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Preface

Please note that this thesis document is structured as an article compendium. In this
style, all core contributions presented are included directly in the form of publications,
which are listed in the Appendices. Thus, the chapters in this document serve as an
introductory guide to provide necessary context and tie all the contributions together.
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Bridging the Gap Between Textual and Formal
Business Process Representations

Josep Sànchez-Ferreres

Abstract

Topics: Artificial Intelligence (1203.04), Information systems and components (1203.08)

In the era of digital transformation, an increasing number of organizations are start-
ing to think in terms of business processes. Processes are at the very heart of each
business, and must be understood and carried out by a wide range of actors, from both
technical and non-technical backgrounds alike.

When embracing digital transformation practices, there is a need for all involved
parties to be aware of the underlying business processes in an organization. However, the
representational complexity and biases of the state-of-the-art modeling notations pose
a challenge in understandability. On the other hand, plain language representations,
accessible by nature and easily understood by everyone, are often frowned upon by
technical specialists due to their ambiguity.

The aim of this thesis is precisely to bridge this gap: Between the world of the techni-
cal, formal languages and the world of simpler, accessible natural languages. Structured
as an article compendium, in this thesis we present four main contributions to address
specific problems in the intersection between the fields of natural language processing
and business process management.
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Resum

Temes: Intel·ligència artificial (1203.04), Sistemes d’informació i components (1203.08)

A l’era de la transformació digital, cada vegada més organitzacions comencen a
pensar en termes de processos de negoci. Els processos són el nucli principal de tota
empresa i, com a tals, han de ser fàcilment comprensibles per un ampli ventall de rols,
tant perfils tècnics com no-tècnics.

Quan s’adopta la transformació digital, és necessari que totes les parts involucrades
estiguin ben informades sobre els protocols implantats com a part del procés de dig-
italització. Tot i això, la complexitat i biaixos de representació dels llenguatges de
modelització que actualment conformen l’estat de l’art sovint en dificulten la seva com-
prensió. D’altra banda, les representacions basades en documentació usant llenguatge
natural, accessibles per naturalesa i fàcilment comprensibles per tothom, moltes vegades
són vistes com un problema pels perfils més tècnics a causa de la presència d’ambigüitats
en els textos.

L’objectiu d’aquesta tesi és precisament el de superar aquesta distància: La dis-
tància entre el món dels llenguatges tècnics i formals amb el dels llenguatges naturals,
més accessibles i senzills. Amb una estructura de compendi d’articles, en aquesta tesi
presentem quatre grans línies de recerca per adreçar problemes específics en aquesta
intersecció entre les tecnologies d’anàlisi de llenguatge natural i la gestió dels processos
de negoci.



Contents

1 Introduction and Motivation 7

1.1 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Goals of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 List of publications: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Structure of this document . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Background 11

2.1 Business process management . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Modelling Language Notations . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Formal methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Linear Temporal Logic. . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.2 Model checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Natural language processing . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Steps of Language Analysis . . . . . . . . . . . . . . . . . . . . . . 17

2.4.2 Text Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 State of the Art 21

3.1 Natural language processing in BPM . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Creating Process Models from Textual Descriptions . . . . . . . . 21

3.1.2 Converting Process Models into Textual Descriptions . . . . . . . . 22

3.1.3 Comparing Textual and Formal Process Descriptions . . . . . . . . 23

3.1.4 Handling Ambiguity . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 End-to-end systems for NLP . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Formal reasoning on top of process models . . . . . . . . . . . . . . . . 25

3.4 Educational systems for modelling . . . . . . . . . . . . . . . . . . . . . 25

5



4 Main Contributions 27

4.1 Formal Reasoning on Natural Language Descriptions of Processes . . . 27

4.1.1 Related publications . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.2 Main highlights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Aligning textual and graphical descriptions of processes . . . . . . . . . 30

4.2.1 Related publications . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.2 Main highlights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 ModelJudge: Process modelling in education . . . . . . . . . . . . . . . 32

4.3.1 Related publications . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3.2 Main highlights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Conversational process models . . . . . . . . . . . . . . . . . . . . . . . 35

4.4.1 Related publications . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4.2 Main highlights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Conclusions and Future Work 39

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 List of Publications 43

I Publication: Aligning Textual and Model-Based Descriptions 51

II Publication: Supporting the Process of Learning and Teaching ... 93

III Publication: Aligning Textual and Graphical Descriptions ... 109

IV Publication: Formal Reasoning on Natural Language ... 125

V Publication: From Process Models to Chatbots 143

VI Publication: Unleashing Textual Descriptions of Business Processes159

VII Publication: The Model Judge – A Tool for Supporting Novices ...193

6



Chapter 1

Introduction and Motivation

1.1 Problem description

A business process is a set of activities that must be executed in compliance with a set
of constraints, with the goal of offering a product or service. Business processes can be
found in any organization. In order to achieve full digital transformation, companies
often embrace Business Process Management (BPM) techniques, which are nowadays
applied in many different contexts.

When organizations wish to apply BPM to their workflows, a way of documenting
business processes is required. This is why process models, i.e. formal, unambiguous
descriptions of business processes, are a fundamental pillar of BPM. The use of formal
process models allows automated analysis on an organization’s processes, which in turn
allows for a more optimal use of their resources.

However, the subtleties in the formal semantics of these notations are often diffi-
cult to grasp for non-technical users–stakeholders and employees alike [1]–. Often, this
forces organizations to maintain less structured forms of process documentation along-
side the process descriptions. Misalignment between several representations of process
descriptions can have serious consequences for organizations [2].

For the above reasons, no process modelling methodology has ultimately stood above
the others. This has lead to an scenario where BPM-focused organizations often have to
maintain multiple representations of the same process model. Informal versions, which
heavily rely on semi-structured or unstructured natural language, are kept next to more
formal and structured alternatives. Furthermore, in the formal spectrum, we encounter
a plethora of modelling languages, each one aiming to solve a different subset of problems
[3, 4]. Finally, even in formal notations, a huge part of the semantic descriptions are
delegated to short text snippets written in natural language.

It is thus evident that natural language in process documentation is an unavoidable
reality. This situation is creating an increasingly large amount of digital but unstruc-
tured or semi-structured data in organizations. There is a clear opportunity to capitalize
on these data sources to obtain insights that can be used to further enhance, better mon-
itor, and more accurately document business processes.

During the last fourty years, the Natural Language Processing (NLP) community
has provided algorithms and tools for automating the analysis of human language. And

7



Ph.D. Bridging the Gap Between Textual and Formal Process Representations Chapter 1

recent advances in hardware technology have widened even more the scope of what this
technology is capable of producing. By bringing these innovations to the field of BPM,
companies and organizations can finally benefit from their otherwise unexploited sources
of process documentation. This has been a recent trend in the BPM community for the
past few years, and is the main driving factor behind this research.

1.2 Goals of this thesis

Identifying the opportunities and challenges presented by the previously described situ-
ation, this thesis sets out to achieve the following high-level goals:

1. Improving automatic analysis of process documentation. Acknowledging
natural language as an inherent part of process documentation, this thesis aims to
propose algorithmic techniques that allow automatic analysis of such unstructured
and semi-structured language sources. From short text snippets present in Busi-
ness Process Model and Notation (BPMN) documents, to plain text descriptions
often employed by organizations.

2. Making natural language a first-class asset. Natural language is currently
frowned upon when considering formal process documentation. However, it has
many desirable properties that other formal notations have failed to deliver on. A
goal of this thesis is to explore and propose techniques that, when enhanced by
artificial intelligence, would bring informal text to the level of formal documen-
tation. Furthermore, the aim of these techniques is to ultimately enable formal
reasoning via approaches such asmodel checking on top of natural language textual
descriptions.

3. Analyzing usage of formal and informal modelling languages. The task
of modelling is an act of formalization, and is mainly the product of an interaction
between a modeler and a modelling language, be it formal or unstructured. This
thesis is set to analyze how this interaction takes place, in the form of modelling.
By doing so, we aim to uncover valuable insights of how natural language relates
to process documentation, find the natural ways in which typical control flow
patterns are described, and how natural language fits into the task of formalizing
reality as a business process model.

4. Enhancing the process modelling experience. To be used in automation,
process documentation must be accurate and error-free. Unfortunately, current
process documentation formats are capable of representing in practice many sit-
uations undesirable in an actual deployment. To alleviate this, current modelling
tools offer feedback to improve process model quality, but this feedback is usually
limited to the syntactical aspects. One of the goals of this thesis is to design al-
gorithms capable of providing more detailed feedback to improve the modelling
experience, especially when concerning the actual semantics of a process.

1.3 Main Contributions

This thesis is structured into several lines of research, ranging from the theoretical
aspects of language formalization to more practical research focused on the design science
methodology, in which the main focus is to validate an approach by means of constructing
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an actual artifact that implements it. The four main lines of research that will be covered
in this thesis are next listed:

1. Formalizing textual process descriptions. Described in Chapter 4, Section
4.1, in this line of research we introduce Annotated Textual Descriptions of Pro-
cesses (ATDP): A language and accompanying methodology, rooted in temporal
logics and process trees, that allows formally specifying the underlying business
process in a textual description. ATDP enables reasoning on top of textual de-
scriptions by embracing and capturing ambiguity.

2. Computing alignments between textual and formal process models.
Described in Chapter 4, Section 4.2, in this line of research we describe the design
and implementation of an algorithm to compute optimal alignments between an
informal textual description and a formal BPMN business process specification.
This algorithm is then empirically validated against both previously existing and
newly annotated validation benchmarks, to show a high level of accuracy and a
wider coverage of BPMN constructs.

3. Proposing an educational environment for process modelling. Described
in Chapter 4, Section 4.3, in this line of research we describe the design process and
implementation of the ModelJudge: A web platform designed to help students and
teachers improve the experience behind a process modelling course. ModelJudge
is capable of, without any human intervention, suggest corrections based on the
syntactic, semantic and pragmatic aspects of a novice modeler’s business process
diagram. The quality of the generated feedback is then validated using both
quantitative and qualitative metrics based on data collected from two separate
modelling courses held in universities.

4. Automating the creation of conversational agents from processes. De-
scribed in Chapter 4, Section 4.4, in this line of research we describe the implemen-
tation of a technique to convert a BPMN process diagram into a conversational
agent able to explain the process. Based on existing state-of-the-art techniques
for language generation from process models, the technique presented is able to
produce agents capable of answering specific questions about a process model or
provide detailed step-by-step instructions. An empirical, qualitative evaluation
shows great potential for the achieved results, but also evidences the need of fur-
ther iterations to achieve a more consistent level of quality.

1.4 List of publications:

This thesis is an aggregation of the the following publications. For each publication,
impact factor or GGS rating is listed accordingly.

• Josep Sànchez-Ferreres, Han van der Aa, Josep Carmona and Lluís Padró. “Align-
ing textual and model-based process descriptions”. In: Data Knowledge Engineer-
ing 118 (2018), pp. 25-40. (Impact Factor: 1.583, Q3)

• Josep Sànchez-Ferreres, Luis Delicado, Amine Abbad Andaloussi, Andrea Burat-
tin, Guillermo Calderón-Ruiz, Barbara Weber, Josep Carmona and Lluís Padró.
“Supporting the Process of Learning and Teaching Process Modelling”. In: Trans-
actions on Learning Technologies (TLT). 2019. (Impact Factor: 2,315, Q2)
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• Josep Sànchez-Ferreres, Josep Carmona and Lluís Padró. “Aligning Textual and
Graphical Descriptions of Processes Through ILP Techniques”. In: Proceedings of
the 29th International Conference on Advanced Information Systems Engineering
(CaiSE). 2017. pp. 413-427. (GGS Rating: A)

• Josep Sànchez-Ferreres, Andrea Burattin, Josep Carmona, Marco Montali and
Lluís Padró. “Formal Reasoning on Natural Language Descriptions of Processes”.
In: Proceeding of the 17th International Conference on Business Process Manage-
ment (BPM). 2019. (GGS Rating: A)

• Anselmo López, Josep Sànchez-Ferreres, Josep Carmona and Lluís Padró. “From
Process Models to Chatbots”. In: Proceedings of the 31th International Confer-
ence on Advanced Information Systems Engineering (CAiSE). 2019. pp. 383-398.
(GGS Rating: A)

• Josep Sànchez-Ferreres, Andrea Burattin, Josep Carmona, Marco Montali, Lluís
Padró, and Luís Quishpi, “Unleashing textual descriptions of business processes”.
In: Software and Systems Modeling. 2021. pp. 1-23. (Impact Factor: 1.915, Q1)

1.5 Structure of this document

This thesis document is structured as an article compendium. The opening chapters are
structured as a reading guide. After the full list of publications in Chapter 6, follows
the appendices, with a collection of all the peer-reviewed manuscripts presented as part
of this thesis. Publications are presented verbatim in their pre-print form, and can be
read on their own as self-contained documents. However, the preceding reading guide
serves as an introduction to provide necessary context and relate the four main lines of
research in this thesis.

