconstrained optimization:

argmax
θ

Eτ∼πθold
[

πθ(at |st)

πθold (at |st)
Aπθold

(st ,at)−βKL[πθold ,πθ]] (2.22)

The Lagrange multiplier method ensures that there exists a proper β such that both

optimizations have the same optima. However, in practice, an appropriate β cannot be

easily determined, and experiments have demonstrated that using a fixed β is insuf-

ficient. Therefore, TRPO solves constrained optimization; however, it has a complex

structure and is difficult to implement.

22

Proximal policy optimization (PPO) is a simple version of TRPO that retains the

core principle of TRPO [40]. It also uses the surrogate function in TRPO:

L(θ) = Eτ∼πθold
[

πθ(at |st)

πθold (at |st)
At] (2.23)

= Eτ∼πθold
[rt(θ)At] (2.24)

Instead of solving constrained optimization, PPO simply clip the surrogate function

with a given hyperparameter as follows:

LCLIP(θ) = Eτ∼πθold
[min(rt(θ)At ,clip(rt(θ),1− ε,1+ ε)At)] (2.25)

In practice, PPO uses not only surrogate function clipping, but also value function

clipping when training the baseline state value function:

LV = (Vθ−Vtarget)
2 (2.26)

LV,CLIP = min[LV ,(clip(Vθ,Vθold − ε,Vθold + ε)−Vtarget)
2] (2.27)

With this simple concept, PPO maintains the gradient step in a safe range without

complex methods. PPO can be easily implemented because it has no constraint and

does not require second-order derivatives. In addition, it displays better performance

than that of other policy optimization methods, including the original TRPO.

2.4 Neuroevolution for Reinforcement Learning

Neuroevolution (NE) is a research domain in which EC is used to train neural

networks [44]. In the past, many NE algorithms focused on learning the topology

of neural networks, as back-propagation is highly effective in weight optimization.

23

Therefore, NE algorithms focused on encoding the network topologies into genes.

Neuroevolution through Augmenting Topologies (NEAT) is a famous topology en-

coding. With the NEAT algorithm, the topology of neural networks can be evolved

with traditional GA operators, such as crossover and mutation. There have been many

variations of NEAT that demonstrated impressive results [44]. However, the algo-

rithms involved very small neural networks compared to those used in the modern

deep learning era. Specifically, they only used hundreds or thousands of connections,

while deep learning uses millions of connections.

In modern NE, scalability has become crucial for competing with other deep learn-

ing algorithms, and studies have demonstrated that the NE algorithm has better per-

formance when they are sufficiently scaled. In many supervised tasks, such as vision,

speech, and language models, gradient descent with back-propagation works excep-

tionally well and it is difficult for NE to outperform. This is because in supervised

tasks, there is a smaller need to explore the search space, as the loss function is fixed,

dense, and its local optima display sufficiently good performance [7]. Gradient de-

scent, a type of hill-climbing algorithm, can efficiently find any local optima because

it has strong good exploitation power.

However, in reinforcement learning, there is no direct supervision. Furthermore,

the environments are sometimes stochastic and sparse. A major challenge in rein-

forcement learning is to explore the environment to attempt to discover rewards and

find optimal actions. As mentioned in Section 2.3, many gradient-based deep rein-

forcement learning algorithms have been proposed; however, they often suffer from

sparse and stochastic environments. In contrast, most EC algorithms have stronger

exploration power than that of hill-climbing algorithms.

One notable development in modern NE is the ES algorithm proposed by Salimans

et al. [37], who used a new form of ES, called natural ES (NES) to optimize the

24

Figure 6: Basic framework of hierarchical reinforcement learning

network weights. This algorithm performs competitively with the most effective deep

reinforcement learning algorithms, including deep Q-network (DQN) [31] and A3C

in Atari games.

Whereas NES involves the fundamental concept of gradient descent, another NE

algorithm based on the GA was proposed [45]. This algorithm uses a simple GA with

top-k selection, elitism, no crossover, and Gaussian mutation. It also demonstrates

results similar to those of DQN and A2C in Atari games. Furthermore, EC can be

more easily parallelized than gradient-based policy optimization.

However, it is notable that in Atari games, NEs outperformed gradient-based policy

optimization in some games, while gradient-based policy optimization outperformed

NEs in other games. It appears that the two algorithms have a different method of

optimization in terms of exploitation versus exploration. This topic is explored further

in Chapter 3.

2.5 Hierarchical Reinforcement Learning

Many reinforcement learning algorithms have achieved success on various bench-

mark tasks. However, real-world problems involve large-scale planning, which re-

25

quires various forms of abstraction. Abstraction allows systems to focus on rele-

vant tasks while micro-controllers handle details. Hierarchical reinforcement learning

(HRL) is based on this concept of abstraction [2]. HRL decomposes a reinforcement

learning problem into several subproblems, each of which is solved by a different

agent. One agent, called the low-level agent, directly takes actions in the environ-

ment, while other agents, called high-level agents, work as macro-operators. From the

viewpoint of balancing exploitation and exploration, the lowest-level agent exploits

the environment for dense and immediate rewards, while high-level agents explore

the environment for sparse and delayed rewards. In terms of the MDP, high-level

agents consider both environmental observations and the lowest-level agent as a vir-

tual environment. High-level agents take actions to the low level receives signals from

both the lowest level agent and the environment. Figure 6 presents the basic frame-

work of HRL. Based on the characteristics of high-level actions, HRL is divided into

two categories; option-based HRL and goal-based HRL.

2.5.1 Option-based HRL

Sutton et al. [47] formalized HRL to include activities of reinforcement learning

with options. One straightforward concept of an option is to select the lowest-level

policy with a high-level agent’s actions. Suppose that we have k different policies,

π1, ...,πk. The action space of the high-level agent is a k dimensional categorical

space. If the action of the high-level agent is i, πi acts. In this case, the high-level

agent and low-level agent share the same state space.

However, some algorithms do not use options as a policy selector but rather, as

a low-level observation. If the high-level action is o, the low-level policy uses both

the environmental observations and options as input, µ(s,o). When there are differ-

ent policies and the option must select one of them, the option must be categorical.

26

However, when the options are inputs to the lower-level policy, they can be in any

representation: categorical [49], multinoulli [34], or continuous valued [9, 20]. When

an option is used as a lower level input, it is also called a modulation signal.

2.5.2 Goal-based HRL

When a modulation signal has special meaning in the observation space or feature

space, it is called a goal signal. Nachum et al. [33] proposed a high-level policy that

has the action space of (x,y) coordinates for the environment and provides the (x,y)

location of the agent in the observation. The lower-level agent is given penalties in

proportion to its distance to the goal location, causing the agent to move toward the

goal. Because the modulation signal is in the same space as a subset of the envi-

ronmental space, the concept from multi-goal reinforcement learning algorithms can

be used [1]. In contrast, some algorithms use goal in the latent space [51] for the

environment with the explicit location in the observation.

2.5.3 Exploitation versus Exploration

The structure of HRL is designed for the division of task into macro-management

and micro-control. However, the structure itself does not necessarily improve the

exploration power of the agent [11]. Balancing exploitation and exploration remains

a significant challenge in HRL. In some algorithms, both agents are fixated on the

micro-control and rarely explore, while other algorithms have difficulty training a

low-level policy to perform micro-control. Pretraining the agent step by step may be

effective for some environment, but fails in environments with sparse rewards.

Many HRL methods use reward function design to address the exploration prob-

lem. Some studies have used virtual rewards, called intrinsic rewards or motivations,

to encourage an agent to explore [34, 6]. These methods usually evaluate current

27

states according to their novelty. An agent receives small motivations if the current

state has been visited frequently, but receives large motivations when the current state

has not yet been visited. Another study has proposed the advantage estimation of a

high-level policy to a low-level policy as rewards, called auxiliary reward [28], to

improve the exploitation power of the low-level policy.

