269 research outputs found

    Provably Safe Robot Navigation with Obstacle Uncertainty

    Full text link
    As drones and autonomous cars become more widespread it is becoming increasingly important that robots can operate safely under realistic conditions. The noisy information fed into real systems means that robots must use estimates of the environment to plan navigation. Efficiently guaranteeing that the resulting motion plans are safe under these circumstances has proved difficult. We examine how to guarantee that a trajectory or policy is safe with only imperfect observations of the environment. We examine the implications of various mathematical formalisms of safety and arrive at a mathematical notion of safety of a long-term execution, even when conditioned on observational information. We present efficient algorithms that can prove that trajectories or policies are safe with much tighter bounds than in previous work. Notably, the complexity of the environment does not affect our methods ability to evaluate if a trajectory or policy is safe. We then use these safety checking methods to design a safe variant of the RRT planning algorithm.Comment: RSS 201

    Two New Bounds on the Random-Edge Simplex Algorithm

    Full text link
    We prove that the Random-Edge simplex algorithm requires an expected number of at most 13n/sqrt(d) pivot steps on any simple d-polytope with n vertices. This is the first nontrivial upper bound for general polytopes. We also describe a refined analysis that potentially yields much better bounds for specific classes of polytopes. As one application, we show that for combinatorial d-cubes, the trivial upper bound of 2^d on the performance of Random-Edge can asymptotically be improved by any desired polynomial factor in d.Comment: 10 page

    Polyhedral Analysis using Parametric Objectives

    Get PDF
    The abstract domain of polyhedra lies at the heart of many program analysis techniques. However, its operations can be expensive, precluding their application to polyhedra that involve many variables. This paper describes a new approach to computing polyhedral domain operations. The core of this approach is an algorithm to calculate variable elimination (projection) based on parametric linear programming. The algorithm enumerates only non-redundant inequalities of the projection space, hence permits anytime approximation of the output

    Topological obstructions for vertex numbers of Minkowski sums

    Full text link
    We show that for polytopes P_1, P_2, ..., P_r \subset \R^d, each having n_i \ge d+1 vertices, the Minkowski sum P_1 + P_2 + ... + P_r cannot achieve the maximum of \prod_i n_i vertices if r \ge d. This complements a recent result of Fukuda & Weibel (2006), who show that this is possible for up to d-1 summands. The result is obtained by combining methods from discrete geometry (Gale transforms) and topological combinatorics (van Kampen--type obstructions) as developed in R\"{o}rig, Sanyal, and Ziegler (2007).Comment: 13 pages, 2 figures; Improved exposition and less typos. Construction/example and remarks adde

    Dualities in Convex Algebraic Geometry

    Full text link
    Convex algebraic geometry concerns the interplay between optimization theory and real algebraic geometry. Its objects of study include convex semialgebraic sets that arise in semidefinite programming and from sums of squares. This article compares three notions of duality that are relevant in these contexts: duality of convex bodies, duality of projective varieties, and the Karush-Kuhn-Tucker conditions derived from Lagrange duality. We show that the optimal value of a polynomial program is an algebraic function whose minimal polynomial is expressed by the hypersurface projectively dual to the constraint set. We give an exposition of recent results on the boundary structure of the convex hull of a compact variety, we contrast this to Lasserre's representation as a spectrahedral shadow, and we explore the geometric underpinnings of semidefinite programming duality.Comment: 48 pages, 11 figure

    Shadows of Newton Polytopes

    Get PDF
    We define the shadow complexity of a polytope P as the maximum number of vertices in a linear projection of P to the plane. We describe connections to algebraic complexity and to parametrized optimization. We also provide several basic examples and constructions, and develop tools for bounding shadow complexity
    • …
    corecore