For the reading guide, Chapter 2 provides an overview of well-established topics that
are connected to this work. Next, Chapter 3, discusses topics under active research
which serve as a basis, and are related to, the work presented in this thesis. Chapter 4
introduces each of the main contributions presented as part of this article compendium.
Finally, Chapter 5 provides general conclusions to this thesis, beyond each individual
contribution and discusses opportunities for future work in this area.
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Chapter 2

Background

This chapter provides an overview of well-established topics that are connected to this
work. Section 2.1 discusses the field of business process management. Next, Section
2.2 goes over some of the most influential modelling language notations, emphasizing
those that are especially relevant for this thesis. Afterwards, Section 2.3 contains a brief
overview of work in the field of formal methods that is necessary to understand some
contributions in this thesis. Finally, Section 2.4 shows an overview of the field of natural
language processing.

2.1 Business process management

In large companies and organizations coordination between multiple actors involved in
business processes is very important for correct operations. Business process manage-
ment is a field of operations research with a focus on how to communicate, document,
analyze and enhance business processes.

Business Process Management approaches processes at three different levels [5], il-
lustrated in Figure 2.1:

Multi Process Management focuses on the identification of major processes of an
organization and their prioritization. This task involves the inspection of the data
repositories of a company, such as Data Warehouses, in order to discover and
extract what are the relevant business processes.

Process Model Management is concerned with the management of a single Business
Process Model. This involves discovering the process and creating a process model
using some kind of process model notation, as well as implementing the necessary
monitoring tools in order to control the process. Prior work in this area is discussed
in Section 2.2

Process Instance Management deals with the actual execution of process: Planning
how the tasks are going to be executed, monitoring the process during its execution
and adapting the process if problems are detected.

BPM is a very wide area of research, with several sub-fields focusing on different
aspects of business processes. From very theoretical research based on Petri net theory
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Figure 2.1: The three abstraction levels of business process management. Adapted from
the figure in [5].

[6], to empirical psychological research about the process of process modelling [7]. The
project described in this thesis is encompassed in an emerging field [8] in BPM, focused
in the relation between human natural language and the formal methods found in other
fields of research, such as Process Mining [9]. Related work in this field is discussed
later on in Section 3.1

2.2 Modelling Language Notations

In the literature, one can find numerous approaches to business process modelling tech-
inques. In their survey [3], Lu et. al. classify business process notations (BPN) –in
this work also referred as process modelling languages– into graph-based and rule-based
notations. These two categories are also often referred to as imperative and declarative
process modelling languages, respectively.

12
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Graph-based BPN represent business processes as a control flow graph. They are
heavily based on, and usually convertible to Petri Nets [10], a formal mathematical
model usually employed to describe distributed systems. A more restricted, but useful
formalism to represent this type of processes are Process Trees.

A Process Tree [11] is a formalism to describe block-structured imperative processes.
It is a tree structure, consisting of branching nodes and leaves. A branching node is
labeled with an operator: Sequence (→), Conflict (×), Parallel (||), Inclusive or (∨)
and Loop (�). Leaf nodes represent activities. The possible executions of a process
described by a process tree are defined by recursively combining the semantics of each
operator. Figure 2.2 shows an example process tree describing a process that starts
with a loop of a, and continues by taking the choice of either doing b and c in parallel
or executing just d. Process Trees are an interesting formalism because despite being
more restrictive than petri nets, the processes described are guaranteed to have very
interesting properties such as soundness [12], and are by definition considered block-
structured, a property that’s not always easy to achieve for general graphs. [13]. This is
why Process Trees are often preferred when automatically constructing process models,
which can then be converted to any graph-based notation.

a

b c

d

Figure 2.2: A Process Tree
with 4 operators and 4 activ-
ities.

In graph-based BPN, the process is described as
a sequence of linked nodes, indicating sequential, al-
ternative or concurrent execution paths. To this day,
the most prominent graph-based business process no-
tation is the Business Process Model and Notation
(BPMN) [14], with its first version published in 2011.
However, before BPMN’s quick rise in popularity, the
Business Process Execution Language (BPEL) had the
most widespread usage. Several other alternatives like
YAWL [15] have been proposed both from the aca-
demics and the industry. Figure 2.3 shows a com-
parison between the three aforementioned graph-based
business process notations. Despite their differences,
there is a minimum subset of elements that almost all
of them have in common. (i) The notion of activity, which is a task to be executed in
the process, usually containing a text label in order to further specify the semantics of
the process. (ii) The XOR split, which branches the execution in two alternative paths,
and only one of them may be executed for any process instance. (iii) The AND split,
which branches the execution into two concurrent paths, the execution of which can be
interleaved arbitrarily. Unlike process trees, most graphical notations do not enforce pro-
cesses to be block-structured. This allows processes modelled in graph-based notations
to follow very complex control flows, equivalent to the kind which are only obtainable
by using free goto statements in traditional imperative programming languages.

Rule-based BPN express the process model as a set of rules. In most rule-based
systems, the rules are expressed as restrictions (e.g. “A request form can only be sent
by a manager”). The main difference of these systems with respect to Graph-based
alternatives is that they allow more flexible behaviour to be described in a more natural
way, at the cost of higher verbosity and being more error prone. For instance, consider
a variation of the process described in figure 2.3 where the order of the examinations is
irrelevant, but it is mandatory for the doctor to sterilise the medical equipment between
the two. In graph-based systems, duplication of activities cannot be avoided to express
the semantics of this rule. On the other hand, most rule-based systems can introduce
the rule that task sterilise must always happen between two examinations.

13
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D
o
ct

o
r Select two

patients

Examine
patient B

Examine
patient A

Sterylize
equipment

Figure 2.3: Example process in different graph-based languages: BPMN (top-left),
YAWL (mid-left), Petri Net (bottom-left), BPEL (right).

One of the most prominent rule-based notations in the BPM literature is Declare.
This language allows declarative specification of processes. Declarative modelling lan-
guages aim to not over-specify processes, and thus are useful when wide ranges of be-
haviour are possible whithin the same process. A Declare model is defined as set of
constraints over a set of activities. For instance, the response(a, b) constraint specifies
that after any execution of a, an execution of b should eventually occur. Table 2.1 shows
the informal definition of some of the most common declare constraints. The original
semantics of Declare were formulated in Linear Temporal Logic (LTL), described in de-
tail in Section 2.3. However, alternative implementations exist for Computation Tree
Logic (CTL) [16] and Regular Expressions [17].

Constraint Definition

precedence(a, b) Any execution of b must be preceded by an execution of a
response(a, b) After any execution of a, b will eventually occur
succession(a, b) Both precedence(a,b) and response(a,b)
not-coexist(a, b) Activities a and b cannot both occur in the same trace

Table 2.1: Informal definitions of some Declare constraints.

2.3 Formal methods

Formal methods is a field of research with a focus on developing mathematically rigorous
techniques used for the specification, design and verification of software and hardware

14
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systems. In this section, we briefly overview two main contributions of the field that are
of particular relevance to this thesis: Linear Temporal Logic and Model checking.

2.3.1 Linear Temporal Logic.

As seen later on in Chapter 4, a type of modal logic called Linear Temporal Logic (LTL)
[18] is used in the definition of ATDP. This formalism is also the basis for the Declare
rule-based process modelling language described in the previous section. Temporal logic
are a type of logic that allows stating facts about sequences of atomic events over time.
For example, by stating �(a→ ♦b), we are saying that the occurrence of event a at any
point in time, implies event b will be executed eventually in the future.

LTL formulae are built from a set P of propositional symbols and are closed under
the boolean connectives, the unary temporal operator ◦ (next-time) and the binary
temporal operator U (until):

ϕ ::= a | ¬ϕ | ϕ1 ∧ ϕ2 | ◦ϕ | ϕ1 U ϕ2with a ∈ P

Intuitively,◦ϕ says that ϕ holds at the next instant, ϕ1 U ϕ2 says that at some future
instant ϕ2 will hold and until that point ϕ1 always holds. Common abbreviations used
in LTL include the ones listed below:

• Standard boolean abbreviations, such as >, ⊥, ∨, →.
• ♦ϕ = >U ϕ says that ϕ will eventually hold at some future instant.
• �ϕ = ¬♦¬ϕ says that from the current instant ϕ will always hold.
• ϕ1 W ϕ2 = (ϕ1 U ϕ2 ∨ �ϕ1) is interpreted as a weak until, and means that either
ϕ1 holds until ϕ2 or forever.

As a means to illustrate the type of concepts expressible in LTL, consider the fol-
lowing temporal statements and their LTL encoding.

• Every time it rains (r), my street floods after some time (f): �(r → ♦f)
• Once the circuit breaker blows (b), power (p) is not restored until the leakage is
resolved (r): �(b→ ¬pU r)

• To use this medication (m), the patient must not have had any prior surgeries (s):
♦s→ ¬sU m

The semantics of temporal logic vary when considering their semantics over finite
[19] or infinite traces of events [20]. In this work, we consider the standard interpreta-
tion of temporal logic formulae over infinite traces. To better illustrate this, consider
the following set of statements: “a must be executed; a follows b; b follows a”. By
interpreting the statements over infinite trace semantics, the formula is easily satisfiable
with an endless loop of executions of a and b. However, this trick is not very useful
to process models, where typically termination is a desirable property and the situation
just described would be considered a deadlock. Note however that this theoretical dis-
tinction does not impose any limitation on the expressive power of the formalism for the
particular use cases portrayed in this thesis.

2.3.2 Model checking

Model checking [21] is the field concerning techniques for the automatic verification of the
properties of finite-state systems. Particularly, in this work, model checking techniques
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are used to verify properties over processes, specified as a model representing all its
possible executions.

Figure 2.4 Illustrates the problem of model checking: Given a model description as a
finite-tate system and a property specification, usually expressed in different formalisms,
check whether the property holds for the system, and in case it does not, provide a
counterexample.

In the field of BPM, model checking can be used in the context of compliance check-
ing. Business rules, as those arising from regulations or SLAs, impose restrictions that
any process model in an organization may need to satisfy. On this regard, compliance
checking methods assess the adherence of a process specification to a particular set of
predefined rules.

Currently, there are various well-known implementations for model checking soft-
ware. One of such implementations, used in this thesis (see Section 4.1), is NuSMV[22].
NuSMVallows the specification of transition systems using its own high-level language. On
the other hand, properties can be specified using a wide range of well-known formalisms,
including LTL and CTL.

Model
Property

Specification

Model

Checker

True False

+ 

Counterexample

Figure 2.4: Overview of a model checker

2.4 Natural language processing

Natural Language Processing (NLP) is a field of artificial intelligence which addresses the
interactions between computers and human languages. NLP focuses on many problems
at different levels of abstraction, from the purely linguistic ones like morphological and
syntactic analysis or determining the part-of-speech of words to very challenging tasks
such as the automatic summarizing of news articles.

Those tasks that go beyond parsing at a syntactic level and focus on the semantics
of written text are usually classified under the field of Natural Language Understanding
(NLU). The focus in NLU is to build complete semantic representations of texts in
a machine-friendly format. It is thus an AI-complete [23, Section 1] problem, since
texts are addressed to human readers under the assumption of common sense and world
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knowledge, things very difficult to encode in a computer program.

NLP techniques are applied to address a variety of use cases in the context of Business
Process Management. Several of these focus on the text contained in process models
themselves. This includes a variety of works that focus on the quality of process model
labels, for example by restricting the use of certain labeling conventions [24, 25, 26], or
common modelling errors [27]. Other approaches use NLP to augment process models
with semantic or ontological information [28, 29, 30]. This particular field of research is
discussed in further detail later on in Section 3.1.

Other use cases involve texts that exist outside of process models. Several approaches
extract process models from different kinds of text, such as from use cases [31], group
stories [32], or methodological descriptions [33], while others take general textual process
descriptions as input [34, 35].

