7 research outputs found

    Author index

    Get PDF

    Graph Editing to a Given Neighbourhood Degree List is Fixed-Parameter Tractable

    Get PDF
    Graph editing problems have a long history and have been widely studied, with applications in biochemistry and complex network analysis. They generally ask whether an input graph can be modified by inserting and deleting vertices and edges to a graph with the desired property. We consider the problem \textsc{Graph-Edit-to-NDL} (GEN) where the goal is to modify to a graph with a given neighbourhood degree list (NDL). The NDL lists the degrees of the neighbours of vertices in a graph, and is a stronger invariant than the degree sequence, which lists the degrees of vertices. We show \textsc{Graph-Edit-to-NDL} is NP-complete and study its parameterized complexity. In parameterized complexity, a problem is said to be fixed-parameter tractable with respect to a parameter if it has a solution whose running time is a function that is polynomial in the input size but possibly superpolynomial in the parameter. Golovach and Mertzios [ICSSR, 2016] studied editing to a graph with a given degree sequence and showed the problem is fixed-parameter tractable when parameterized by Δ+\Delta+\ell, where Δ\Delta is the maximum degree of the input graph and \ell is the number of edits. We prove \textsc{Graph-Edit-to-NDL} is fixed-parameter tractable when parameterized by Δ+\Delta+\ell. Furthermore, we consider a harder problem \textsc{Constrained-Graph-Edit-to-NDL} (CGEN) that imposes constraints on the NDLs of intermediate graphs produced in the sequence. We adapt our FPT algorithm for \textsc{Graph-Edit-to-NDL} to solve \textsc{Constrained-Graph-Edit-to-NDL}, which proves \textsc{Constrained-Graph-Edit-to-NDL} is also fixed-parameter tractable when parameterized by Δ+\Delta+\ell. Our results imply that, for graph properties that can be expressed as properties of NDLs, editing to a graph with such a property is fixed-parameter tractable when parameterized by Δ+\Delta+\ell. We show that this family of graph properties includes some well-known graph measures used in complex network analysis

    Graph Editing to a Given Neighbourhood Degree List is Fixed-Parameter Tractable

    Get PDF
    Graph editing problems have a long history and have been widely studied, with applications in biochemistry and complex network analysis. They generally ask whether an input graph can be modified by inserting and deleting vertices and edges to a graph with the desired property. We consider the problem \textsc{Graph-Edit-to-NDL} (GEN) where the goal is to modify to a graph with a given neighbourhood degree list (NDL). The NDL lists the degrees of the neighbours of vertices in a graph, and is a stronger invariant than the degree sequence, which lists the degrees of vertices. We show \textsc{Graph-Edit-to-NDL} is NP-complete and study its parameterized complexity. In parameterized complexity, a problem is said to be fixed-parameter tractable with respect to a parameter if it has a solution whose running time is a function that is polynomial in the input size but possibly superpolynomial in the parameter. Golovach and Mertzios [ICSSR, 2016] studied editing to a graph with a given degree sequence and showed the problem is fixed-parameter tractable when parameterized by Δ+\Delta+\ell, where Δ\Delta is the maximum degree of the input graph and \ell is the number of edits. We prove \textsc{Graph-Edit-to-NDL} is fixed-parameter tractable when parameterized by Δ+\Delta+\ell. Furthermore, we consider a harder problem \textsc{Constrained-Graph-Edit-to-NDL} (CGEN) that imposes constraints on the NDLs of intermediate graphs produced in the sequence. We adapt our FPT algorithm for \textsc{Graph-Edit-to-NDL} to solve \textsc{Constrained-Graph-Edit-to-NDL}, which proves \textsc{Constrained-Graph-Edit-to-NDL} is also fixed-parameter tractable when parameterized by Δ+\Delta+\ell. Our results imply that, for graph properties that can be expressed as properties of NDLs, editing to a graph with such a property is fixed-parameter tractable when parameterized by Δ+\Delta+\ell. We show that this family of graph properties includes some well-known graph measures used in complex network analysis

    The Parameterized Complexity of Degree Constrained Editing Problems

    Get PDF
    This thesis examines degree constrained editing problems within the framework of parameterized complexity. A degree constrained editing problem takes as input a graph and a set of constraints and asks whether the graph can be altered in at most k editing steps such that the degrees of the remaining vertices are within the given constraints. Parameterized complexity gives a framework for examining problems that are traditionally considered intractable and developing efficient exact algorithms for them, or showing that it is unlikely that they have such algorithms, by introducing an additional component to the input, the parameter, which gives additional information about the structure of the problem. If the problem has an algorithm that is exponential in the parameter, but polynomial, with constant degree, in the size of the input, then it is considered to be fixed-parameter tractable. Parameterized complexity also provides an intractability framework for identifying problems that are likely to not have such an algorithm. Degree constrained editing problems provide natural parameterizations in terms of the total cost k of vertex deletions, edge deletions and edge additions allowed, and the upper bound r on the degree of the vertices remaining after editing. We define a class of degree constrained editing problems, WDCE, which generalises several well know problems, such as Degree r Deletion, Cubic Subgraph, r-Regular Subgraph, f-Factor and General Factor. We show that in general if both k and r are part of the parameter, problems in the WDCE class are fixed-parameter tractable, and if parameterized by k or r alone, the problems are intractable in a parameterized sense. We further show cases of WDCE that have polynomial time kernelizations, and in particular when all the degree constraints are a single number and the editing operations include vertex deletion and edge deletion we show that there is a kernel with at most O(kr(k + r)) vertices. If we allow vertex deletion and edge addition, we show that despite remaining fixed-parameter tractable when parameterized by k and r together, the problems are unlikely to have polynomial sized kernelizations, or polynomial time kernelizations of a certain form, under certain complexity theoretic assumptions. We also examine a more general case where given an input graph the question is whether with at most k deletions the graph can be made r-degenerate. We show that in this case the problems are intractable, even when r is a constant

    次数と距離を指定した部分グラフ探索問題の計算複雑さ

    Get PDF
    九州工業大学博士学位論文 学位記番号:情工博甲第308号 学位授与年月日:平成28年3月25日1 Introduction|2 Preliminaries|3 Regular Induced Subgraphs|4 Distance d independent set|5 Conclusion九州工業大学平成27年
    corecore