Most algorithms have attempted to solve the exploitation exploration balancing

problem while maintaining the framework of gradient-based policy optimization and

modifying other aspects of the problem. This problem is addressed with hybridization

of optimization in Chapter 4.

28

Chapter 3

Understanding Features of Evolutionary
Policy Optimizations

Deep learning has achieved impressive performance thanks to powerful hardware

and various algorithms [16]. By stacking multiple neural-network layers into spe-

cific architectures, deep neural networks can efficiently represent inductive biases for

high-dimensional data [3]. However, understanding how deep neural networks work

is nontrivial. Deep neural networks usually have a large number of parameters, caus-

ing high complexity. Many methods have been suggested to figure out the essential

aspects of neural networks, especially for computer vision tasks. Various saliency

methods have been used to examine the logical or abstract relations between input

and hidden or output nodes. Data gradient methods [42], class activation maps [54,

41], and DeConvNet [53] have been used to provide useful analysis of convolution

neural networks (ConvNets) for image data.

Recent advances in deep learning have also had a huge impact on reinforcement

learning studies. Reinforcement learning with deep neural networks (i.e. deep rein-

forcement learning) can help overcome the curse of dimensionality. Policy gradient

methods [30] and trust region-based methods [40] are some successful examples.

In addition, recent studies have also suggested that some evolutionary methods may

rival gradient-based optimization algorithms [37, 45]. It is well-known that evolution-

ary methods have significantly different properties from gradient-based optimization.

They also demonstrate different behavior in various machine learning tasks [37].

29

Table 2: Convolutional network architecture

Layer Input Output
Conv 8×8 stride 4 84×84×4 20×20×32
Conv 4×4 stride 2 20×20×32 9×9×64
Conv 3×3 stride 1 9×9×64 7×7×64
Flatten 7×7×64 3136
Fully connected 3136 # of actions

However, not much information is known on the type of features learned by deep

reinforcement learning methods. Several studies have used visual inspection to pro-

vide qualitative information on features in reinforcement learning [18]. There has also

been a lack of studies examining evolutionary algorithms for reinforcement learning.

Although evolutionary algorithms demonstrate competitive performance, how they

function in complex reinforcement learning tasks remains largely unknown.

In this chapter, a sequence of experiments is described to examine the features of

deep reinforcement learning networks. Visual analysis of the networks with various

feature explanation methods is performed, including filter visualization, activation

visualization, and data-gradient saliency mapping. The way how networks work in

various situations is explained using several supplemental experiments. Agents ob-

tained by both gradient-based policy optimization and evolutionary policy optimiza-

tion are evaluated, and additional inspection of evolutionary policy optimization is

performed with several experiments and behavioral analysis. The primary goal of

this chapter is to reveal the reinforcement learning properties of evolutionary policy

optimization. The results suggest that evolutionary policy optimization works differ-

ently from gradient-based policy optimization in terms of features and search space.

30

Algorithm 5 (1+Λ) ES for NE

In: number of children λ

In: Sample deviation σ

In: Learning Rate α

Initialize network parameters µ
repeat

for i← 1 to λ do
Sample εi ∼ N(µ,σ)
Fi← fitness(εi)

end for
Normalize Fi

Adjust learning rate al pha by Rectified Adam
µ← µ+ α

σλ

∑n
i Fiεi

until stop condition
return µ

3.1 Experimental Setup

Deep neural networks trained for tasks in Atari 2600 benchmarks were gathered.

Considering the computation resource limits, eight different tasks were selected. The

networks were trained with A2C and ES to compare the gradient-based method and

evolutionary algorithm. The same ConvNet as the network used in a previous study

[30] was used, as depicted in Table 2. For A2C, mini-batch training with a batch size

of 128 and the RMSProp optimizer [50] were used. For ES, some modifications were

applied to implement natural ES as in [37]. This process is described in Algorithm 5.

ES sampled n = 100 solutions with a noise level of σ = 0.1, and parameters were

updated with a learning rate α = 0.01. Each solution was evaluated eight times, and

the average results were used as fitness. Both algorithms were trained for 10,000,000

environment steps for a fair comparison. The performance of the networks in the

given tasks is presented in Table 3. While networks trained by A2C demonstrated

better performance in some tasks, they were outperformed by networks trained by

ES in other tasks.

31

Table 3: Performance of agents trained by each algorithm

Environment A2C ES
Assault 1753.62 575.88
Asteroids 596.25 725.55
BattleZone 375.00 10375.00
BeamRider 4930.00 671.00
Centipede 3041.25 8108.75
Gravitar 0.00 243.75
Frostbite 300.50 585.30
Seaquest 1830.00 427.50
SpaceInvaders 881.88 358.75

3.2 Feature Analysis

3.2.1 Convolution Filter Inspection

Because convolution filter weights in a ConvNet contain feature information trained

from data, the filter weights can be visualized to examine the features of the network.

It can be useful to plot the filter weights of the convolution filters in ConvNets. Fig-

ure 7 depicts some of the first layer filters of ConvNets trained by both A2C and ES

for two tasks; SpaceInvaders and Centipede. On visual inspection, the difference be-

tween the two algorithms is clear. In the filters trained by A2C, sparsity and patterns

appear. Some filters appear to have intuitive features such as edge detectors. In con-

trast, in filters trained by ES, noticeable patterns are not easily observed. It is thus

difficult to distinguish filters trained by ES from pure random noises.

Visual assessment, however, is not sufficient for a clear analysis and can be mis-

leading. Therefore, further statistical analysis is required to find out whether weights

in filters have regular patterns or are random. Here, completely random noise is con-

sidered a normal distribution because a normal distribution is the maximum entropy

distribution given finite mean and variance. A simple test was performed to compare

32

A2C SpaceInvaders Filters ES SpaceInvaders Filters

A2C Centipede Filters ES Centipede Filters

Figure 7: First convolutional layer filter visualizations

filters trained by A2C and ES. For each filter in the first convolutional layer, which

consisted of 4× 8× 8 = 256 weights, the weights were standardized by subtracting

their mean and dividing by their standard deviations. Then, a Kolmogorov-Smirnov

test was applied to determine whether the weights can be sampled from a normal dis-

tribution. If the test rejects the null hypothesis, it can be concluded that the weights

are not entirely random. However, if the test accepts the null hypothesis, it is diffi-

cult to claim that the weights are not random. If the test with filter weights rejects

33

Table 4: The number of filters that passed Kolmogorov-Smirnov test

Algorithm A2C ES
Layer 1 2 1 2

Assault 8 2 0 0
Asteroids 22 13 0 0
BattleZone 4 29 0 0
BeamRider 4 1 0 0
Centipede 16 5 0 0
Gravitar 5 7 0 0
Frostbite 4 61 0 0
Seaquest 7 8 0 0
SpaceInvaders 27 5 0 0

the null hypothesis, it can be stated that the filter passes the randomness test. Table 4

presents the result of the experiments, displaying the number of filters that passed

the randomness test. The first convolutional layers trained by A2C have filters that

passed the test. Especially for several tasks, more than half of the filters were not

entirely random. In contrast, no filters trained by ES passed the test. Even in a task

in which networks trained by ES performed better than networks trained by A2C, the

filters trained by ES did not pass the test, whereas some filters trained by A2C did

pass the test. The filters trained by ES were thus relatively random compared to those

trained by A2C. The second layer filter weights, which consisted of 32×4×4 = 512

weights, were also tested by the Kolmogorov-Smirnov test, which is presented in Ta-

ble 4. While many filters trained by A2C passed the test, no filters trained ES passed

the second layer’s test.