However, these approaches have been found to produce inaccurate results, which
require manual inspection [36]. Other use cases involving texts include a technique that
considers work instructions when querying process repositories [37] for conformance
checking against textual process descriptions [38].

2.4.1 Steps of Language Analysis

The NLP processing software used in this work is FreeLing 1 [39], an open–source li-
brary of language analyzers providing a variety of analysis modules for a wide range of
languages. More specifically, the natural language processing layers used in this work
are:

Tokenization & sentence splitting: Given a text, split the basic lexical terms (word,
punctuation signs, numbers, ZIP codes, URLs, e-mail, etc.), and group these to-
kens into sentences.

Morphological analysis: For each word in the text, find out its possible parts-of-
speech (PoS).

PoS-Tagging: Determine which is the right PoS for each word in a sentence. (e.g. the
word dance is a verb in I dance all Saturdays but it is a noun in I enjoyed our
dance together.)

Named Entity Recognition: Detect named entities in the text, which may be formed
by one or more tokens, and classify them as person, location, organization, time-
expression, numeric-expression, currency-expression, etc.

Word sense disambiguation: Determine the sense of each word in a text (e.g. the
word crane may refer to an animal or to a weight-lifting machine). We use Word-
Net [40] as the sense catalogue and synset codes as concept identifiers.

Constituency/dependency parsing: Given a sentence, get its syntactic structure as
a constituency/dependency parse tree.

Semantic role labeling (SRL): Given a sentence identify its predicates and the main
actors in each of them, regardless of the surface structure of the sentence (ac-
tive/passive, main/subordinate, etc. For example, in the sentence John does not
want to go, a SRL would detect two predicates (want and go), and mark that

1http://nlp.cs.upc.edu/freeling
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John is Agent of both. Note that a parser could detect that John is the subject
of want but it would not detect that he is also the one supposed to go. SRL
provides a higher level of abstraction than a parser, providing slightly deeper se-
mantic knowledge. E.g. in a passive sentence such as the fish was eaten by the cat,
a SRL system would detect an event eat with cat as Agent and fish as Patient,
i.e. exactly the same that it would extract from the equivalent active sentence the
cat eats fish.

Coreference resolution: Given a document, group mentions referring to the same
entity (e.g. a person can be mentioned in the text as Mr. Peterson, the director,
or he.)

Semantic graph generation: All the information extracted by the previous analyzers
can be organized in a graph depicting events (mainly coming from predicates in the
text), entities (coming from detected coreference groups), and relations between
them (i.e. which entities participate in which events and with which role). This
graph can be converted to triples and stored in an RDF database if needed.

2.4.2 Text Annotations

Creating annotated versions of texts is usual in the NLP field, where many approaches
are based on machine learning. Thus, to train a PoS-tagger, text where each word
has been annotated with its part-of-speech is required. Similarly, parsers, semantic
role labelers, or coreference resolution systems, need example texts where this linguistic
levels have been annotated by humans. These annotated corpora are then used to train
the NLP analyzers and to evaluate their performance.

Thanks to this need for annotated data in NLP, convenient tools have been developed
to ease the annotation task. One of them is Brat [41] 2, a configurable environment that
allows the annotation of texts with labelled spans, and relations. Figure 2.5 shows Brat
being used to annotate a scientific text with very specific concepts from the field of
biology.

In Chapter 4, we present ATDP as a business process modelling language. ATDP
is based on text annotations, but its main purpose differs from the typical use cases of
annotations. Ideally, an ATDP would be automatically extracted by an NLP tool, instead
of being used as training data. However, given the limitations of the current NLP state
of the art, we resort to a certain amount of human annotation to improve the quality of
our semantic representation.

2http://brat.nlplab.org
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Figure 2.5: One of the example annotations provided with the Brat annotation tool.
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Chapter 3

State of the Art

This chapter introduces topics that are currently under active research, and serve as
a basis for the work is presented as part of this thesis. Section 3.1 discusses recent
advances in the field of natural language processing in the field of BPM. Next, 3.2
briefly discusses new trends in the NLP community where the focus is shifting towards
end-to-end machine learning systems. Later on, in 3.3, goes over the state of the art in
formal systems for reasoning over process models. Finally, Section 3.4 describes several
educational platforms for process modelling and other related disciplines.

The reader should note that, due to the structure of this thesis as an article com-
pendium, the state of the art introduced in this section is meant as a broad overview
of related works to this thesis. Later on, in the appendix chapters, a more in-depth
exploration for the state of the art is provided in each of the publications.

3.1 Natural language processing in BPM

In order to automatically reason over a natural language process description, it is neces-
sary to construct a formal representation of the actual process. The interaction between
process models and textual descriptions has been studied from several angles in the
literature. In this section overview several contributions that are of special relevance to
this thesis: ranging from fully manual to automatic approaches.

3.1.1 Creating Process Models from Textual Descriptions

Converting an unstructured textual representation into a formal complete specification
in a process modelling language is often desirable: This allows the resolution of am-
biguities, often present in natural language, while enabling support for automation in
process execution.

To achieve this, the first available option consists in converting a textual description
into a process model by manually modelling the process. This approach, widely discussed
[42, 43], has been thoroughly studied also from a psychological point of view, in order
to understand which are the challenges involved in such process of process modelling
[44, 45]. These techniques, however, do not provide any automatic support and the
possibility for automatic reasoning is completely depending on the result of the manual
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modelling. Therefore, ambiguities in the textual description are subjectively resolved.

On the opposite side of the automation spectrum, there are approaches that au-
tonomously convert a textual description of a process model into a formal representation.
Often, such representation is a final process model in a formal language, such as BPMN.
Converting an unstructured textual representation into a formal complete specification
is considered a very challenging task in the literature. With the inherent difficulties
introduced by unstructured natural language, none of the state-of-the-art techniques to
date have been able to achieve a level of quality that doesn’t require further manual
refinement of the produced artifact [46]. Moreover, fully automatic techniques are lim-
ited by the fact that they need to resolve ambiguities in the textual description. This
can results in a single text interpretation being “hard-coded” into the resulting process
model.

Often, restricting the input language from free text to a more rigid structure leads
to more predictable inputs. In their work [32], Gonçalves et. al. introduce a technique
capable of extracting process models from user stories. By building on a set of com-
mon language widely understood–especially by non-technical profiles usually involved
in process definition–more accurate results can be obtained by decreasing the amount
of ambiguity. Similar work in this field has also been proposed by Sinha et. al in [31].

In their work [35], Friedrich et. al. propose a technique capable of producing a
complete process model in BPMN starting from an unrestricted textual description.
The technique is mainly based on standard natural language processing techniques, and
leverages the technology in the Stanford Parser [47] to achieve a good level of accuracy
in a 47 model-text pairs validation benchmark.

Finally, the techniques introduced by Quishpi et. al. in [48] are closely related
to the work introduced in this thesis. Instead of producing formal, complete BPMN
specifications from a textual description, this contribution targets ATDP annotations:
A new formalism introduced in this thesis which aims to be closer to natural language
while still remaining convertible to more rigid representations of business process models
via automatic reasoning. This approach decouples the semantic extraction phase from
the technicalities of having to target a very rigid standard such as BPMN, and delegates
this final conversion to other specialized tools. In Chapter 4, Section 4.1, we describe in
further detail the ATDP formalism and how it relates to unstructured textual descriptions.

3.1.2 Converting Process Models into Textual Descriptions

Another common approach is to convert technical, structured process documentation
into an unstructured natural language text describing the same process. The problems
in this line of research are vastly different when compared to the approaches from the
previous section. The challenge is shifted from having to handle ambiguous language–
which is not an issue in this scenario–, and moves towards generating natural, believable
sentences capable of replacing a human writer. This has often been approached in the
literature as direct application of Natural Language Generation (NLG) techniques in the
field of BPM.

However, this kind of transformation is not exclusively a NLG task. Most business
process notations rely on semi-structured natural language fragments to denote most
of the semantics of the process. This is why, often, NLU techniques must be combined
with NLG in order to obtain a complete solution to the problem.

One of the first examples of text generation from business process models in BPMN
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notation was introduced by Leopold et. al. in [49]. In that paper, a mixture of struc-
tural analysis, classical NLP-inspired heuristics and natural language generation were
combined in order to automatically generate textual descriptions of Business Processes.

Other approaches, are focused with generating different kinds of unstructured doc-
umentation. In their work, Aysolmaz et. al. [50] describe a technique to generate
requirements documents autonomously from a business process specification. As simi-
larly described in the previous section, by restricting the scope of the natural language
in a more rigid form, better results can be achieved without human intervention.

More recent attempts have been made at improving the results for text generation
starting from a standard BPMN specification of a process model, inspired by the tech-
nique presented in [49]. That is the case for Publication V of this thesis, introduced in
[51]. More details are provided later on in Section 4.4

3.1.3 Comparing Textual and Formal Process Descriptions

Establishing an alignment between two existing sources of documentation is sometimes
desirable. This has been explored mainly in the field of process model matching: A set
of techniques to find isomorphisms between formal business process diagrams for which
there has been high interest in the BPM community [52]

In [53], Leopold et. al. propose a technique for process model matching. In it, a
combination of structural information and semantic information contained in activity
labels is used to perform the matching. The technique uses probabilistic optimization
techniques in order to compute the best alignment between a pair of process models.
This line of research is later on continued by Klinkmüller et. al. in [54]

Several authors in the literature, have proposed works combining the ideas and tech-
niques of process model matching and NLU. Instead of matching two formal process
models, techniques have been proposed with the of aligning a formal source of process
documentation, such as a BPMN diagram, with an unstructured source of information,
like a textual description.

One of the first contributions to tackle the problem was introduced by van der Aa
et. al. [55]. In that contribution, a bag-of-words (BoW) method was used to extract
and compare information from two distinct sources of information, which would then be
compared using standard information theory techniques.

One of the main contributions of this thesis, presented in Chapter 4, Section 4.2,
consisted on expanding on the original idea presented in [55] by using more advanced
natural language extraction techniques and introducing a faster formalization to the
same optimization problem which allowed computation in real-time. This led to the
joint contribution in [56] were both techniques were combined and expanded to cover a
wider range of BPMN constructs like events or gateways.

3.1.4 Handling Ambiguity

Throughout this section, we have been discussing ambiguity as one of the main barriers in
the analysis of unstructured natural language data sources. This is especially important
when the goal is the translation into a formal language. Human writers assume some
implicit background context is needed to understand a text, and frequently introduce
statements that are not self-contained, i.e. cannot be understood without external
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knowledge and reasoning capabilities. Textual descriptions of business processes are a
clear example of this phenomena.

Managing ambiguity in textual descriptions has been widely acknowledged as a dif-
ficult challenge in the BPM literature[57] as well as related fields, such as requirements
engineering[58, 59]

Being an ever-present challenge, countless works in the NLP literature have con-
sidered tackling ambiguity. In their survey [60] Bhattacharyya presents a systemmatic
characterization of ambiguity sources at all steps of the NLP pipeline. It then focuses
on the specific problem of Word sense disambiguation, previously seen in Section 2.4.1.

One of the first works to directly tackle natural language ambiguity specifically for the
case of business process descriptions was performed by van der Aa et. al. in [38]. More
specificaly, this work focused on behavioural ambiguity, that is, ambiguous statements
about the control flow of a business processes. In it, the authors claim that some
commonly used natural language statements are inherently ambiguous with regards to
their semantics, particularly its scope. The concept of interpretation presented in [38]
is also one of the main fundamental pillars of ATDP, presented as part of this thesis later
on in Chapter 4, Section 4.1.

3.2 End-to-end systems for NLP

Recent developments in the NLP literature have been shifting the focus from the proce-
dural pipeline described in Section 2.4.1 towards full data-driven methods that blur the
line between the different phases of language understanding. In this thesis, we englobe
this new developments in the NLP field under the umbrella term of end-to-end NLP
methods, in contraposition to the classical NLP methods.

Typically, end-to-end systems are based on the idea of having a single, complex
statistical model of the language to run all the tasks in a single pass: From tagging
and parsing to semantic inference. On one hand, this makes the complete process less
explainable, since models trained for this task–Typically variants of recurrent neural
networks–are implicit models that act as black boxes [61]. On the other hand, by not
having barriers between the different pipeline steps, the system has the capability of
correcting previous assumptions from prior steps. For example, in a classical pipeline,
an error during the parsing step can lead to subsequent issues during the semantic role
labelling phase. In principle, by blurring the line between those two parts, the system
can be more robust by mimicking a kind of iterative back-tracking process more similar
to the kind of cognitive effort done in real language understanding.

