793 research outputs found

    On the Foundations of Data Interoperability and Semantic Search on the Web

    Get PDF
    This dissertation studies the problem of facilitating semantic search across disparate ontologies that are developed by different organizations. There is tremendous potential in enabling users to search independent ontologies and discover knowledge in a serendipitous fashion, i.e., often completely unintended by the developers of the ontologies. The main difficulty with such search is that users generally do not have any control over the naming conventions and content of the ontologies. Thus terms must be appropriately mapped across ontologies based on their meaning. The meaning-based search of data is referred to as semantic search, and its facilitation (aka semantic interoperability) then requires mapping between ontologies. In relational databases, searching across organizational boundaries currently involves the difficult task of setting up a rigid information integration system. Linked Data representations more flexibly tackle the problem of searching across organizational boundaries on the Web. However, there exists no consensus on how ontology mapping should be performed for this scenario, and the problem is open. We lay out the foundations of semantic search on the Web of Data by comparing it to keyword search in the relational model and by providing effective mechanisms to facilitate data interoperability across organizational boundaries. We identify two sharply distinct goals for ontology mapping based on real-world use cases. These goals are: (i) ontology development, and (ii) facilitating interoperability. We systematically analyze these goals, side-by-side, and contrast them. Our analysis demonstrates the implications of the goals on how to perform ontology mapping and how to represent the mappings. We rigorously compare facilitating interoperability between ontologies to information integration in databases. Based on the comparison, class matching is emphasized as a critical part of facilitating interoperability. For class matching, various class similarity metrics are formalized and an algorithm that utilizes these metrics is designed. We also experimentally evaluate the effectiveness of the class similarity metrics on real-world ontologies. In order to encode the correspondences between ontologies for interoperability, we develop a novel W3C-compliant representation, named skeleton

    Foundational Ontologies meet Ontology Matching: A Survey

    Get PDF
    Ontology matching is a research area aimed at finding ways to make different ontologies interoperable. Solutions to the problem have been proposed from different disciplines, including databases, natural language processing, and machine learning. The role of foundational ontologies for ontology matching is an important one. It is multifaceted and with room for development. This paper presents an overview of the different tasks involved in ontology matching that consider foundational ontologies. We discuss the strengths and weaknesses of existing proposals and highlight the challenges to be addressed in the future

    Developing Ontological Background Knowledge for Biomedicine

    Full text link
    Biomedicine is an impressively fast developing, interdisciplinary field of research. To control the growing volumes of biomedical data, ontologies are increasingly used as common organization structures. Biomedical ontologies describe domain knowledge in a formal, computationally accessible way. They serve as controlled vocabularies and background knowledge in applications dealing with the integration, analysis and retrieval of heterogeneous types of data. The development of biomedical ontologies, however, is hampered by specific challenges. They include the lack of quality standards, resulting in very heterogeneous resources, and the decentralized development of biomedical ontologies, causing the increasing fragmentation of domain knowledge across them. In the first part of this thesis, a life cycle model for biomedical ontologies is developed, which is intended to cope with these challenges. It comprises the stages "requirements analysis", "design and implementation", "evaluation", "documentation and release" and "maintenance". For each stage, associated subtasks and activities are specified. To promote quality standards for biomedical ontology development, an emphasis is set on the evaluation stage. As part of it, comprehensive evaluation procedures are specified, which allow to assess the quality of ontologies on various levels. To tackle the issue of knowledge fragmentation, the life cycle model is extended to also cover ontology alignments. Ontology alignments specify mappings between related elements of different ontologies. By making potential overlaps and similarities between ontologies explicit, they support the integration of ontologies and help reduce the fragmentation of knowledge. In the second part of this thesis, the life cycle model for biomedical ontologies and alignments is validated by means of five case studies. As a result, they confirm that the model is effective. Four of the case studies demonstrate that it is able to support the development of useful new ontologies and alignments. The latter facilitate novel natural language processing and bioinformatics applications, and in one case constitute the basis of a task of the "BioNLP shared task 2013", an international challenge on biomedical information extraction. The fifth case study shows that the presented evaluation procedures are an effective means to check and improve the quality of ontology alignments. Hence, they support the crucial task of quality assurance of alignments, which are themselves increasingly used as reference standards in evaluations of automatic ontology alignment systems. Both, the presented life cycle model and the ontologies and alignments that have resulted from its validation improve information and knowledge management in biomedicine and thus promote biomedical research