Another approach is to compare each filter with another and test whether those fil-

ters have different distributions. If each filter learned different features, their weights

must have different distributions. Kolmogorov-Smirnov tests were conducted on 496

pairs from 32 filters in the first convolutional layer and counted the number of pairs

that passed the test. If a pair of filters pass the test, the two filters have different dis-

34

Table 5: The number of filter pairs that passed two sample Kolmogorov-Smirnov test

A2C ES
Assault 217 55
Asteroids 276 67
BattleZone 280 61
BeamRider 262 57
Centipede 288 56
Gravitar 171 44
Frostbite 299 47
Seaquest 192 53
SpaceInvaders 123 48

Table 6: The number of feature map pairs that passed two sample Kolmogorov-
Smirnov test

A2C ES
Layer 1 2 3 1 2 3

Assault 258.1 563.4 18.8 427.7 1496.0 264.4
Asteroids 222.2 238.6 207.9 417.6 1354.4 174.6
BattleZone 175.5 568.1 0.0 420.6 1258.3 250.1
BeamRider 377.9 482.6 9.0 479.1 1238.5 254.0
Centipede 292.2 409.1 113.5 421.3 1124.6 266.3
Gravitar 287.2 608.7 112.0 386.2 1237.7 277.8
Frostbite 132.0 670.3 0.0 451.0 1603.0 384.1
Seaquest 165.8 390.3 23.0 430.3 1289.3 296.7
SpaceInvaders 204.7 181.2 34.1 462.3 1242.6 298.4

tributions, so they have learned different features. Table 5 demonstrates the result

of this analysis. At least 40 pairs passed the test for filters trained by ES. This result

implies that some filters have different weight distribution than other filters and there-

fore learned different features. However, many more A2C trained filter pairs passed

the test, while relatively fewer ES trained filter pairs passed the test.

The pairwise Kolmogorov-Smirnov test for the activation map was also conducted

to make sure that different filters generated different feature maps. If feature maps

are similar, they will never pass the test. For example, four consecutive frames of

35

observation cannot pass the test because they have the same value in general. How-

ever, if feature maps have different features, they can pass the test. These exper-

iments were conducted in 10 different timesteps, and their average is reported in

Table 6. Interestingly, unlike filter pair tests, the result of feature map pair tests pre-

sented that the much more feature map pairs of the network trained by ES passed the

Kolmogorov-Smirnov test. Especially in the third convolutional layer, feature maps

of the ES trained network were even more diverse than A2C trained networks. This

result seems consistent with the assumption about the exploitation and exploration.

A2C, a gradient-based optimization, tends to learn important features by exploitation.

Therefore, there is a possibility that several channels learn the same feature. These

characteristics lead to less diverse feature maps in many environments. In some en-

vironments, no feature map pairs passed the Kolmogorov-Smirnov test in the third

convolutional layer This implies that there were small diversities in feature maps.

However, ES tends to train weights by exploration, resulting in diverse feature maps.

It seems that ES was effective in several environments, thanks to these diversities.

3.2.2 Saliency Map

A saliency map using data gradient was generated, as described in this section.

Data gradient is a way to visualize saliency maps to explain the spatial information

of the feature usage in a given image in a ConvNet. Suppose that image I0, a target

class c, and a class score function Sc of a ConvNet are given. The gradient of Sc with

respect to I given an image I0 can be calculated as follows.

wc =
∂Sc

∂I

∣∣∣∣
I0

.

36

Action:RIGHT

(a)

Action:FIRE

(b)

Action:FIRE

(c)

Action:FIRE

(d)

Figure 8: Saliency maps for different actions and states trained by A2C

This shows how much class score changes given small changes in pixels. As it is easy

to calculate gradient with back-propagation in neural networks, saliency map can

be applied to various networks without limitations. The data gradient saliency map

was plotted for the given a series of states and actions. In Atari 2600 environments,

a channel of images represents a time sequence of images, not a color encoding;

therefore, the channel-wise maximum magnitude was not used. Instead, four images

were placed into a 2×2 shape.

In the agents trained by A2C, interpretable features were not observed by their

saliency maps. Let us use a SpaceInvaders agent as an example. Figure 8 presents in-

put images, corresponding actions, and saliency maps. The agents generally focused

more on the latest frame among the four frames. This is a natural phenomenon, con-

sidering that the latest frame plays a more decisive role in the impending action and

return. In addition, depending on the task, an agent could represent saliency accord-

ing to the given states and actions. The SpaceInvaders task had six different actions,

37

NOOP, FIRE, LEFT, RIGHT, LEFTFIRE, and RIGHTFIRE. When the agent took

action RIGHT as in Figure 8a, it focused heavily on the position of the player but

focused less on other pixels. In contrast, when it took action FIRE as in Figure 8b,

it focused not only on the position of the player but also on the shooting target po-

sition. Moreover, the agent appeared to understand the semantic difference between

actions given in different states. In SpaceInvaders, the action FIRE does not function

the same all the time. After firing a bullet, FIRE does not fire another bullet for a

short time (16 frames in the current environment). For a short time, FIRE works as

NOOP, LEFTFIRE works as LEFT, and RIGHTFIRE works as RIGHT. The saliency

maps demonstrate that the agent was able to understand this mechanism. When FIRE

was available, as in Figure 8c, the agent focused on both the player and the target;

however, when FIRE was not available, as in Figure 8d, the agent focused only on

the player.

The saliency maps of agents trained by ES had different characteristics, however.

Figure 9 presents the saliency maps of agents for Centipede trained by ES. On visual

inspection, no patterns in the saliency maps of the agents were found. Even in some

tasks in which agents trained by ES worked better, such as Centipede, their saliency

maps appeared random. However, as in the filter weight analysis, visual inspection is

not sufficiently precise and can be misleading. To verify whether the saliency maps

of ES agents are random, a quantitative experiment was conducted. Let us assume

that one cannot find out any pattern in the maps due to harsh noise. If it is possible to

find some signals over noise in some areas, those areas may have meaningful features.

Suppose that there are small patches (5×5) of the given image. The episodic saliency

distribution of the patch can be defined as the distribution of data-gradients of the

patch through the entire episode. Let the frame saliency distribution of the patch be

the distribution of data gradients of the patch in a specific frame. For a given time step,

38

Action:DOWNFIRE

Action:DOWNRIGHTFIRE

Figure 9: Saliency maps for evolutionary strategy

if the frame saliency distribution of a patch is different from the episodic distribution

of the patch, which can be measured by the Kullback–Leibler (KL) divergence [24],

the patch is considered to have meaningful features.

The KL divergence between the frame saliency distribution and the episodic dis-

tribution was plotted, sliding a 5×5 patch at a given time step. Figure 10 presents the

plots of the input image, the KL divergence, and the KL divergence larger than 1.0

in a specific time step. The agent was trained for Centipede trained by ES. The plot

reveals that the lower-right part of the image has an entirely different saliency distri-

bution than that of the episodic distribution, which is the location of the player. This

result reveals that although the original saliency maps appear completely random,

there may be patterns in the noise that are related to some meaningful features.

39

(a) (b) (c)

Figure 10: KL-divergence plots of agent trained by ES

3.3 Discussion

3.3.1 Behavioral Characteristics

To gain further insights, the behavioral characteristics of the agent in each environ-

ment were examined.

Centipede Agents trained by ES attempted to move to the lower-right corner and

continued to fire by performing the action RIGHTDOWNFIRE, while agents trained

by A2C attempted to track the movement of the centipede. A centipede (long blue

object in Figure 11a) moves in a certain way; it sweeps the area from left to right

or from right to left and moves down when it confronts obstacles or the right or

the left edge of the playable area. If there are not too many obstacles, the centipede

tends to visit the right or left edge frequently. Moreover, when a centipede is hit

by bullets, it splits into two centipedes that move separately. Therefore, if an agent

does not know the location of the centipedes or the player, it is unwise to move

around in an attempt to track the centipedes. As all centipedes tend to move toward

edges, it is reasonable to move toward the right or left side and continue firing, by

performing RIGHTDOWNFIRE. The A2C agents attempted to follow the centipedes

40

(a) Centipede (b) Asteroids

(c) Gravitar (d) Frostbite

Figure 11: Four environments in Atari 2600

and did not have high scores. In contrast, the ES agents, which continued performing

RIGHTDOWNFIRE and a few other movements, had much higher scores.