End to end systems systems are based on in prior ideas like word2vec [62] and ELMo
[63], where a single neural network is trained on a large corpus of text to compute
word embeddings, i.e. numerical vectors that encode the semantics of words, based
on the weights of the final layers of the network itself. Unlike the aforementioned
systems, more recent methods like BERT [64] propose going beyond embeddings, and
have started training large language models to perform the complete pipeline of language
understanding tasks.

In this thesis, we do not propose techniques that take advantage of end-to-end NLP
systems. That is because, unlike classical systems, the newly proposed end-to-end sys-
tems have the disadvantage of requiring large amounts of tagged training data to perform
specific tasks. In some preliminary experiments, even when using techniques such as
transfer learning, the amount of data required turned out to be a problem: For the kind
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of classification tasks necessary to understand textual descriptions of business process
models, there is no freely available data repository with enough high quality textual
descriptions of business processes to train such systems. Later on, in section 4.2 we
describe some efforts that were made to that end as part of this thesis.

3.3 Formal reasoning on top of process models

Formal reasoning on top of business process descriptions is a widely researched topic
in the literature. The main goal of this kind of analysis is to allow for the creation
of intelligent process management systems that are able to automatically assess the
correctness and efficiency of business processes.

There have been several attempts in the literature at classifying process modelling
notations. One such example is the previously stated survey by Lu et. al. [3], where a
clear distinction is made between graph-based and rule-based notations, mainly focusing
on the expressive power of each formalism. In a later work [65], S. Morimoto provides
an alternative classification with respect to reasoning capabilities, where a distinction is
made between automata-based methods, petri-net methods and process algebras.

One typical use case of automata-based reasoning are notations based on temporal
logics–which have an equivalence to finite state automata–. Many of the efforts in creat-
ing LTL-based process modelling notations have their origin in Declare [66], previously
discussed in Section 2.2, and from which the ATDP language presented in 4.1 draws its
inspiration.

An example of work leveraging the formal roots of Declare to provide reasoning on
top of process models is the work by M. Maggi et. al. In their paper [67], a runtime
verification framework is introduced. Based on LTL and colored automata, the system
is capable of performing compliance checking in real-time. The technique is shown to be
robust to constraint validations, providing meaningful diagnostics even in those cases.
The authors specifically reference Declare in their contribution, providing an encoding
of the Declare LTL semantics into finite state automata, and showing how the technique
has direct applicability for process models described in this declarative style.

Other works in the literature have leveraged similar techniques for graph-based no-
tations, such as BPMN. In [68], Arsac et. al. present a model checking technique on top
of BPMN, with a focus on user friendliness allowing validation security properties for
deployments in a BPM execution engine. The authors show a proof of concept imple-
mentation based on the NetWeaver (NW) BPM industrial environment. Similar work
in this line of research has also been introduced in other works [69].

In this thesis, we propose a set of formalisms and techniques with the focus of
bringing the same kind of innovations in formal reasoning over process models to textual
descriptions. This is covered in detail when discussing the ATDP language, later on in
4.1.

3.4 Educational systems for modelling

In Chapter 4, Section 4.3 an e-learning framework for process modelling–The Model-
Judge–is presented. There exist very few works in the literature that jointly propose
such a framework, and exploit NLP capabilities for automating the validation of created
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process models. Still, we can find many examples of learning frameworks designed to
aid students in conceptual modelling.

One such example is the one presented by Pimentel et. al. in [70]. In this work, a
gamification setup is defined to engage students in the task of creating i* models. The
contribution is presented as a learning framework. However, it relies on manual effort
and offers little automation support.

There have also been prior efforts to design automatic e-learning systems for other
modelling notations, such as the work by Demuth et. al. [71], focused on UML diagrams
instead of process models. In this system, shallow textual validation for the main model
components is done, which requires establishing all the possible solutions for a given
exercise a priori.

There is related work that explores the human behavior in modelling, an aspect that
influences the work in ModelJudge. In [72], Störrle et. al. present a study to evaluate
how human modellers visually parse UML diagrams using eye-tracking technology. A
more recent study by Burattin et. al. [73] follows a similar approach for the case
of reading BPMN process models during a modelling session. Incorporating insights
arising from these studies in form of guidelines can be used to automatically asses the
readability of a model.

The framework proposed in ModelJudge is inspired on code judges for programming,
which are extremely successful on guiding novice programmers towards obtaining so-
lutions to programming. One of the earliest examples of such framework is the work
introduced by Kurnia et. al. in [74]. In it, a tool capable of automatically grading
students’ programming assignments–the Online Judge–is described. The authors argue
that a tool like Online Judge is beneficial for the correction of programming exercises,
freeing the instructors from repetitive work, avoiding biases towards a particular solu-
tion and solving the potential security issues of running untrusted programs on personal
machines.

Later works improved on the ideas introduced in [74] by providing better test case
functionality [75] or focusing on providing more detailed diagnostic feedback to students
[76, 77]. For the ModelJudge, we considered the advantages of these innovations when
proposing our technique for a different problem domain. Particularly, in ModelJudge we
shift the focus from automatic grading to qualitative feedback in the form of detailed
diagnostics, enabling the modeler to easily localize errors.
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Chapter 4

Main Contributions

In this section, we introduce an overview of the four main contributions that conform
this thesis, briefly introduced already in 1.3. First, Section 4.1 describes the design and
formalization work carried out to define the ATDP language. Next, Section 4.2 introduces
a technique for automatic alignment of structured and unstructured sources of process
documentation. Later on, Section 4.3 presents the work in the development of Model-
Judge: An educational platform to aid in teaching process modeling. Finally, Section 4.4
presents a technique for the automatic generation of autonomous conversational agents
from business process descriptions.

The reader should note that the order of the contributions shown in this chapter does
not correspond to the original chronological order of publication. Instead, the order has
been chosen to present the publications in the recommended reading order: Ranging
from the abstract and theoretical to more concrete, practical works.

4.1 Formal Reasoning on Natural Language Descrip-
tions of Processes

4.1.1 Related publications

• IV. Josep Sànchez-Ferreres, Andrea Burattin, Josep Carmona, Marco Montali and
Lluís Padró. “Formal Reasoning on Natural Language Descriptions of Processes”.
In: Proceeding of the 17th International Conference on Business Process Manage-
ment (BPM). 2019. (GGS Rating: A)

• VI. Josep Sànchez-Ferreres, Andrea Burattin, Josep Carmona, Marco Montali,
Lluís Padró, Luís Quishpi, “Unleashing Textual Descriptions of Business Pro-
cesses”. Submitted: International Journal on Software and Systems Modeling
(Impact Factor: 1.915, Q1)

4.1.2 Main highlights

Process specifications are the usual way of communicating how and in which order pro-
cess activities should be executed. To that end, several formal languages have been
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introduced over the years to allow for unambiguous formal process specifications. How-
ever, process specifications are often provided using simple, easy to understand natural
language. This helps all the related roles understand a business process without having
to rely on teaching formal, rigid notations to non-technical actors.

Despite their better accessibility, natural language descriptions of processes have
several issues that make them unsuitable to be an appropiate language for formal spec-
ifications: Unstructured text does not support automation nor easy extraction of in-
formation. Moreover, it is oftentimes inherently ambiguous and usually written in a
subjective style, which may lead to multiple interpretations, given the same written
specification.

Taking on these challenges, this contribution proposes Annotated Textual Descrip-
tions of Processes (ATDP). Both a language, and an associated framework that serves as
the first step towards bringing informal textual descriptions and formal specifications
together under the same formalism. The core concept in this framework is the ATDP
specification, which is shown in its visual form in Figure 4.1

In publication IV, we introduce the core ATDP formalism. This work was later ex-
tended in a later extension–publication VI–, where more details about the core formalism
were provided, as well as presenting multiple real use cases of the ATDP framework.

More specifically, this line of research produced the following specific contributions
to the field:
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Figure 4.1: Visual representation of an ATDP specification.

1. Formalizing Natural Language Descriptions

As previously seen in Chapter 3, there have been multiple prior efforts in the
literature to deal with textual descriptions of processes. Most prior attempts,
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however, relied on introducing some ad-hoc formalization of the problem tailored
to the specific task the authors were attempting to solve.

One of the contributions presented in this work is the creation of a common frame-
work on top of which other researchers can build several tools that work on the
relation between formal and informal process descriptions. By embracing the ATDP
framework, further research can focus on the specifics of how to solve a certain
problem, avoiding repetition in having to re-define the same formal framework
multiple times.

2. An end-to-end framework with tool support

The work in ATDP presents an end to end framework: From the formal specification
of a new modelling notation, to the implementation of several techniques enabling
automation on top of it. Figure 4.2 overviews the current main contributions in
the ATDP ecosystem:

• The ATDP extractor, presented by Quishpi et. al. in [48]–outside the work of
this thesis–, introduces a tool to automatically bootstrap ATDP specifications
out of plain text descriptions of process models.

• The ATDP reasoner, introduced in Publication VI, is a tool to automatically
encode ATDP specifications into NuSMV model checking instances. By leverag-
ing a standard model checker, arbirary queries can be presented and resolved
on top of an ATDP specification, which, as shown by the contribution in [48],
is partially obtainable from a plain textual description.

• The ATDP simulator, also introduced in Publication VI, leverages two well-
known simulation techniques for process trees and LTL automata to auto-
matically generate event logs out of ATDP specifications. The tool offers a
fine degree of control over the generated traces and can be useful to validate
event-trace-based techniques from the field of process mining.
4.2 shows

Textual 

Description
ATDP Reasoner

Event Log

Manual 

Annotation

counterexample: 〈a1, a3, a7, a2〉

counterexample: 〈a1, a3, a7, a2〉

I1 property verified

I4 property verified

I2 property verified

... ...

I3 counterexample: 〈a1, a3, a7, a2〉

I5 counterexample: 〈a1, a3, a7, a2〉

Result

Business Rule

Temporal Formula

□(a → ◇b)

◇b → (¬bUa)

Event Log (Generated)Simulator

Extractor

[39]

Figure 4.2: An overview of the ATDP framework.

3. A notation that is ready for machine learning

Being based on textual annotations, ATDP are well suited to be used not only as
formal documentation, but also as a annotated training corpora.
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By agreeing on a common annotation language and producing annotations, mod-
elers do not only get the benefits of being able to formally document their textual
descriptions, but are also producing annotations that are ready to be used by re-
searchers to improve automatic extraction and generation of such models, making
the modeler’s job more easily automated over time.

Such annotated corpora can be of great use in the training of state-of-the-art
systems for NLP, as discussed in Chapter 3, Section 3.2.

4. Tackling ambiguity

As mentioned in 3.1.4, ambiguity is one of the most important challenges towards
making textual descriptions a first-class language for process specification.

In this contribution, we attempt to bridge this gap by proposing a system that
is not only aware of ambiguity, but is theoretically capable of formal reasoning
even in the presence of ambiguity. We do so by introducing the concept of a
interpretations, represented as I1, I2, I3 in Figure 4.1

5. Characterizing how textual descriptions are written

Another important contribution in this work are the logical relations in the ATDP
language. By abstracting over the low-level details of temporal logics and process
trees, ATDP provides a set of high-level constructs that are inspired in the way
human modelers typically write textual desriptions of processes.

This set of relations, while still being open to further improvements, is a good
first step to encapsulate and characterize how people describe processes textually,
and serves as a good starting point for further research that aims to automatically
extract this kind of information from textual descriptions

6. A hybrid process modelling language

To the best of our knowledge, ATDP is the first process modelling formalism to
offer a mix of declarative and procedural styles. It was observed very early on in
the design process that textual descriptions would often not fit into either style:
Sometimes using very clear procedural sequences of steps–e.g. “First, do X. Next,
Y is performed. Finally, Z happens”. While other kinds of requirements are more
naturally stated in a declarative style–e.g. “X must occur whithin 5 minutes of Y”.
By being able to mix the two representations, ATDP is able to adapt to a wider
range of textual patterns.

