160 research outputs found

    Modelling and Control of Switched Reluctance Machines

    Get PDF
    Today, switched reluctance machines (SRMs) play an increasingly important role in various sectors due to advantages such as robustness, simplicity of construction, low cost, insensitivity to high temperatures, and high fault tolerance. They are frequently used in fields such as aeronautics, electric and hybrid vehicles, and wind power generation. This book is a comprehensive resource on the design, modeling, and control of SRMs with methods that demonstrate their good performance as motors and generators

    Modelling and Control of Switched Reluctance Machines

    Get PDF
    Today, switched reluctance machines (SRMs) play an increasingly important role in various sectors due to advantages such as robustness, simplicity of construction, low cost, insensitivity to high temperatures, and high fault tolerance. They are frequently used in fields such as aeronautics, electric and hybrid vehicles, and wind power generation. This book is a comprehensive resource on the design, modeling, and control of SRMs with methods that demonstrate their good performance as motors and generators

    Modelling and Control of Switched Reluctance Machines

    Get PDF
    Today, switched reluctance machines (SRMs) play an increasingly important role in various sectors due to advantages such as robustness, simplicity of construction, low cost, insensitivity to high temperatures, and high fault tolerance. They are frequently used in fields such as aeronautics, electric and hybrid vehicles, and wind power generation. This book is a comprehensive resource on the design, modeling, and control of SRMs with methods that demonstrate their good performance as motors and generators

    Characterization and Measurement of Passive and Active Metamaterial Devices

    Get PDF
    This document addresses two major obstacles facing metamaterial development: uncertainty in the characterization of electromagnetic field behavior in metamaterial structures and the relatively small operational bandwidth of metamaterial structures. To address the first obstacle, a new method to characterize electromagnetic field behavior in a metamaterial is presented. This new method is a bistatic radar cross section (RCS) measurement technique. RCS measurements are well-suited to measuring bulk metamaterial samples because they show frequency dependence of scattering angles and offer common postprocessing techniques that can be useful for visualizing results. To address the second obstacle, this document characterizes the effectiveness of an adaptive metamaterial design that incorporates a microelectromechanical systems (MEMS) variable capacitor. Applying voltages to the MEMS device changes the resonant frequency of the metamaterial. In this research, computational models show that the size of the adaptive metamaterial unit cell should be increased to improve the responsiveness of the resonant frequency to changes in the MEMS capacitor

    Nonlinear approximation with redundant multi-component dictionaries

    Get PDF
    The problem of efficiently representing and approximating digital data is an open challenge and it is of paramount importance for many applications. This dissertation focuses on the approximation of natural signals as an organized combination of mutually connected elements, preserving and at the same time benefiting from their inherent structure. This is done by decomposing a signal onto a multi-component, redundant collection of functions (dictionary), built by the union of several subdictionaries, each of which is designed to capture a specific behavior of the signal. In this way, instead of representing signals as a superposition of sinusoids or wavelets many alternatives are available. In addition, since dictionaries we are interested in are overcomplete, the decomposition is non-unique. This gives us the possibility of adaptation, choosing among many possible representations the one which best fits our purposes. On the other hand, it also requires more complex approximation techniques whose theoretical decomposition capacity and computational load have to be carefully studied. In general, we aim at representing a signal with few and meaningful components. If we are able to represent a piece of information by using only few elements, it means that such elements can capture its main characteristics, allowing to compact the energy carried by a signal into the smallest number of terms. In such a framework, this work also proposes analysis methods which deal with the goal of considering the a priori information available when decomposing a structured signal. Indeed, a natural signal is not only an array of numbers, but an expression of a physical event about which we usually have a deep knowledge. Therefore, we claim that it is worth exploiting its structure, since it can be advantageous not only in helping the analysis process, but also in making the representation of such information more accessible and meaningful. The study of an adaptive image representation inspired and gave birth to this work. We often refer to images and visual information throughout the course of the dissertation. However, the proposed approximation setting extends to many different kinds of structured data and examples are given involving videos and electrocardiogram signals. An important part of this work is constituted by practical applications: first of all we provide very interesting results for image and video compression. Then, we also face the problem of signal denoising and, finally, promising achievements in the field of source separation are presented

    Reliability and Maintenance

    Get PDF
    Amid a plethora of challenges, technological advances in science and engineering are inadvertently affecting an increased spectrum of today’s modern life. Yet for all supplied products and services provided, robustness of processes, methods, and techniques is regarded as a major player in promoting safety. This book on systems reliability, which equally includes maintenance-related policies, presents fundamental reliability concepts that are applied in a number of industrial cases. Furthermore, to alleviate potential cost and time-specific bottlenecks, software engineering and systems engineering incorporate approximation models, also referred to as meta-processes, or surrogate models to reproduce a predefined set of problems aimed at enhancing safety, while minimizing detrimental outcomes to society and the environment

    Advanced Strategies for Robot Manipulators

    Get PDF
    Amongst the robotic systems, robot manipulators have proven themselves to be of increasing importance and are widely adopted to substitute for human in repetitive and/or hazardous tasks. Modern manipulators are designed complicatedly and need to do more precise, crucial and critical tasks. So, the simple traditional control methods cannot be efficient, and advanced control strategies with considering special constraints are needed to establish. In spite of the fact that groundbreaking researches have been carried out in this realm until now, there are still many novel aspects which have to be explored
    corecore