Asteroids In the Asteroids task, many asteroids (white and brown objects in Fig-

ure 11b) appear on the left or right side of the player and move from top to bottom or

bottom to top. The environment never gives the location of asteroids and the player

at the same time. It only gives visual information of the player for a time and then

it only gives visual information of asteroids. If an agent does not know the location

of the asteroids or the player, the best strategy is to continue turning around and fir-

41

ing. While the A2C agents clumsily attempted to follow the asteroids, the ES agents,

which performed 56% of UPLEFTFIRE and other firing actions, scored more than

the A2C agents.

Gravitar In the Gravitar environment, an agent must first move to one of planets

(small objects in Figure 11c) to start a game. Before reaching the start point, no

rewards are given. The A2C agents could not learn anything because rewards are

extremely sparse. The ES agents, however, managed to find the starting point and gain

scores. It appears that strong exploration power of ES achieved better performance.

Frostbite In the Frostbite environment, an agent first has to jump on ice planks

(white objects in Figure 11d) on the water. Every jump gives the agent small rewards.

After several jumps, an igloo is built and the agent must enter it to gain large rewards.

When igloo building is finished, jumping on ice planks does not give any rewards.

The A2C agent continued to jumping across ice planks even after the igloo is built.

Because of exploitation nature of gradient-based optimization, A2C cannot find the

state of entering the igloo. In contrast, the ES agents occasionally entered the igloo

and were rewarded with huge scores. It also appears that strong exploration power of

ES achieved better performance.

3.3.2 ES Agent without Inputs

In some environments, such as Centipede and Asteroids, the ES agents rarely re-

acted to the states but obtained much more scores. A simple additional experiment

was conducted to figure out the reason for this result. In four different tasks in which

ES agents performed better, I also trained an agent by ES without inputs. The agent

was provided not the exact state images, but an image tiled with the mean values of

the original states; therefore, their outputs were always the same. Table 7 presents the

42

Table 7: Performance of agents trained by evolutionary strategy (ES) without inputs

Environment A2C ES ES without inputs
Asteroids 596.25 725.55 813.75
BattleZone 375.00 10375.00 5875.00
Centipede 3041.25 8108.75 4516.63
Gravitar 0.00 243.75 187.50
Frostbite 300.50 585.30 127.70

results of ES without inputs. Without inputs, agents trained by ES displayed worse

performance than the agent trained with proper inputs. However, in all four tasks, the

ES without inputs performed better than A2C. Especially in the Asteroids task, ES

without inputs performed better than ES with inputs.

This discovery offers new knowledge about the way ES trains agents. These agents

make use of macro-knowledge of tasks to learn useful action rather than learning

detailed understanding of the way to respond to corresponding states. ES leads to

only slightly better performance than the agent, which can be trained even without

detailed inputs. Agents trained by ES do not seem to respond to states because macro-

knowledge dominates their policies. ES does not work well in tasks in which macro-

knowledge is not crucial, such as in Assault, SpaceInvaders, and BeamRider. Instead,

A2C demonstrated superior performance on those tasks by learning proper features.

43

Chapter 4

Hybrid Search for Hierarchical
Reinforcement Learning

For reinforcement learning, learning policies over a long-time with delayed re-

wards is a major challenge. Hierarchical reinforcement learning (HRL) can be used

to solve these challenges. However, hierarchical policies do not necessarily help the

exploration of skills [11]. Even with the HRL framework, gradient-based policy op-

timization cannot overcome the sparsity of rewards. Many different algorithms have

been proposed, such as careful goal design [33], dense reward design [28, 34], the

lower level pretraining [14], task dividing [20] and entropy-based exploration [11].

Most HRL algorithms still function in the paradigm of gradient-based policy op-

timization. However, as mentioned in Chapter 3, evolutionary policy optimizations

perform better in sparse-reward environments. If they are supported by suitable ex-

ploitation methods, they can be useful in various complex tasks. It appears that the

hybridization of policy optimization can result in an algorithm with balanced ex-

ploration and exploitation. Therefore, in this chapter, a hybrid search algorithm is

proposed for the HRL framework. Based on the deep neural network HRL frame-

work, different optimization strategies are applied to the low-level policy network and

high-level policy network. The high level, which requires strong exploration power,

is optimized by an evolutionary strategy while the low level, which requires strong

exploitation power, is optimized by gradient-based optimization, PPO. A technique

called a direction-masking network is used to improve low-level control performance.

The experimental results demonstrate that the hybridization of policy optimizations

44

generated an effective agent performing both macro-management and micro-control

without pretraining or goal designing.

4.1 Method

Hybrid Optimization for HRL The HRL framework for hybrid search consists

of two levels, the high-level policy and low-level policy. The low-level policy deals

with the micro-control for the agent’s actions, while the high-level policy suggests the

movement directions of the agent. There are eight directions; up, down, left, right, and

an additional four directions in between. The high-level policy produces categorical

signals with a dimension of 8. Then, the low-level policy is trained to move in that

direction.

It is clear that the high-level policy requires strong exploration power, while the

low-level policy requires strong exploration power. Therefore, a different optimiza-

tion algorithm for each policy level is proposed. For the low-level policy which re-

quires intensive exploitation, a state-of-the-art gradient-based policy optimization

(PPO) is performed to train micro-control of the agent. In contrast, the high-level

policy, which requires exploration, is trained with evolutionary algorithms. Two dif-

ferent algorithms are used, ES and GA, that have different exploitation and explo-

ration characteristics. ES tends to have more exploitation power than the GA, while

the GA has more exploration power than ES. In this study, only simple ES are used

because complex ES implementation needs larger time complexity. For example, co-

variance matrix adaptation evolutionary strategy (CMA-ES) [19] needs O(n2) com-

plexity given the number of parameter n. In deep neural network, the number n is

usually large, more than 60k in this chapter. Performing an O(n2) algorithm for this

size is impractical. In contrast, simple ES only needs O(n) complexity so it can be

performed in efficient time.

45

Figure 12: Direction-masking network

Direction-Masking Network Training a policy that moves in a given direction

is also a nontrivial task. PPO with a simple multi-layer perceptron cannot handle

this task, and various sophisticated algorithms, such as meta-learning[13] and reward

function evolution [21], are used instead. In this chapter, this problem is overcome

with a new architecture design, called a direction-masking network for the low level.

The direction-masking network uses robot observations and directions and consists

of eight branch networks. Each branch network is a feature-extracting multi-layer

perceptron for each direction with robot observation inputs. The eight feature vectors

are masked with the target direction inputs. Only features corresponding to the given

direction survive while the remaining features are changed to zeros. The surviving

features are used to determine the actions. Figure 12 illustrates the mechanism of the

direction-masking network. The direction-masking network allows the low level pol-

icy to solve a challenging task without multiple policy networks or complex training

algorithms.

46

(a) (b)

Figure 13: AntMaze and AntGather environments

Adaptive Mutation for Exploration There exist some environments with extremely

sparse rewards that even an evolutionary algorithm cannot handle. Therefore, evolu-

tionary algorithms are modified to increase the exploration power when the rewards

are too sparse. When all children of evolutionary algorithms have no rewards in an

episode, the mutation power is increased to produce children to search a broader

space in the next generation. However, if all children receive some rewards in an

episode, the mutation power is decreased to search a narrower space in the next gen-

eration. With this adaption method, the algorithm can search the problem space with

sufficient exploration power.