4.2 Aligning textual and graphical descriptions of pro-
cesses

4.2.1 Related publications

• I. Josep Sànchez-Ferreres, Han van der Aa, Josep Carmona and Lluís Padró.
“Aligning textual and model-based process descriptions”. In: Data Knowledge
Engineering 118 (2018), pp. 25-40. (Impact Factor: 1.583, Q3)

• III. Josep Sànchez-Ferreres, Josep Carmona and Lluís Padró. “Aligning Textual
and Graphical Descriptions of Processes Through ILP Techniques”. In: Proceed-
ings of the 29th International Conference on Advanced Information Systems En-
gineering (CaiSE). 2017. pp. 413-427. (GGS Rating: A)
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4.2.2 Main highlights

Accessibility for business process documentation is paramount when adopting BPM
practices in any organization. Often, to achieve this, it is desirable to maintain an
easy-to-understand informal textual description alongside an automation-enabled pro-
cess description language. This is a very clear use case for notations like ATDP, where
the formal and unstructured aspects are aligned in a single artifact.

However, nowadays BPMN is still by far the most widespread modelling standard.
This is why, when faced with this challenge, organizations usually choose to maintain a
textual document describing each BPMN process diagram in their repository. There are
obvious drawbacks to choosing this dual representation: Maintenance and improvement
tasks performed to one side are often not fully translated to the other, making the
informal documentation drift away from the formal specification that is actually being
executed underneath. This, can be the source of potential losses and can also lead to
lack of compliance with regulations.

With the aim of improving the situation of keeping multiple separate documenta-
tion synchronized, in this contribution we presented a technique to compute optimal
alignments between business process descriptions and BPMN business process model
specifications. The aim of the tool is to automatically compute a text-to-process align-
ment like the one shown in Figure 4.3

The reader should note that this contribution was developed prior to the formaliza-
tion of ATDP introduced in the previous section. This is why, despite the obvious fit, there
is no mention to ATDP in the publications of this section. By adopting a text-friendly
notation like ATDP, text-to-process alignment is done by the modeller with relatively low
effort and in a much more controlled way.

Publication III of this thesis is presented as an iteration of the work introduced by
van der Aa et. al. in [78]. The other work in this line, Publication I, is a joint journal
extension where the core ideas behind this and the work of [78] were merged, while
improving the range of accepted BPMN items.

Next, we detail each of the specific contribution points introduced in this research:

The process  starts  when  the  

female  patient  is  examined  

by  an outpatient physician, 

who decides whether she is 

healthy or needs to undertake 

an additional examination. 

In the former case,  the  

physician  fills  out  the  

examination  form  and  the

patient  can  leave.

yes

P
hy
si
ci
a
n

H
os
pi
ta
l

Fill out
examination

form

Examine
Patient

Patient is
healthy?

Figure 4.3: Text to business process alignment example.

1. A faster technique with state-of-the-art accuracy
By casting the problem as an Integer Linear Programming (ILP) problem instance,
the technique presented in this publication is able to perform the same optimal
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alignment computation as the state-of-the-art technique in a fraction of the time.
In some instances, the execution time of the technique is brought down from an
order of magnitude of seconds to an order of milliseconds.

This execution time improvement enables using the technique in real time where
before only batch processing was possible, in turn enabling new use cases for the
technology. One of such use cases is the ModelJudge, described in detail in later
on in

2. A new benchmark for process to text comparison

As previously discussed in 3.2, one of the largest impeding factors in exploring
the potential of state-of-the-art machine learning systems for the kind of language
comprehension tasks presented in this work is the lack of high quality annotated
training data that can be used to train and validate such systems.

In order to contribute to this, the work presented in Publication I also includes the
manual collection, curation and annotation of a completely new dataset for model
to text alignment evaluation. This dataset is used in the evaluation and has also
been freely distributed1 to foster future research in the field.

3. Wider coverage of BPMN constructs

In BPMN, there is a wide range of constructs that define not only the behavioural
relations between activities, but also other perspectives of business process execu-
tion.

Thus, when comparing a textual description a rich business process notation such
as BPMN, it is important to consider all the available information in the align-
ments.

This work is, to the best of our knowledge, the first one to introduce an align-
ment technique that is able to consider alignments for the most important BPMN
constructs: Activities, Events and Gateways, as well as Swimlanes and Pools.
Furthermore, results show that this newly proposed technique is not only able to
align more elements than prior approaches, but also benefits from this additional
information by offering better activity detection accuracy.

4.3 ModelJudge: Process modelling in education

4.3.1 Related publications

• II. Josep Sànchez-Ferreres, Luis Delicado, Amine Abbad Andaloussi, Andrea Bu-
rattin, Guillermo Calderón-Ruiz, Barbara Weber, Josep Carmona and Lluís Padró.
“Supporting the Process of Learning and Teaching Process Modelling”. In: Trans-
actions on Learning Technologies (TLT). 2019. (Impact Factor: 2,315, Q2)

• VII. Luis Delicado, Josep Sànchez-Ferreres, Josep Carmona and Lluís Padró. “The
ModelJudge - A Tool for Supporting Novices in Learning Process Modelling". In:
BPM 2018 Demonstration Track. 2018.

1https://github.com/setzer22/alignment_model_text/tree/master/datasets
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4.3.2 Main highlights

The creation of a process model is primarily a formalization task, that faces the difficulty
of constructing a syntactically correct entity which accurately reflects the semantics of
a real process while remaining readable and understandable. This sort of task often
poses a challenge to novice modellers, who often struggle with syntactic, pragmatic and
semantic aspects of process modelling.

A typical process modelling course will, at some point, feature a very specific kind
of exercise: Given a textual description explaining a business process, the goal is to
generate the corresponding diagram by including all the information from the text, and
without over-specifying any of the requirements.

With the aim of improving the process of both learning and teaching process mod-
elling, we developed ModelJudge. A tool that is able to provide accurate diagnostics
during a student’s modelling session, by continuously comparing their work to the ex-
ercise statement. That is, given a textual description of a business process, ModelJudge
helps students propose a business process model using the BPMN standard notation.
At any point during this process, students can request detailed feedback, which is auto-
matically reported by ModelJudge without teacher intervention. Figure 4.4, shows the
modelling interface of the tool.

Figure 4.4: The ModelJudge student view.

Next, we detail the specific points of interest of this line of research.

1. A direct application of text to model alignment algorithms

At its core, the ModelJudge has an algorithm to constantly compare the student’s
proposed model to a reference textual description, i.e. the exercise statement. To
achieve this, we developed a modified version of the algorithm previously intro-
duced in 4.2.

The new alignment algorithm uses the same underlying principles as the one from
4.2, but differs in two key points.

• While the original technique works without placing trust on either side, text
or model, this new technique places full trust on the textual description, which
in ModelJudge, is the exercise statement. This improves feedback quality
helping generate more meaningful error messages.

• The algorithm has been adapted to compute partial alignments. This was
necessary because in ModelJudge students are able to request for feedback at
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any point in the modelling session, even when the BPMN does not include
all the models in the text.

2. A use case for ATDP annotations

The unique setup of the ModelJudge presents an opportunity to improve the ac-
curacy of the underlying AI by means of manual refinement : A teacher can spend
the effort of curating the results of the NLP analyzer for a single exercise once, all
of their students will benefit from that effort.

This situation is a perfect fit for the ATDP framework presented in 4.1. The work-
flow of creating an exercise in ModelJudge is thus as follows:

(a) First, the instructor uploads a text from ModelJudge’s teacher zone

(b) At this point, the instructor is presented with an editor, portrayed in Fig-
ure 4.5, and is also prompted to request bootstrapping an initial automatic
annotation.

(c) Using the technique presented in [48], an initial annotation is computed and
presented to the teacher.

(d) Finally, the teacher can choose to keep the automatic annotation as-is, or
introduce manual refinements to improve the accuracy. Examples of such
manual refinements include removing activity annotations from the text that
do not correspond to actual activities in the process or manually resolving
some coreferences that require specific domain knowledge.

Figure 4.5: The ModelJudge exercise editor.

3. A robust end-product used by hundreds of students

ModelJudge is not only a theoretical exercise: It has been developed and deployed
in a production environment, and currently has thousands of registered users from
multiple universities with courses focused on process modelling. Some of the early
adopters of ModelJudge include the Danmarks Tekniske Universitet (DTU), Uni-
versidad Catolica de Santa María (UCSM), Katholieke Universiteit Leuven (KU
Leuven), the AGH University of Science and Technology (AGH) and the Univer-
sitat Politècnica de Catalunya (UPC).
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ModelJudge is currently available at https://modeljudge.cs.upc.edu. Students
accounts can be freely registered. To obtain an instructor account, course orga-
nizers must contact modeljudge@cs.upc.edu.

4. Empirically Validated
In Publication II, we study in detail empirical data of how ModelJudge is used in
two university courses from DTU and UCSM. On one hand, a qualitative study has
been performed, which finds that the majority of students consider ModelJudge’s
feedback useful during a modelling session. On the other hand, a quantitative
study has also been performed by analyzing usage data that was automatically
recorded during modelling sessions with student consent.
The same kind of information collected during the quantitative study is also ex-
posed in a real-time dashboard, usable by instructors to monitor their student’s
progress during the modelling session. A screenshot of this dashboard page is
shown in Figure 4.6

Figure 4.6: The ModelJudge teacher dashboard.

5. Avoiding representational bias
When compared to existing solutions in the literature, as seen in Section 3.4,
ModelJudge introduces a framework that avoids the issue of representational bias.
Existing solutions for automatic assessment of modelling exercises, like the work
introduced in [71], often require pre-establishing one or several solutions in the
same modelling notation as the exercise target. For instance, in such systems, for
a BPMN modelling exercise the expected soultion is encoded as a BPMN diagram.
This leads to rigid solutions that do not handle the situation where student so-
lutions don not conform to the expected diagram while still being correct. This
issue is one of the main motivating factors in the design of automatic programming
exercise grading tools like the Online Judge [74], from which ModelJudge is based
on.
Being based in textual descriptions, ModelJudge analyzes the conformance of the
student’s model directly against the problem statement, avoiding the potential
bias of having to translate to a more rigid notation for evaluation. This avoids the
aforementioned drawbacks of tools like [71],

4.4 Conversational process models
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4.4.1 Related publications

• V. Anselmo López, Josep Sànchez-Ferreres, Josep Carmona and Lluís Padró.
“From Process Models to Chatbots”. In: Proceedings of the 31th International
Conference on Advanced Information Systems Engineering (CAiSE). 2019. pp.
383-398. (GGS Rating: A)

4.4.2 Main highlights

Formal process modelling notations like BPMN are ubiquitous in organizations. How-
ever, as previously discussed, there is a gap between the technical language used to
generate and consume this formal representations, and the non-technical users that are
sometimes involved in the execution of such processes.

In order to achieve full digital transformation, processes need not only to be au-
tomated, but also be well documented and understood by all the relevant actors. In
order to help improve comprehension of business processes, in this work, we present a
technique capable of automatically generating a conversational agent able to explain the
most important aspects of a business process to a non-technical user via a chat interface.
Figure 4.7 shows an example of a conversation with one of the generated assistants.

The following specific contributions were made as part of this line of work:

Figure 4.7: Example dialog with the conversational assistant.

1. An iteration on existing process to text conversion techniques

At the core of the chatbot application, is a system that can explain parts of a
process in plain natural language. For this, we have implemented a technique
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based on the same ideas an principles as the one introduced by Leopold et. al.
in [49]. Notably, the technique features two key differences with respect to the
original approach:

• In order to generate more accurate descriptions of task labels, a new cus-
tom parser has been developed from scratch, able to extract the semantic
components of activity, swimlane, event and role labels. Unlike previous ap-
proaches, this new parser is based on context-free grammars, and is more
easily adaptable to several patterns and languages.

• By considering the new chatbot use case, some adaptations have been made
to the generated texts. For instance, exclusive gateways representing a deci-
sion are rephrased as questions to the user, whereas parallel sections are not
described as such, but rather by presenting a choice of what step to perform
next to the user.

2. Further accessibility opportunities

BPMN is, by nature, a complex visual standard. The research introduced in
this work opens the door to improved accessibility in companies embracing digital
transformation. Being able to query a conversational for different aspects of a
process model not only allows people without deep understanding of BPMN to
better understand their role in a process, but also allows people with different
kinds of visual or motor disabilities to take part in the digital transformation of
companies. This is an aspect that is often overlooked when discussing the benefits
and drawbacks of purely visual notations like BPMN.