    Bridging the gap between textual and formal business process representations

    Get PDF
    Tesi en modalitat de compendi de publicacionsIn the era of digital transformation, an increasing number of organizations are start ing to think in terms of business processes. Processes are at the very heart of each business, and must be understood and carried out by a wide range of actors, from both technical and non-technical backgrounds alike. When embracing digital transformation practices, there is a need for all involved parties to be aware of the underlying business processes in an organization. However, the representational complexity and biases of the state-of-the-art modeling notations pose a challenge in understandability. On the other hand, plain language representations, accessible by nature and easily understood by everyone, are often frowned upon by technical specialists due to their ambiguity. The aim of this thesis is precisely to bridge this gap: Between the world of the techni cal, formal languages and the world of simpler, accessible natural languages. Structured as an article compendium, in this thesis we present four main contributions to address specific problems in the intersection between the fields of natural language processing and business process management.A l’era de la transformació digital, cada vegada més organitzacions comencen a pensar en termes de processos de negoci. Els processos són el nucli principal de tota empresa i, com a tals, han de ser fàcilment comprensibles per un ampli ventall de rols, tant perfils tècnics com no-tècnics. Quan s’adopta la transformació digital, és necessari que totes les parts involucrades estiguin ben informades sobre els protocols implantats com a part del procés de digitalització. Tot i això, la complexitat i biaixos de representació dels llenguatges de modelització que actualment conformen l’estat de l’art sovint en dificulten la seva com prensió. D’altra banda, les representacions basades en documentació usant llenguatge natural, accessibles per naturalesa i fàcilment comprensibles per tothom, moltes vegades són vistes com un problema pels perfils més tècnics a causa de la presència d’ambigüitats en els textos. L’objectiu d’aquesta tesi és precisament el de superar aquesta distància: La distància entre el món dels llenguatges tècnics i formals amb el dels llenguatges naturals, més accessibles i senzills. Amb una estructura de compendi d’articles, en aquesta tesi presentem quatre grans línies de recerca per adreçar problemes específics en aquesta intersecció entre les tecnologies d’anàlisi de llenguatge natural i la gestió dels processos de negoci.Postprint (published version

    Clashes in the Infosphere, General Intelligence, and Metacognition: Final project report

    Get PDF
    Humans confront the unexpected every day, deal with it, and often learn from it. AI agents, on the other hand, are typically brittle—they tend to break down as soon as something happens for which their creators did not explicitly anticipate. The central focus of our research project is this problem of brittleness which may also be the single most important problem facing AI research. Our approach to brittleness is to model a common method that humans use to deal with the unexpected, namely to note occurrences of the unexpected (i.e., anomalies), to assess any problem signaled by the anomaly, and then to guide a response or solution that resolves it. The result is the Note-Assess-Guide procedure of what we call the Metacognitive Loop or MCL. To do this, we have implemented MCL-based systems that enable agents to help themselves; they must establish expectations and monitor them, note failed expectations, assess their causes, and then choose appropriate responses. Activities for this project have developed and refined a human-dialog agent and a robot navigation system to test the generality of this approach

    A semantic and agent-based approach to support information retrieval, interoperability and multi-lateral viewpoints for heterogeneous environmental databases

    Get PDF
    PhDData stored in individual autonomous databases often needs to be combined and interrelated. For example, in the Inland Water (IW) environment monitoring domain, the spatial and temporal variation of measurements of different water quality indicators stored in different databases are of interest. Data from multiple data sources is more complex to combine when there is a lack of metadata in a computation forin and when the syntax and semantics of the stored data models are heterogeneous. The main types of information retrieval (IR) requirements are query transparency and data harmonisation for data interoperability and support for multiple user views. A combined Semantic Web based and Agent based distributed system framework has been developed to support the above IR requirements. It has been implemented using the Jena ontology and JADE agent toolkits. The semantic part supports the interoperability of autonomous data sources by merging their intensional data, using a Global-As-View or GAV approach, into a global semantic model, represented in DAML+OIL and in OWL. This is used to mediate between different local database views. The agent part provides the semantic services to import, align and parse semantic metadata instances, to support data mediation and to reason about data mappings during alignment. The framework has applied to support information retrieval, interoperability and multi-lateral viewpoints for four European environmental agency databases. An extended GAV approach has been developed and applied to handle queries that can be reformulated over multiple user views of the stored data. This allows users to retrieve data in a conceptualisation that is better suited to them rather than to have to understand the entire detailed global view conceptualisation. User viewpoints are derived from the global ontology or existing viewpoints of it. This has the advantage that it reduces the number of potential conceptualisations and their associated mappings to be more computationally manageable. Whereas an ad hoc framework based upon conventional distributed programming language and a rule framework could be used to support user views and adaptation to user views, a more formal framework has the benefit in that it can support reasoning about the consistency, equivalence, containment and conflict resolution when traversing data models. A preliminary formulation of the formal model has been undertaken and is based upon extending a Datalog type algebra with hierarchical, attribute and instance value operators. These operators can be applied to support compositional mapping and consistency checking of data views. The multiple viewpoint system was implemented as a Java-based application consisting of two sub-systems, one for viewpoint adaptation and management, the other for query processing and query result adjustment

    DFKI Workshop on Natural Language Generation

    Get PDF
    On the Saarbrücken campus sites as well as at DFKI, many research activities are pursued in the field of Natural Language Generation (NLG). We felt that too little is known about the total of these activities and decided to organize a workshop in order to share ideas and promote the results. This DFKI workshop brought together local researchers working on NLG. Several papers are co-authored by international researchers. Although not all NLG activities are covered in the present document, the papers reviewed for this workshop clearly demonstrate that Saarbrücken counts among the important NLG sites in the world

    DFKI Workshop on Natural Language Generation

    Get PDF
    On the Saarbrücken campus sites as well as at DFKI, many research activities are pursued in the field of Natural Language Generation (NLG). We felt that too little is known about the total of these activities and decided to organize a workshop in order to share ideas and promote the results. This DFKI workshop brought together local researchers working on NLG. Several papers are co-authored by international researchers. Although not all NLG activities are covered in the present document, the papers reviewed for this workshop clearly demonstrate that Saarbrücken counts among the important NLG sites in the world
    corecore