4.2 Experimental Setup

4.2.1 Environment

To ensure that both macro-management and micro-control are performed well, a

complex environment is required. Rllab [10] is known to have various environments

47

Figure 14: Wall readings for Maze environment

with high complexity. The environments used were AntMaze and AntGather. In these

environments, agents must control their joints to continue moving. In addition, they

must manage a long-term strategy to overcome obstacles and approach the appropri-

ate targets. In AntMaze, there is a large wall between the agent and destination, as

illustrated in Figure 13a. Therefore, the agent must use a ⊃-shaped detour to reach

its destination. There is a scaling parameter that determines the size of the maze, and

a width of 4 was used for the experiments. An agent is considered successful when

it is sufficiently close to the destination. The success rate of the agent is assessed for

the evaluation. An ant has four legs attached to its torso, and each leg has two joints,

one on its hip and one on its knee.

Unlike most other experiments [33, 27], the agent does not have access to its abso-

lute coordinates. Instead, it uses a sensor with 20 different rays originating from its

agent, which is the default observation given in [10]. Assume that the agent has a ray

with a length of 10.0. If there is a wall in the ray’s direction and its distance is 7.0,

the wall reading for the ray becomes 7.0/10.0 = 0.7. If there is no wall within 10.0 in

48

the ray direction, the wall reading is 0.0. The goal readings work similarly to the wall

readings, except that the target is the goal, not the walls. In addition to the agent’s lo-

comotion observations, 20 wall readings and 20 goal readings are given to the agent

as observations. In the experiments the sensor range 10.0 was used, and the sensor

span was 2π (the agent shot 20 rays in 360◦). Figure 14 presents the operation of the

sensor in the Maze environments. In AntGather, an ant must gather green ball-shaped

objects, or apples, while avoiding red ball-shaped objects, or bombs as illustrated in

Figure 13b. The agent in the AntGather environment uses a sensor similar to that of

AntMaze agent. It shoots 20 rays originating from the agent in all directions, and

gathers apple readings and bomb readings. With the ant’s locomotion observations,

20 apple readings and 20 bomb readings are given.

The high-level policy and low-level policy are given with different observations

and rewards. The low-level policy is given only with the locomotion observations

of the agent. In the Ant environments, AntMaze and AntGather, it is given 15 posi-

tional, 14 velocity, and 84 contract force observations. The low level is rewarded with

its forward velocity reward to the direction given by the high level. The high level,

in contrast, is given both locomotion observations and sensor observations. In Ant

environments, the agent is given 113 locomotion observations and 40 sensor obser-

vations. It is rewarded with the actual environmental rewards; a goal arrival reward

for Maze, and +1 for apples, and -1 for bombs in Gather. In addition, to encourage

exploration, the high level is also rewarded with the moving distance of agents in a

cycle. An action is represented by eight continuous values in the range [−150,150]

for the joint controls of the ant

49

4.2.2 Network Architectures

Multilayer perceptron networks parameterize both high-level and low-level poli-

cies. A high-level network consists of two hidden layers with 256 nodes activated by

the tanh function. The output of the high-level policy is eight logits for a categorical

distribution. Each category denotes the direction that the agent should follow.

The low-level network consists of eight branch networks with two 64-node hidden

layers and tanh activation function. The features of these networks are masked by

the direction given by the high level network. If the given direction is zero, only

one branch network’s feature is used, and features from other networks become zero.

Then, with the 64 nodes (64×7 zeros), the action is calculated. The action values are

sampled from independent normal distributions whose means are the output of the

network, and standard deviations are learnable parameters initialized to one.

4.2.3 Training

The low-level policy was optimized with the PPO [40] algorithm, which is known

for its performance in simple locomotion tasks. The algorithm sampled 4000 steps of

(s,a,r)s and their returns were calculated with a discount γ = 0.99. In addition, the

advantages were calculated with generalized advantage estimation of λ = 0.95 [39].

Then, the algorithm trained the advantages in mini-batches with a size of 128 for 10

mini-epochs. Both surrogate functions and value predictions were clipped into the

ε = 0.2 range. The gradient was optimized with the Rectified Adam [29] optimizer

with an initial learning rate of 0.003.

Meanwhile, the high level was optimized with the same ES as in Algorithm 5 and

the GA in [45]. Both algorithms generated λ = 10 children with a mutation power of

sigma = 0.001, with adaptive modification. In the case of ES, instead of sampling 10

random steps, ES sampled five random steps and their negative values as children.

50

Then, it updated µ with the learning rate of α was 0.0001 with the episodic fitness. It

used the rank of children normalized into [−0.5,0.5]; the fitness of the best child be-

came 0.5, while the fitness of the worst child became -0.5. Selecting the best learning

rate in ES is also a large challenge. ES updated µ with the Rectified Adam optimizer

assuming that the evolving step σλ
∑n

i Fiεi was the actual gradient of the point µ.

With this technique, the learning rate of α was selected adaptively. In contrast, in

the GA, top three children were selected and used for reproduction. The elite (best-

performing) individual was always kept intact while training. No crossover was used

in this GA.

The networks were trained for 10,000,000 steps in the environments, divided into

2,000-step episodes, and repeated five times. Each episode contained 20 sub-episodes,

or cycles, of a step length of 100. The genes were updated every 500 steps. Therefore,

there were 500 generations in both ES and the GA.

4.3 Results

4.3.1 Comparison

For comparison, four different algorithms were used for training in the same envi-

ronment. Two algorithms were used as baseline algorithms to verify the effectiveness

of hybrid search, while the other two algorithms were alternative.

PPO only A network was trained with only a PPO, which is the low-level part of

the networks, without the HRL framework. Because the environments do not pro-

vide rewards from directional velocity without the HRL framework, merely using

raw rewards is unfair. Therefore, raw rewards and directional velocity rewards were

scalarized into a single value.

51

Table 8: Results of hybrid hierarchical reinforcement learning

Task AntGather AntMaze
Random walk 0.14±1.07 0.00±0.00
Hybrid HRL (ES) 2.20±1.38 0.35±0.47
Hybrid HRL (GA) 0.45±1.44 0.00±0.00
PPO only 0.04±0.90 0.00±0.00
PPO+Random Move HL −0.10±1.54 0.00±0.00
PPO+Random Search HL 0.76±1.70 0.00±0.00
SNN4HRL 1.92±0.52 0.00±0.00

Random Move In the hybrid algorithm, the contribution of ES in the high level

was uncertain because the low level was trained with a PPO. An algorithm was used

in which random one-hot vector generators replaced the high level. This experiment

clarified the contribution of the ES-optimized high level.

Random Search Some studies have suggested that a simple random search may

be as good as evolutionary algorithms [45]. Therefore, a random search was used for

high-level policy optimization. This experiment can reveal the difference between a

simple random search and evolutionary search.

SNN4HRL SNN4HRL, a stochastic neural network for hierarchical reinforcement

learning [14], which uses a similar categorical modulation signal, was used for com-

parison to the gradient-based HRL algorithm. The results were taken from the report

by Nachum et al. [33] as the original paper did not provide the results for the current

environments.

52

4.3.2 Experimental Results

The experimental results are depicted in Table 8. Every result is reported by 100

evaluations with the trained model. The first value denotes the mean of the episodic

rewards, where ± indicates the standard deviation.

The hybrid HRL with ES produced favorable results in both AntGather and AntMaze.