Improving the techniques presented in Publication V with a direct focus on acces-
sibility is planned as a follow-up work to this thesis.

3. Empirical validation

The technique has been empirically validated using a qualitative evaluation. We
collected detailed feedback from 33 individuals, both from academic and industrial
background. Overall, there is a consensus in that that there is huge potential to
this technique. However, most interviewed individuals agree there is room for
improvement in the current implementation.

The following five questions were collected in the survey. The first three asked for
a direct numerical evaluation, with the results portrayed in Figure 4.8. The latter
two questions, asking for general feedback, were an interesting source of ideas for
improvement but also confirmed the limits of the current implementation.

Q1: How was your interaction with the chatbot? (1: not fluent – 4: very fluent)

Q2: Did the Process Model Chatbot answer your questions about the process? (1:it
did not – 4: it did)

Q3: Do you see potential for this kind of application in organizations? (1: no
potential – 4: large potential)

Q4: What did you like / dislike about the tool?

Q5: Do you have any suggestions in order to improve the Process Model Chatbot?
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Figure 4.8: Results of questions Q1 to Q3.
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Chapter 5

Conclusions and Future Work

Natural language is an unavoidable reality, even in the most formal business process
documentation formalisms to this date. Thus, techniques enabling exploitation of these
unstructured data sources open the door to great benefits in companies and organizations
adopting digital transformation practices. In this final chapter we summarize the main
results obtained as part of this thesis and as discuss promising future work directions in
the area.

5.1 Summary

The first main contribution in this thesis has been the introduction of the ATDP lan-
guage. The design principles behind ATDP, while introduced first in this document, are
the end result of all of our previous research: It was only after having carefully consid-
ered several use cases for natural language technology in the field of BPM that the need
for a more text-friendly way of annotating and reasoning over textual descriptions of
processes was made evident. We believe that by embracing the same annotation stan-
dard, future research can avoid unnecessary repetition of ad-hoc formalization work,
increasing compatibility and reproducibility between future work embracing this new
formalism.

Closely following the same principles introduced in ATDP, and with the goal of allow-
ing a mixture of textual descriptions and business processes in organizations, three more
main contributions have been developed, each with a full open sourced implementation
and a robust empirical validation.

The next main contribution is a technique allowing computations of an alignment
between a fully unstructured textual description and its counterpart process model.
This opens the door to several use cases: From improving feedback during a modelling
session–as explored later on in ModelJudge–to the more difficult challenge of creating
autonomous systems capable of finding document matches from large process model
repositories.

In the case of ModelJudge, our third main contribution, not only a full implementa-
tion has been provided as a proof of concept, but the platform itself has been deployed
and is now currently being used by hundreds of students each year in academic courses.
The ModelJudge platform was developed as a direct application of the ideas explored
in the implementation the previously discussed alignment algorithm. By seeking to im-
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prove the accuracy of existing NLP tools for this new particular use case, we developed
an initial version of many of the ideas that later became ATDP.

Finally, the fourth main contribution is a technique that can autonomously generate
conversational agents capable of explaining business processes. While the approach
has currently shown great potential, we are also aware that there is large room for
improvement in the consistency of the generated results. We consider this to be a very
interesting topic for future work. In a more broad view, we believe exploring the idea of
conversational agents not only for explaining, but also for modelling business processes
is something that can help lower the cognitive bar, and approach even a technical topic
like process modelling to non-technical profiles.

Overall, it is clear that the problems at intersection of human language analysis and
business process management, both human-centric fields are yet far from being fully
solved. Nevertheless, we believe this thesis has indeed contributed in closing this large
gap between the world of human-centric textual information and the one of computer-
centric process documentation. Furthermore, we believe the work we introduced opens
the door to a large number of both challenges and opportunities that are yet to be
explored.

5.2 Future Work

The work introduced in this thesis sets the basis for multiple promising lines of future
work. We believe there is still room for improvement in all of the presented works.
Additionally, there are several ongoing projects that, while developed during the span
of this thesis, have not yet produced enough results to be included in a publication.
Finally we also consider interesting future work that still unexplored in the literature.

1. Improving the formalization of the ATDP language. We observed large
potential for improvement in the ATDP language itself. In fact, we do not consider
our initially proposed specification closed, quite the opposite: We want ATDP to
become a more widespread standard that is able to support a wide range of use
cases in the intersection between human natural language and BPM practices.
Thus, we are open for exploring new improvements to the language, formalization
or overall framework.

2. Tackling large model repositories. Organizations maintaining large process
model portals and repositories can benefit from the work introduced in this thesis.
By natural language analysis techniques, a new level of automation can be built
on top of existing BPM technology.

An interesting opportunity for future work in this regard, is an expansion of our
technique for the automatic generation of conversational agents. The generated
agents would be expanded to allow querying information of complete model reposi-
tories, instead of single process diagrams. When enhanced by a formal back-end as
ATDP this new approach would allow answering complex organization-wide queries
like “What are the most frequently performed tasks done by sales managers?” or
“How often do sales and marketing departments communicate?” via translation to
logical propositions.

The alignment technique presented on this thesis, can also benefit from a similar
extension by considering complete process repositories. A system based on this
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technique can be developed in order to find matches between textual documentation–
such as rules and regulations documents–, and processes in an organization’s repos-
itory.

3. Bringing new developments in the NLP community to BPM. A very
interesting use case we are corrently considering is using state-of-the-art end-to-
end machine learning systems for NLP, such as Bert [64], to automatically extract
process-related information from business process textual descriptions.

However, after some preliminary experiments it was determined that the amount
and quality of freely available training data for this kind of task was not sufficient
to improve current results using classical techniques. Nonetheless, we believe this
to be a very promising line of future work

4. Exploring the automation of training data extraction. As just discussed
in our previous point. Lack of training data is one of the main drawbacks behind
the adoption of new developments from the NLP community to the field of BPM.
Part of the work in this thesis consisted of manual collection and annotation of
examples, which have been used in the development of the presented contributions,
and have been made available to the community.

However, the process of collecting and annotating this training data is both slow
and error prone. Currently, we are exploring the idea of using techniques such as
bootstrapping in order to obtain a large dataset of textual data describing processes.
A system combining web scrapping andmachine learning classification can be used
in conjunction with the algorithmic techniques introduced in this thesis to aid in
the work of obtaining a large amount of unlabeled textual data, one of the first
steps towards the creation of a reference training corpus specific for BPM.

5. Improvements to the proposed alignment technique. The text to pro-
cess alignment technique introduced in this thesis has shown potential and been
empirically validated with good results. However, we believe there are future im-
provements that would both widen the scope and improve the existing results of
the technique.

One important fact to consider is the granularity of alignments. To this date,
all text to model alignment techniques have worked by aligning text sentences
to process model activities. By reducing this granularity to that of predicates,
more robust and meaningful alignments could be obtained in cases where a single
sentence describes multiple process model activities: A phenomena that we have
been able to observe in many texts, in and outside our validation benchmark.

Another possible improvement to the alignment technique would consist of widen-
ing the scope of supported constructs. Currently, the technique presented is ca-
pable of dealing with activities, gateways events and swimlanes. There are more
constructs to be considered, both in the data perspective of business processes–
e.g. data object references–and in the semantics of currently supported types–e.g.
extract and consider even type information and its semantics.– We believe this to
be a promising line of future research.

6. Exploring statistical biases in simulation of process models. The work
we introduced in the ATDP simulator uncovered an interesting fact about current
process model simulation techniques: We observed very early on that the distribu-
tion of trace interleavings when simulating a parallel construct, such as a BPMN
parallel gateway, is non-uniform. That is, there is a bias towards certain event
interleavings over others in the generated traces.
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After some preliminary exploration, it has been determined that these biases exist,
and are different depending on which kind of simulation technique is used. With
different state-of-the-art tools producing significantly different results.
Simulation is widely employed in the industry in the context of BPM analytics,
and is closely related to the validation of techniques in the field of process mining.
Thus, we believe a study characterizing the different kinds of biases and relating
them to the real world phenomena being studied could be beneficial, and poses
a topic of future work. This future contribution is something we are currently
actively exploring.

7. Explore more robust NLU techniques for chatbot generation. The
currently presented technique for chatbot generation is based on the AIML spec-
ification. Currently, this specification does not allow a flexible interpretation of
input sentences, offering only a system equivalent to regular expressions for input
parsing. This limitation leads to very rigid conversational agents.
A possible improvement to this work would consist of using newer techniques based
on machine learning typically used in NLU. One possibility is to enhance the same
kind of generated conversation graphs with semantic similarity metrics like the
ones provided by word embeddings.

8. Improve diagnostic accuracy for ModelJudge. While the current quality of
diagnostics has been validated with real usage in modelling courses, there is still
large room to continue exploring and improving the existing techniques in order
to provide more detailed model quality diagnostics to students.
One possibility is to explore better alignment techniques for the specific use case
of grading partial models. The current technique in use has the main drawback of
relying on hard constraints for control flow validation. However, this can lead to
lower quality alignments when students’ control flow vastly differs from the one of
the reference text.
Recently, we have explored the idea of relaxing the constraints in the optimization
problem. We believe using a technique capable of encoding soft constraints will
make it possible to provide more meaningful and accurate diagnostics about the
control flow of the process model.

9. Further empirical work in interaction during process modelling. The
work introduced inModelJudge opens the door to new interesting lines of empirical
research about the process of process modelling. With advanced analytics func-
tionalities fully integrated in to the platform, ModelJudge provides a good basis
to better explore how students, or even experienced modelers interact with their
modelling tools.

10. Exploring the discursive creation of process models. A different use case
for conversational agents in process modelling is to allow for modelling instead of
querying business processes. We believe such a tool can help lower the cognitive
effort required during the modelling of a process.
This is a line of work we are very keen on exploring, which has currently material-
ized in Process Talks1: A new technology based on the central idea of delegating
the technical parts of process modelling to a reasoning engine which is capable of
understanding human language and converting it to high level modifications to a
process model such as “The block conformed by activities A and B forms a loop”
or “All activities from A to B form a subprocess”.

1https://www.processtalks.com
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1. Introduction

Organizational processes can be highly complex chains of inter-related steps,

involving numerous stakeholders with various roles [52]. Due to this complex-

ity, it is crucial that the coordination among process actors is well defined [30].

Therefore, having access to the right information on business processes is vital

to their proper execution [5] and their compliance to rules and regulations [1].

To provide various stakeholders with the information that they need, organiza-

tions have recognized the value of capturing process descriptions in model-based

as well as text-based representations [22, 33, 50]. The reason for maintaining

both representation forms is that they each have their merits. Process models

have been found to be better suited to express complex execution logic of a

process in a more comprehensive manner than natural language [29]. By con-

trast, some stakeholders, especially workers who actually execute the process,

have difficulties reading and interpreting process models and, therefore, prefer

textual process descriptions over process models [7].

Despite these benefits, the usage of multiple descriptions of the same process

can also lead to considerable difficulties. In particular, it is vital that the process

information contained in different formats is correct, even when these formats

are maintained independently from each other [50]. If users access inaccurate

process descriptions, they can develop different expectations about what a pro-

cess aims to establish or how it should be executed [48]. Such situations can

have negative effects on the efficiency with which processes are executed and,

furthermore, can lead to business process non-compliance [50]. A problem in

this regard is, however, that processes are subject to continuous change [58] and,

therefore, considerable manual effort is required to maintain process descriptions

and clear up any conflicts. Given that organizations can have hundreds or even

thousands of different different process models [36], this means that manually

maintaining multiple representations for all processes is hardly manageable.

In this paper, we present an alignment approach that supports organizations

in maintaining process information in both textual and model-based representa-

2



tions. Our approach aims to establish alignments between both representations

by identifying correspondences between parts of a textual process description

and elements in a process model. These alignments enable the identification

of discrepancies between descriptions [48] and, furthermore, provide a starting

point for the propagation of changes from one description to the other [55]. A

quantitative evaluation demonstrates that our proposed approach outperforms

alignment approaches previously developed by the authors [48, 37]. Further-

more, because our approach also identifies correspondences involving process

model events and gateways, the alignments we obtain are also more compre-

hensive. Therefore, our approach provides an important foundation for the

maintenance of process information in different representation formats.

The remainder of this paper is structured as follows. Section 2 provides

necessary background information in the form of a problem illustration and

discussion of related work. Section 3 presents our proposed alignment approach.