Compared to PPO only, the hybrid HRL had superior performance in both environ-

ments. The PPO-only agent could not reach the goal in AntMaze at all, whereas the

hybrid HRL managed to reach the goal. In the AntGather environment, the results

of the PPO-only agent were not better than those of the random walk, whereas the

hybrid HRL produced better results. It is evident the agent benefitted from the hier-

archical structure. The comparison between hybrid HRL and PPO plus random move

revealed the contribution of ES to the high level policy. PPO plus random move agent

performed as well as the random walk agent. This result indicates that ES did not find

a good policy by chance; instead, it optimized the policy according to the rewards.

The hybrid HRL with ES also outperformed SNN4HRL, a gradient-based HRL al-

gorithm. SNN4HRL did not reach the goal at all in AntMaze, whereas hybrid HRL

reached the goal in nearly 50% of trials. In addition, it is notable that the hybrid HRL

used no pretraining at all, whereas SNN4HRL used pretraining for the low level.

In contrast, hybrid HRL with GA did not produce impressive results. Its perfor-

mance was worse than SNN4HRL in AntGather. It was also unable to find any good

agents in AntMaze. Interestingly, the random search high level agent produced better

results than hybrid HRL with GA in AntGather; however, the results were not better

than those of hybrid HRL with ES. It thus appears that the optimization power of the

GA is not better than that of a random search, whereas ES has excellent optimization

power in HRL.

53

(a) (b)

(c) (d)

Figure 15: Cycle movement for four directions

Meanwhile, the hybrid HRL had a large variance in both environments, while

SNN4HRL had a much smaller variance. It thus appears that the high level has diffi-

culty fine-tuning the high level policy, resulting in a high variance in performance.

4.3.3 Behavior of Low-Level Policy

The function of the low-level policy is to accurately walk toward the direction. To

ensure that the low-level policy is trained as designed, the cyclic movement of the

agent was plotted given an action. Figure 15 illustrates the cyclic movement of the

54

ant agent in the AntGather environment. Figure 15a, 15b, 15c, and 15d depicts the

cyclic movement of agents for the up, down, left and right directions, respectively.

The agents moved from round shaped markers to triangle-shaped markers. The low

level moved toward the given direction quite well, but with some errors. It appears

that the low level policy was trained as designed with the hybrid HRL without any

pretraining.

4.4 Conclusion

In this chapter, I proposed a hybrid HRL algorithm to generate successful agents

for complex tasks. Several techniques were used to overcome the sparsity of rewards

and the complexity of tasks. The direction-masking network was used for the agent to

learn how to move in a given direction without complex learning algorithms Adaptive

mutation power was used to overcome the sparsity of rewards by enlarging or reduc-

ing the search space. The results indicate that the hybrid HRL was more effective

than simple gradient-based reinforcement learning and had better performance than

a gradient-based HRL algorithm. In some environments in which exploration is cru-

cial, the hybrid HRL produced better results than gradient-based HRL. Furthermore,

the hybrid HRL used no pretraining techniques, while the gradient-based HRL used

a pretraining technique. However, in hybrid HRL, there was a large variance in the

results, while the results of gradient-based HRL had a small variance. The variance

of hybrid HRL was even larger than that of the random walk agent, which may be a

critical drawback. This result was likely due to the lack of fine-tuning in the high level

policy which was trained with an evolutionary algorithm. These results demonstrate

that even for the high level policy, a proper balance between exploitation and explo-

ration is critical. Therefore, this algorithm can be further improved by hybridizing

the high level optimization itself.

55

Chapter 5

Conclusion

5.1 Summary

In this thesis, a hybrid search algorithm was proposed for complex reinforcement

learning tasks. In balancing exploitation and exploration in the optimization prob-

lem, domain knowledge is one of the most critical factors in designing optimization

algorithms.

Many reinforcement learning algorithms have been suggested to overcome the ex-

ploration problem. But most of them do not consider other optimization methods

than gradient-based optimizations. Gradient-based optimization is a powerful local

optimizer, but it lacks exploration power. Most studies use modification other than

changing the optimization algorithm, which is critical to the exploration power. No

free lunch theorem is also applied to the field of optimization. In Chapter 3, both

gradient-based policy optimization and evolutionary policy optimization were ana-

lyzed with various environments with different characteristics. The results demon-

strate that while gradient-based optimizations are good at following immediate re-

wards, it fails to find the big picture of the environment. However, the evolutionary

policy optimizations are good at finding the macro-knowledge of the environments,

even with lesser observation.

A hybrid hierarchical reinforcement learning algorithm is proposed in Chapter 4.

In the hybrid HRL, an evolutionary algorithm, which is strong for finding the macro-

knowledge of the environment, is used to train the high-level macro-management

56

agent and a gradient-based algorithm, which is strong for following immediate re-

wards, is used to train the low-level micro-controller. The result showed that the hy-

brid HRL worked better than the gradient-only HRL algorithm. Even without any

pretraining, the hybrid HRL trained the low level as it was designed. The high level

also had enough exploration power to overcome extremely sparse rewards.

5.2 Future Work

While showing a good result, more improvement for the hybrid algorithm can be

made. In the hybrid HRL, the high-level policy trained by an evolutionary algorithm

suffers from huge variance, which is not found in gradient-based HRL algorithms. It

seems that even for the macro-manager in HRL, fine-tuning the policy is still needed

to reduce the variance of policy. Hybridizing the high level itself may be a solution to

the problem. Another topic is to design a domain-specific evolutionary optimization.

In this thesis, only a typical evolutionary strategy was used for high-level optimiza-

tion in HRL. However, as it is cleared in this thesis, domain knowledge is always

critical to the optimization algorithm design. The adaptive mutation was used in the

hybrid HRL, but it is still room to improve the optimization with more domain knowl-

edge.

57

Bibliography

[1] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B.

McGrew, J. Tobin, O. P. Abbeel, and W. Zaremba. “Hindsight experience re-

play”. In: Advances in neural information processing systems. 2017, pp. 5048–

5058.

[2] A. G. Barto and S. Mahadevan. “Recent advances in hierarchical reinforce-

ment learning”. In: Discrete event dynamic systems 13.1-2 (2003), pp. 41–77.

[3] Y. Bengio, A. Courville, and P. Vincent. “Representation learning: A review

and new perspectives”. In: IEEE transactions on pattern analysis and machine

intelligence 35.8 (2013), pp. 1798–1828.

[4] A. Berny. “Selection and reinforcement learning for combinatorial optimiza-

tion”. In: International Conference on Parallel Problem Solving from Nature.

Springer. 2000, pp. 601–610.

[5] T. N. Bui and B. R. Moon. “Genetic algorithm and graph partitioning”. In:

IEEE Transactions on computers 45.7 (1996), pp. 841–855.

[6] Y. Burda, H. Edwards, A. Storkey, and O. Klimov. “Exploration by random

network distillation”. In: arXiv preprint arXiv: 1810.12894 (2018).

[7] A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun. “The

loss surfaces of multilayer networks”. In: Artificial Intelligence and Statistics.

2015, pp. 192–204.

[8] A. Darwish, A. E. Hassanien, and S. Das. “A survey of swarm and evolutionary

computing approaches for deep learning”. In: Artificial Intelligence Review

(2019), pp. 1–46.

58

[9] P. Dayan and G. E. Hinton. “Feudal reinforcement learning”. In: Advances in

neural information processing systems. 1993, pp. 271–278.

[10] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. “Benchmarking

deep reinforcement learning for continuous control”. In: International Confer-

ence on Machine Learning. 2016, pp. 1329–1338.

[11] B. Eysenbach, A. Gupta, J. Ibarz, and S. Levine. “Diversity is all you need:

Learning skills without a reward function”. In: Proceedings of International

Conference on Learning Representations. 2019.

[12] S. Filippi, O. Cappé, and A. Garivier. “Optimism in reinforcement learning

and Kullback-Leibler divergence”. In: 2010 48th Annual Allerton Conference

on Communication, Control, and Computing (Allerton). IEEE. 2010, pp. 115–

122.