Section 4 presents and discusses the results of a quantitative evaluation. Finally,

Section 5 concludes the paper.

2. Background

This section discusses background information relevant to the alignment of

textual and model-based process descriptions. In particular, Section 2.1 presents

a running example and discusses the main challenges associated with the align-

ment task. Section 2.2 provides an overview of related work.

2.1. Problem Illustration

To illustrate the challenges that are associated with the alignment of tex-

tual and model-based process descriptions, consider the process model shown in

Figure 1 and the textual process description contained in Table 1.

The process model is defined using the Business Process Model and Notation

(BPMN), a standard notation for process models. The model contains nine

activities, depicted as rounded rectangles. These activities denote the main tasks
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Figure 1: Exemplary process model of a claims handling process in BPMN.

performed in order to execute the process. The process model, furthermore,

contains three events, illustrated by labeled circles, which describe the start

and end points of the process. The directed edges connecting activities and

events denote the control-flow of the process.The diamond shapes in the process

model indicate special routing constructs in the control-flow, called gateways.

Gateways with an X indicate a process choice, e.g. after g1, a claim can be

either rejected (activity a5) or accepted (a6). By contrast, gateways with a +

symbol indicate parallel or concurrent execution patterns. This means that the

activities a7 and a8 can be executed at the same time. Finally, the horizontal

lines denote so-called swimlanes in the process model. These swimlanes indicate

which resource roles are involved in the execution of specific process steps.

The goal of aligning a process model and a textual process description is to

identify correspondences between the elements of the process model and parts

of the textual process description. In the context of this paper, we set out

to align all elements that describe the flow in a process model, i.e. we align

activities, events, and gateways. Our goal is here to identify the sentences of

a textual process description that correspond to these process model elements,
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Table 1: Textual process description of the claims handling process with correspondences to

the model from Figure 1.

ID Sentence Corresp.

s1 After receipt of a claim, a claims officer reviews the request. a1, a2

s2 Then, the claims officer writes a settlement recommendation and

forwards it.

a3

s3 A manager reviews the claim based on the written recommen-

dation.

a4

s4 If the review is negative, the claim is denied, otherwise it is

accepted.

g1, a5, a6

s5 In case of rejection, the process completes here. e2

s6 In case of acceptance, the manager records the settlement infor-

mation, while the financial department pays the claimant.

g2, a7, a8

referred to as correspondences. The right-most column in Table 1 indicates these

correspondences between the model and text.

To establish such alignments, several challenges must be overcome. These

challenges are primarily caused by the flexibility of natural language, that allows

the expression of the same concept via a large variety of words or phrases. In

particular, we identified the following four main challenges during our earlier

works on the development of alignment approaches [37, 48]:

1. C1: Different grammatical structures: Textual process descriptions can

use a broad variety of grammatical structures to describe a process. As a

result, there can exist considerable differences between the way in which

a text and a model describe similar aspects of a process. Consider, for

instance, the first phrase in sentence s1, “After receipt of a claim”, and the

corresponding model activity “receive claim”. The former uses a noun-

based structure, whereas the later used a verb-based description of the

same task. Therefore, an alignment technique must be able to detect such

correspondences despite the presence of grammatical differences.
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2. C2: Different terminology: Next to differences in grammatical structures,

there can exist considerable differences in the terminology used between

model and text. Consider, for instance, sentence s4, which refers to a claim

being “denied” and activity a4, “reject claim”. An alignment technique

must be able to detect that the sentence and activity refer to the same step

in a process. It is here important to note that terminological differences

play an even bigger role when there are also differences in the level of

detail used by the two types of descriptions [46].

3. C3: Activities with identical labels: A different challenge occurs when

process models use activities with similar or even identical labels. This

can, for instance, happen in larger processes with multiple actors or when

the labels used in a model are fairly coarse-granular. Activities a2 and

a4 provide an example of this, because they both have the label “Review

claim”. When establishing alignments, an alignment should be able to

recognize that these identically labeled activities refer to process steps

that are performed in different parts of the process, either by different

actors (i.e., a2 by a claims officer and a4 by a manager), or even by the

same actor but in different contexts.

4. C4: Partial alignments: Finally, it is important to recognize that a process

model and textual description may not describe exactly the same steps

that comprise a process, whether intentional or not [48]. For instance,

activity a9, “Record rejection reason”, does not have a corresponding sen-

tence in the textual description and should, therefore, not be part of a

correspondence. As a result, to produce a correct alignment, alignment

techniques must also be able to detect when certain process model ele-

ments actually do not appear in the text. Those process model elements

should, therefore, not be included in any correspondence.

These challenges illustrate the complexity associated with the alignment of

textual process descriptions and process models. To overcome these challenges,

we build on techniques from the areas of natural language processing and match-
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ing, as discussed next.

2.2. Related Work

In this section we discuss how natural language processing (NLP) is applied

in the context of Business Process Management (Section 2.2.1) and discuss var-

ious alignment approaches that exist in this context (Section 2.2.2).

2.2.1. Natural Language Processing in Business Process Management

NLP techniques are applied to address a variety of use cases in the context of

business process management [43]. Several of these focus on the text contained

in process models themselves. This includes a variety of works that focus on the

quality of process model labels, for example by detecting violations of labeling

conventions [3, 20, 53], inconsistent use of terminology [18], or common modeling

errors [16]. Other approaches use NLP to augment process models with semantic

or ontological information [21, 12, 4].

Other use cases involve texts that exist outside of process models. Several

approaches extract process models from different kinds of text, such as from use

cases [41], group stories [8], or methodological descriptions [11], while others

take general textual process descriptions as input [15, 13]. However, these ap-

proaches have been found to produce inaccurate models, which require extensive

manual revision [39]. Other use cases involving texts include a technique that

considers work instructions when querying process repositories [25] for confor-

mance checking against textual process descriptions [49].

2.2.2. Process Matching

The establishment of alignments between artifacts, often referred to as match-

ing, has received considerable attention in the context of BPM. In particular the

importance of process model matching has been recognized, in which alignments

between two process models are established. This has resulted in the develop-

ment of a considerable number of matching techniques. Nearly all process model

matchers focus on the analysis of similarity between the labels of process model

elements. To achieve this, techniques consider label similarity from a syntactic
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perspective [57, 9, 27] as well as from a semantic perspective [23, 35, 38]. The

former set focuses on how similar the characters used in labels are, whereas the

later set focuses on similarity in the meaning of labels. Aside from the analysis

of process model labels, existing matching techniques have also recognized the

importance behavioral or structural characteristics [17]. By taking such char-

acteristics into account, matchers, such as [9, 17, 26], are able to recognize if

activities occur in the same parts of a process. Other techniques also focus

on matching based on other information, such as a technique that take work

instructions associated with models into account [57], as well as a technique

that matches based on event-log information [44]. A new approach by Meilicke

et al. [28] provides a means to create an ensemble of various process model

matchers that can combine their different strengths.

Aside from techniques that establish alignments between different process

models, focus has recently shifted towards the establishment of alignments

among a broader range of process-related artifacts. For example, several tech-

niques exist that establish correspondences between event logs and process mod-

els [2, 40], and a technique for the alignment of process performance indicators

and process models [45].

There are several key differences that distinguish the technique proposed in

this paper when compared to those existing works. First, our technique estab-

lishes more comprehensives alignments between model and text, because the

alignments cover activities, events, and gateways, whereas the previous works

only focus on the alignment of activities. Second, in order to address challenge

C3 described in the previous section, which relates to activities with identical

labels, our technique explicitly considers resource-related information. Third,

we here encode the constraints into an Integer Linear Problem (ILP) optimiza-

tion, rather than using a best-first search algorithm, which greatly improves

the computational efficiency of our technique and provides more flexibility with

respect to the inclusion of additional constraints and their weights. Finally,

our approach applies predictors defined in [48] in a novel manner to detect and

adapt to differences between process model and text. This allows us to also
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address challenge C4, which implies that alignments between model and text

are not always complete.

3. Alignment Approach

This section describes our proposed alignment approach. It takes as input

a textual process description and a process model. Our approach is tailored

towards graph-based process model notations like BPMN, Petri nets or Event-

Driven Process Chains, and on the other hand imposes no restrictions on the

structure of the textual process description.” Furthermore, these two formats

may have been defined and maintained independently from each other. Given

this input, the approach aims to establish an optimal alignment between the

sentences of the textual description and the elements, i.e., the activities, events,

and gateways, of the process model. To achieve this, our approach consists of

four main steps, as visualized in Figure 2.

Textual process
description

Process model

1. Feature 
extraction

2. Similarity 
computation

Model-Text 
Alignment

3. Alignment 
creation

4. Predictor-
based 

Refinement

Figure 2: Overview of our alignment approach

For a model-text pair, our approach first aims to extract features that corre-

spond to important process-related and linguistic information from the provided

inputs. For example, we extract information about actions, actors, and busi-

ness objects. Second, based on the features extracted, we set out to quantify

the semantic similarity between process model elements and sentences. Third,

we combine the semantic similarity scores with ordering information (i.e., in-

formation about the process flow) in order to establish an alignment between

the textual description and process model. In the fourth and final step, our ap-

proach uses so-called predictors to detect if a provided model-text pair is likely
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to contain inconsistencies. If this is the case, our approach uses this informa-

tion to refine the previously established alignment in order to produce the final

result.

In the remainder of this section, we describe the steps of our approach in

detail.

3.1. Process Information Extraction

The goal of the first step in our approach is to extract process-related infor-

mation from both a textual process description and a process model. Through

this extraction step, we convert process information contained in the two het-

erogeneous sources into a format that enables their accurate comparison.

3.1.1. Extraction from Process Models

To describe the extraction approach, we first need to define the notion of

a process model. Process models can be created using a variety of modeling

languages, such as Petri nets, Event-Driven Process Chains (EPCs), and the

Business Process Model and Notation (BPMN). The contributions of this paper

are independent of the specific notation used to define a process model. There-

fore, we define process models using the relevant parts of the generic definition

provided in [19, p.13], given in Definition 1.

Definition 1 (Process Model) We define a process model as a tuple M =

(A,E,G,R, , L,N, F, t, ρ, λ), where:

• A is a finite set of activities,

• E is a finite set of events,

• G is a finite set of gateways,

• R is a finite set of resources,

• L is a finite set of labels,

• N = A ∪ E ∪G is a finite set of nodes,

• P = A ∪ E is a finite set of process steps,

• F ⊆ N ×N is the flow relation, such that (N,F ) is a connected graph,
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• t : G→ {and, xor} is a mapping that associates each gateway with a type,

• ρ : R → A ∪ E is a surjective mapping that associates a resource r to an

activity a ∈ A or an event e ∈ E,

• λ : N ∪ R → L is a surjective mapping that relates process model nodes

and resources to labels.

Note that this definition does not contain inclusive OR-gateways because of

their marginal relevance in industrial process models [51] and since these are not

generic to all graph-based modeling notations (e.g. Petri nets). From a given

process model, we aim to extract the information depicted in Figure 3. In par-

ticular, we aim to extract information regarding activities, events, and gateways,

their inter-relations, as well as the semantic components of their labels.

Node

Gateway

Type Condition

0..*

0..1

1..*

Activity / 
Event

Actor Business 
objectAction

10..10..10..1

Process 
model

Partial order

Figure 3: Process information extracted from process models

For process model activities and events, also referred to as process steps, we

extract three semantic components: (i) an actor performing the step, (ii) an

action that characterizes the step, usually described with a verb, and (iii) a

business object on which the action is performed. We note that process steps

are required to at least consist of an action, whereas the other components are

optional, e.g. there can be steps without a defined actor or business object.

Aside from process steps, we also extract information from the gateways in a

process model, which denote routing aspects of a process, such as choices or
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parallelism. A gateway is assigned a type, i.e., either and or xor. Furthermore,

if an xor-gateway has an associated execution condition, such as illustrated in

Figure 1 for g1, we augment the gateway with this information.

Process models have explicit constructs to denote activities, events, their

actors, gateways, and the flow relation. Therefore, most information depicted

in Figure 3 can be directly derived for process models abiding to Definition 1.