[13] C. Finn, P. Abbeel, and S. Levine. “Model-agnostic meta-learning for fast

adaptation of deep networks”. In: Proceedings of the 34th International Con-

ference on Machine Learning-Volume 70. JMLR. org. 2017, pp. 1126–1135.

[14] C. Florensa, Y. Duan, and P. Abbeel. “Stochastic neural networks for hierar-

chical reinforcement learning”. In: Proceedings of International Conference

on Learning Representations. 2017.

[15] M. Gen and R. Cheng. “Genetic algorithms and engineering design. 1997”. In:

John Wily and Sons, New York (1997).

[16] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio. Deep learning. Vol. 1.

MIT Press, 2016.

[17] R. Gower, A. Heydtmann, and H. Petersen. “Lego: Automated model con-

struction”. In: (1998).

59

[18] S. Greydanus, A. Koul, J. Dodge, and A. Fern. “Visualizing and understand-

ing atari agents”. In: International Conference on Machine Learning. 2018,

pp. 1792–1801.

[19] N. Hansen, S. D. Müller, and P. Koumoutsakos. “Reducing the time complex-

ity of the derandomized evolution strategy with covariance matrix adaptation

(CMA-ES)”. In: Evolutionary computation 11.1 (2003), pp. 1–18.

[20] N. Heess, G. Wayne, Y. Tassa, T. Lillicrap, M. Riedmiller, and D. Silver.

“Learning and transfer of modulated locomotor controllers”. In: arXiv preprint

arXiv: 1610.05182 (2016).

[21] R. Houthooft, Y. Chen, P. Isola, B. Stadie, F. Wolski, O. J. Ho, and P. Abbeel.

“Evolved policy gradients”. In: Advances in Neural Information Processing

Systems. 2018, pp. 5400–5409.

[22] A. B. Kahng and B. R. Moon. “Toward More Powerful Recombinations.” In:

ICGA. 1995, pp. 96–103.

[23] V. R. Konda and J. N. Tsitsiklis. “Actor-critic algorithms”. In: Advances in

neural information processing systems. 2000, pp. 1008–1014.

[24] S. Kullback and R. A. Leibler. “On information and sufficiency”. In: The an-

nals of mathematical statistics 22.1 (1951), pp. 79–86.

[25] B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman. “Building

machines that learn and think like people”. In: Behavioral and Brain Sciences

40 (2017).

[26] S. Lee, J. Kim, J. W. Kim, and B.-R. Moon. “Finding an optimal LEGO® brick

layout of voxelized 3D object using a genetic algorithm”. In: Proceedings of

the 2015 Annual Conference on Genetic and Evolutionary Computation. 2015,

pp. 1215–1222.

60

[27] A. Levy, G. Konidaris, R. Platt, and K. Saenko. “Learning multi-level hierar-

chies with hindsight”. In: Proceedings of International Conference on Learn-

ing Representations. 2019.

[28] S. Li, R. Wang, M. Tang, and C. Zhang. “Hierarchical Reinforcement Learning

with Advantage-Based Auxiliary Rewards”. In: Advances in Neural Informa-

tion Processing Systems. 2019, pp. 1407–1417.

[29] L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and J. Han. “On the Variance

of the Adaptive Learning Rate and Beyond”. In: (2020).

[30] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,

and K. Kavukcuoglu. “Asynchronous methods for deep reinforcement learn-

ing”. In: International Conference on Machine Learning. 2016, pp. 1928–

1937.

[31] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. “Human-level

control through deep reinforcement learning”. In: Nature 518.7540 (2015),

p. 529.

[32] P. Moscato et al. “On evolution, search, optimization, genetic algorithms and

martial arts: Towards memetic algorithms”. In: Caltech concurrent computa-

tion program, C3P Report 826 (1989), p. 1989.

[33] O. Nachum, S. S. Gu, H. Lee, and S. Levine. “Data-efficient hierarchical rein-

forcement learning”. In: Advances in Neural Information Processing Systems.

2018, pp. 3303–3313.

[34] A. Pashevich, D. Hafner, J. Davidson, R. Sukthankar, and C. Schmid. “Modu-

lated policy hierarchies”. In: arXiv preprint arxiv: 1812.00025 (2018).

61

[35] P. Petrovic. “Solving lego brick layout problem using evolutionary algorithms”.

In: Proceedings to Norwegian Conference on Computer Science. 2001.

[36] I. Rechenberg. “Evolutionsstrategien”. In: Simulationsmethoden in der Medi-

zin und Biologie. Springer, 1978, pp. 83–114.

[37] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever. “Evolution strategies

as a scalable alternative to reinforcement learning”. In: arXiv preprint arxiv:

1703.03864 (2017).

[38] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. “Trust region

policy optimization”. In: International conference on machine learning. 2015,

pp. 1889–1897.

[39] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. “High-dimensional

continuous control using generalized advantage estimation”. In: arXiv preprint

arxiv: 1506.02438 (2015).

[40] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. “Proximal

policy optimization algorithms”. In: arXiv preprint arXiv: 1707.06347 (2017).

[41] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra.

“Grad-cam: Visual explanations from deep networks via gradient-based local-

ization”. In: Proceedings of the IEEE International Conference on Computer

Vision. 2017, pp. 618–626.

[42] K. Simonyan, A. Vedaldi, and A. Zisserman. “Deep inside convolutional net-

works: Visualising image classification models and saliency maps”. In: arXiv

preprint arxiv: 1312.6034 (2013).

[43] E. Smal. “Automated brick sculpture construction”. PhD thesis. Stellenbosch:

Stellenbosch University, 2008.

62

[44] K. O. Stanley, J. Clune, J. Lehman, and R. Miikkulainen. “Designing neu-

ral networks through neuroevolution”. In: Nature Machine Intelligence 1.1

(2019), pp. 24–35.

[45] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and J. Clune.

“Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for

Training Deep Neural Networks for Reinforcement Learning”. In: arXiv preprint

arXiv: 1712.06567 (2017).

[46] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour. “Policy gra-

dient methods for reinforcement learning with function approximation”. In:

Advances in neural information processing systems. 2000, pp. 1057–1063.

[47] R. S. Sutton, D. Precup, and S. Singh. “Between MDPs and semi-MDPs: A

framework for temporal abstraction in reinforcement learning”. In: Artificial

intelligence 112.1-2 (1999), pp. 181–211.

[48] R. S. Sutton, A. G. Barto, et al. Introduction to reinforcement learning. Vol. 2.

4. MIT press Cambridge, 1998.

[49] C. Tessler, S. Givony, T. Zahavy, D. J. Mankowitz, and S. Mannor. “A deep

hierarchical approach to lifelong learning in minecraft”. In: Thirty-First AAAI

Conference on Artificial Intelligence. 2017.

[50] T. Tieleman and G. Hinton. “Lecture 6.5-rmsprop: Divide the gradient by a

running average of its recent magnitude”. In: COURSERA: Neural networks

for machine learning 4.2 (2012), pp. 26–31.

[51] A. S. Vezhnevets, S. Osindero, T. Schaul, N. Heess, M. Jaderberg, D. Sil-

ver, and K. Kavukcuoglu. “Feudal networks for hierarchical reinforcement

learning”. In: Proceedings of the 34th International Conference on Machine

Learning-Volume 70. JMLR. org. 2017, pp. 3540–3549.

63

[52] D. H. Wolpert and W. G. Macready. “No free lunch theorems for optimiza-

tion”. In: IEEE transactions on evolutionary computation 1.1 (1997), pp. 67–

82.

[53] M. D. Zeiler and R. Fergus. “Visualizing and understanding convolutional net-

works”. In: European conference on computer vision. Springer. 2014, pp. 818–

833.

[54] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. “Learning deep

features for discriminative localization”. In: Proceedings of the IEEE confer-

ence on computer vision and pattern recognition. 2016, pp. 2921–2929.

64

국문초록

많은최적화문제에서탐사와탐험의균형을맞추는것은매우중요한문제이다.

진화전략과유전알고리즘과같은진화알고리즘은자연에서의진화에서영감을

얻은메타휴리스틱알고리즘이다.이들은조합최적화,연속최적화와같은다양한

최적화 문제를 풀기 위해 사용되었다. 하지만 진화 알고리즘은 지역 최적해 근처

에서의 미세 조정, 즉 탐사에 약한 특성이 있다. 이러한 결점함은 혼합화를 통해

극복할 수 있다. 혼합 유전 알고리즘, 혹은 미미틱 알고리즘이 성공적인 혼합화의

사례이다.이러한알고리즘은최적화문제의해공간이기하급수적으로넓더라도

성공적으로만족스러운해를찾아낸다.

한편 심층 학습의 시대에서, 탐사와 탐험의 균형을 맞추는 문제는 종종 무시되

었다. 하지만 심층 강화학습에서는 탐사와 탐험의 균형을 맞추는 일은 지도학습

에서보다훨씬더중요하다.많은실제세계의환경은기하급수적으로큰상태공

간을 가지고 있고 에이전트는 이를 탐험해야만 한다. 충분한 탐험 능력이 없으면

에이전트는상태공간의극히일부만을밝혀내어결국즉각적인보상만탐하게될

것이다.

본 학위논문에서는 강한 탐사 능력을 가진 그레디언트 기반 정책 최적화와 강

한탐험능력을가진진화적정책최적화를혼합하는기법을제시할것이다.우선

그레디언트기반정책최적화와진화적정책최적화를다양한환경에서분석한다.

결과적으로 그레디언트 기반 정책 최적화는 즉각적 보상에 효과적이지만 보상의

밀도가 낮을때 취약한 반면 진화적 정책 최적화가 밀도가 낮은 보상에 대해 강하

지만 즉각적인 보상에 대해 취약하다는 것을 알 수 있다. 두 가지 최적화의 특징

상 차이점이 혼합적 정책 최적화의 가능성을 보여준다. 그리고 계층적 강화 학습

프레임워크에서의혼합탐색기법을제시한다.그결과혼합탐색기법이균형잡힌

65

탐사와탐험덕분에밀도가낮은보상을주는복잡한환경에서효과적인에이전트

를찾아낸다는것을보여준다.

66

감사의글

관악에서 학문과 연구를 하며 많은 분의 도움을 받았습니다. 이 모든 분의 지

도와 격려, 도움으로 무사히 학위를 마치게 되어 이 자리를 빌어 감사의 말씀을

드립니다. 우선, 저를 지도해주신 문병로 교수님께 감사의 말씀을 드립니다. 지도

교수님의 현명한 지도 덕분에 무사히 학업을 마치고 이렇게 학위를 받을 수 있었

습니다. 또한 학위 논문 심사를 맡아주신 신영길 교수님, 오일석 교수님, 김용혁

교수님, 그리고 정순철 박사님께도 감사드립니다. 또한 저와 여러 연구와 논문 작

성을 함께했던 김진현 박사님, 하성주 박사님, 하명훈 박사님께도 감사의 인사를

드립니다.

오랜연구실생활을하며많은동료들을만났고즐거운일도있었고함께어려움

을 헤쳐나간 일도 있었습니다. 연구실 초기에 학업을 함께했던 조승현, 권지훈의

동료들 덕에 빠르게 연구실에 적응할 수 있었습니다. 하성주 박사님, 하명훈 박사

님,그리고윤한상선배님과같은뛰어난선배님들과학문적으로교류하며연구자

로서의마음가짐을다지게되었습니다.또한프로젝트진행을함께하며고생했던

엄승현,육지은,지승근,장보규,김창겸,그리고황순용후배님들덕에많은경험을

쌓고 어려움을 헤쳐나갈 능력을 기를 수 있었습니다. 그 외에도 연구실을 지나갔

던 많은 선후배 동료들 덕에 이렇게 무사히 학업을 마칠 수 있었습니다. 또 오랜

학업기간동안함께어울리던연구실밖의오랜친구들에게도감사를드립니다.

또한오랜기간저의학업을지원해주시고믿어주신저의부모님께깊은감사를

드립니다. 부모님 덕분에 이렇게 학위를 받게 되었고 이 기쁨을 함께 나누었으면

합니다.

	I. Introduction
	II. Background
	2.1 Evolutionary Computations
	2.1.1 Hybrid Genetic Algorithm
	2.1.2 Evolutionary Strategy

	2.2 Hybrid Genetic Algorithm Example: Brick Layout Problem
	2.2.1 Problem Statement
	2.2.2 Hybrid Genetic Algorithm
	2.2.3 Experimental Results
	2.2.4 Discussion

	2.3 Reinforcement Learning
	2.3.1 Policy Optimization
	2.3.2 Proximal Policy Optimization

	2.4 Neuroevolution for Reinforcement Learning
	2.5 Hierarchical Reinforcement Learning
	2.5.1 Option-based HRL
	2.5.2 Goal-based HRL
	2.5.3 Exploitation versus Exploration

	III. Understanding Features of Evolutionary Policy Optimizations
	3.1 Experimental Setup
	3.2 Feature Analysis
	3.2.1 Convolution Filter Inspection
	3.2.2 Saliency Map

	3.3 Discussion
	3.3.1 Behavioral Characteristics
	3.3.2 ES Agent without Inputs

	IV. Hybrid Search for Hierarchical Reinforcement Learning
	4.1 Method
	4.2 Experimental Setup
	4.2.1 Environment
	4.2.2 Network Architectures
	4.2.3 Training

	4.3 Results
	4.3.1 Comparison
	4.3.2 Experimental Results
	4.3.3 Behavior of Low-Level Policy

	4.4 Conclusion

	V. Conclusion
	5.1 Summary
	5.2 Future Work

	Bibliography

<startpage>10
I. Introduction 1
II. Background 6
 2.1 Evolutionary Computations 6
 2.1.1 Hybrid Genetic Algorithm 7
 2.1.2 Evolutionary Strategy 9
 2.2 Hybrid Genetic Algorithm Example: Brick Layout Problem 10
 2.2.1 Problem Statement 11
 2.2.2 Hybrid Genetic Algorithm 11
 2.2.3 Experimental Results 14
 2.2.4 Discussion 15
 2.3 Reinforcement Learning 16
 2.3.1 Policy Optimization 19
 2.3.2 Proximal Policy Optimization 21
 2.4 Neuroevolution for Reinforcement Learning 23
 2.5 Hierarchical Reinforcement Learning 25
 2.5.1 Option-based HRL 26
 2.5.2 Goal-based HRL 27
 2.5.3 Exploitation versus Exploration 27
III. Understanding Features of Evolutionary Policy Optimizations 29
 3.1 Experimental Setup 31
 3.2 Feature Analysis 32
 3.2.1 Convolution Filter Inspection 32
 3.2.2 Saliency Map 36
 3.3 Discussion 40
 3.3.1 Behavioral Characteristics 40
 3.3.2 ES Agent without Inputs 42
IV. Hybrid Search for Hierarchical Reinforcement Learning 44
 4.1 Method 45
 4.2 Experimental Setup 47
 4.2.1 Environment 47
 4.2.2 Network Architectures 50
 4.2.3 Training 50
 4.3 Results 51
 4.3.1 Comparison 51
 4.3.2 Experimental Results 53
 4.3.3 Behavior of Low-Level Policy 54
 4.4 Conclusion 55
V. Conclusion 56
 5.1 Summary 56
 5.2 Future Work 57
Bibliography 58
</body>