However, the extraction of semantic components, namely actions and business

objects, requires further processing of the natural language labels associated

with process model elements:

Actions and business objects. Natural language labels associated with

activities and events define their essential semantics [19]. In particular, labels

generally convey the action, business object, and some additional information of

a process step [31]. Therefore, the action and business objects used in the canon-

ical format for process information need to be extracted from the labels associ-

ated with events and activities. A considerable problem here is that these labels

often represent textual fragments, rather than proper sentences [20]. As a re-

sult, standard NLP techniques often fail to get accurate results for them [24]. To

still be able to extract semantic components from labels, dedicated techniques

have been developed that specifically aim to extract verbs, business objects,

and auxiliary objects. For instance, Leopold [19] proposes a technique that uses

knowledge about common label structures and an analysis of the model context

to decompose activity and event labels. In our approach, we utilize a similar

technique to extract the action and business object of process steps.

3.1.2. Extraction from Textual Descriptions

Unlike process models, textual process descriptions do not have explicit con-

structs that represent activities, events, or gateways. Therefore, all process-

related information needs to be extracted from a textual process description

using natural language processing. Our alignment approach aims to align pro-

cess model elements to individual sentences. Therefore, our extraction step sets
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Figure 4: Process information extracted per sentence

out to identify process-related information at a sentence level. In particular, we

aim to extract the components depicted in Figure 4.

As shown in the figure, we extract similar components from a sentence as we

do from a process model element. The actor, action, and business object com-

ponents correspond to the equally-named counterparts from Figure 3. These

three describe the semantic components that characterize process steps. Fur-

thermore, discourse type and condition are used to indicate if sentences contain

information regarding the control-flow of a process, similar to the purpose of

gateways in a process model. Finally, we also store the strict order relation that

exists between sentences, which captures the order in which sentences appear

in the text.

We extract the semantic components as follows:

Actions, actors, and business objects. In order to extract the desired

process information from sentences in a textual process description, we can build

on general-purpose NLP technology, such as techniques that analyze the gram-

matical and semantic structure of sentences and techniques for the resolution

of anaphoric references (e.g., [34]) . These techniques have been widely applied

in the context of textual process description for the extraction of activities and

their actors, cf. [13, 47, 25]. We can employ such existing techniques in order

to extract actions, actors, and business objects from a text.

For instance for the sentence 2 from the running example, “Then, the claims

officer writes a settlement recommendation and forwards it.”, the technique will
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extract the following information: there are two actions: “writes and forwards,

one actor, “claims officer”, and a single business object, “settlement recom-

mendation”. Note due to anaphora resolution that is part of state-of-the-art

techniques, our approach is also able to identify that the term “it” at the end of

the sentence refers to the business object “settlement recommendation”. This

reference resolution is also possible if the business object is described in a sep-

arate sentence and can also be applied to actors that perform process steps.

Discourse types. To determine if a sentence describes a discourse marker,

i.e., a choice or parallelism, we employ a technique similar to the method ap-

plied in the text-to-model generation technique from Friedrich et al. [13]. We

use NLP techniques to detect discourse markers. A dictionary of multi-word

expressions is applied to phrases like “in the meantime” to merge them into

a single token in the meantime. As a result, our approach is able to detect if

a sentence contains conditional statements (typically corresponding to process

choices), such as seen for sentences s4, s5, and s6 of the running example, or

describes steps that can be executed concurrently.

Conditions. Conditions are associated with the discourse markers used to

identify conditional statements, as described above. For instance, statements

such as “if” or “in case of” are followed by conditions, such as seen in the phrase

“If the review is negative” in s3 of the running example. In those cases, the

grammatical structure of the corresponding sentence is matched against several

patterns in order to extract the clause containing the execution condition, e.g.

to extract “review is negative” as a condition in sentence s3.

3.2. Similarity Computation

After extracting process information from a textual process description and

process model, we encode the extracted information into feature vectors that can

be used to accurately quantify the similarity between process model elements

and sentences from a textual process description.
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3.2.1. Feature Vectors

To quantify the similarity between process model nodes and sentences, we

use feature vectors as a means to encode the information extracted from process

models and sentences. These vectors represent a linearization of the extracted

information that allows for an easy comparison. We define a number of different

feature types, such as types related to actions, actors, or business objects. By

doing so, we are able to assign different weight to the various types in order to

tailor the quantification of similarity.

To quantify the similarity between a process model step p, i.e., an activity

or an event, and a sentence s, we use the following feature types:

contains action(a) This feature type denotes the actions contained in a step

p or sentence s. For instance, when comparing the task “write recom-

mendation” to sentence 2, we extract two actions: “write” and “for-

ward”, that produce two feature instances contains action(write) and

contains action(forward). When considering these only two actions, on

the task side this generates the vector 〈1, 0〉, whereas for the sentence we

obtain the vector 〈1, 1〉.

contains actor word(w) & actor main word(w) These features denote the ac-

tors that execute steps in a process. The former feature, contains actor word,

is extracted for each word w that is part of an actor. For instance, the

“claims officer” actor comprises the two words “claims” and “officer”. By

contrast, we use the actor main word feature to denote the main word

of the actor, typically represented as the main noun, e.g., to explicitly

capture the word “officer”. This separation allows us to give different

importance to the main word with respect to the others. See Section 3.2.2

for more details.

contains object word(w) & object main word(w) These features encode the

same information for business objects as the previously described features

do for actors.

15



contains lemma(l, pos) This feature is extracted from the target text if it con-

tains a word1 with the lemma l and part-of-speech pos. This feature has

a lower abstraction level than the previous ones. This feature is included

as a fall-back solution whenever the actor, role or action cannot be deter-

mined due to natural language ambiguity. In those cases the algorithm

works at the word level. For example, for the event “Claim paid out”, the

features contains lemma(claim, noun) and contains lemma(pay-out, verb)

will be extracted.

contains synset(s) This feature is extracted whenever the WordNet [32] synset

s appears in the text sentence. It captures the semantics of words to help

identify similarity when synonyms are used. For example, the WordNet

synset 05747582-n recognizes that “review” is a synonym of “evaluation”,

such as used in the running example.

contains hypernym(s) This feature is extracted from a target text containing a

word for which s is an hypernym2 at distance HL or less. HL is a parameter

of the algorithm. In the running example, a hypernym of “review” is

“assessment” (05733583-n)

3.2.2. Vector Similarity

Instead of treating features as binary values, we opted for associating weights

to the features individually. This way, the different importance each feature has

can be considered in the comparison. The weight of each feature is the product

of two magnitudes:

The feature instance weight is different for each instance of a feature type,

and solves the problem of all instantiations not being equally important in

terms of information provided. This is used in all lemma-based features,

1Note that in all feature types stopwords are not considered.
2A word w1 is a hypernym of w2 iff w1 describes a superclass of w2 (e.g. mammal is

a hypernym of cat, and document is a hypernym of letter). Hypernymy is obtained from

WordNet.
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where the extracted lemma has an instance weight equal to the tf-idf score

of the word3. It is also used in synset-based features, where the instance

weight of the feature is K−l, where l is the length of the hipernymy chain

with respect to the original synset and K is a parameter of the algorithm.

The feature family weight is a weight defined for each feature type that ac-

counts for the problem that not all feature types are equally likely and

some of them provide more information than others. For example, a pro-

cess step label sharing a word with a sentence is less important than having

the same main action. The second reason for family weights is to adapt

the scale of the instance weights, since they measure different magnitudes

depending on the feature family.

Finally, the real-valued feature vectors are compared by using a standard

similarity metric. In particular, we apply the Weighted overlapping index, de-

fined as follows:

WeightedOverlapping(A,B) =

∑
f∈A∩B wf∑

g∈smallest(A,B) wg
(1)

Where wx is the weight, i.e. the product between the family weight and the

instance weight, of a feature x.

The rationale for using this metric arises from the nature of the alignment

problem we address. In general, textual process descriptions are more verbose

than process model. Therefore, textual descriptions have larger feature vectors.

Other metrics like the Jaccard Index or the Cosine Similarity [42], produce

overall lower values when the compared elements differ in size. By contrast, the

Overlapping index is able to deal with such size differences and, hence, provides

more intuitive results.

3We define the tf-idf of a token t as the product of tf := (Number of appearances of t in

its sentence / Number of tokens in that sentence) and idf := loge(Total number of sentences

/ Sentences containing t)

17



3.3. Alignment Creation

The next step in our approach is the computation of the alignment between

process model elements and the sentences of a textual description. The align-

ment contains the corresponding sentence for each activity, gateway and event

of the process model (see the rightmost column in Table 1 for an example of

alignment).

Formally, we define an alignment σ to be a set of correspondences of the

form nk ∼ si for some nk ∈ N, sk ∈ S, where N denotes the set of nodes of a

process model and S is the set of sentences that comprise a text.

3.3.1. Alignment Constraints

In order to establish an alignment between process model elements and sen-

tences, we impose two types of constraints on the alignment: cardinality con-

straints and ordering constraints.

Process step-to-sentence cardinality. For process model activities and

events, which we shall jointly refer to as process steps in a set P = A ∪ E, we

enforce that each of them is aligned to exactly one sentence, whereas we allow

multiple steps to be aligned to the same sentence. This constraint imposes

the assumptions that each step is described in the text and that steps are not

described repeatedly. Furthermore, it enables the proper alignment of sentences

that describe multiple process steps, such as seen for sentence 5. This sentence

corresponds to both the “record settlement information” and “pay settlement”

activities.

Gateway-to-sentence cardinality. Gateways require different cardinality

constraints. In particular, we allow gateways from the set G to be aligned to

one sentence or to none at all. Furthermore, we allow at most one gateway to

be aligned to a single sentence, given that sentences typically describe at most

one control-flow structure.

Process step ordering. If we, for the purposes of this step in our approach,

assume that a textual process description and a process model do not contradict

each other, we can impose ordering constraints on the alignments that our
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approach establishes. To define these ordering restrictions, we use the following

notations. First, given two nodes n, n′ ∈ N , we use n � n′ to denote that there

is a path from node n to n′ according to the flow relation F ⊆ N ×N , as given

in Definition 1. Second, given two sentences s, s′ ∈ S, we use s  s′ to denote

that sentence s occurs before s′ in a textual process description.

We require that process steps that precede each other in a process model

cannot be aligned to sentences that occur in the reverse order. Therefore, we

impose the following restriction on the order of process steps from the set P =

A ∪ E: if a process step p ∈ P precedes the execution of a step p′ ∈ P , then

node p cannot be aligned to a sentence s that occurs after the sentence s′ to

which the node p′ is aligned. Formally, this means that if it holds that p � p′

and s′  s, an alignment cannot contain both p ∼ s and p′ ∼ s′. Note that,

in situations where two activities p and p′ respectively follow each other in a

loop, we only consider the order relation p ∼ p′ and not p′ ∼ p. This enables

the approach to appropriately apply the ordering constraints to loops.

Gateway ordering. The ordering constraints required for the alignment

of gateways should account for several challenges. To illustrate these, consider

the fragment of a textual process description and process model depicted in

Figure 5. To align text and model, the following correspondences are required:

{s7 ∼ a7, s8 ∼ g2, s8 ∼ a8, s9 ∼ e3}. These correspondences indicate that,

unlike for process steps-to-sentences, the order in which gateways and process

steps are described in a text can be reversed. In particular, the model con-

tains relation g2  a7, whereas a7 occurs before the description of g2 in the

text. Furthermore, none of the sentences explicitly denotes when the parallel

construct is closed, i.e., none of the sentences describes gateway g3.

Because of these complications, we can only impose fairly weak constraints.

Specifically, we can state that:

• Process steps appearing before the opening gateway in the model cannot

be described after the corresponding discourse marker in the text. E.g.

if g2 ∼ si holds, any activity occurring before g2 cannot be aligned to a
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s7 : The manager records the settle-

ment information.

s8 : In the meantime, the financial

department takes care of the

payment.

s9 : The process ends when the claim

is paid out

Figure 5: Description of a parallel construct in text

sentence sj for which si  sj holds.

• Process steps appearing after the closing gateway in the model cannot

be described before the corresponding discourse marker in the text. E.g.

if g2 ∼ si, then event e3 cannot be aligned to a sentence sk for which

sk  si holds.

3.3.2. Optimal Alignment

For an alignment σ to be considered optimal σ̂, the following three properties

must hold:

Cardinality consistency The alignment follows the cardinality constraints

described in the previous section.

Order consistency The alignment is consistent with the order restrictions

described in the previous section.

Optimality The value of
∑
nk∼si ∈ σ̂ sim(nk, si) is the maximum value such

that the two other properties hold.

To define the order restrictions in a formal way we first introduce the fol-

lowing definitions:

Sdisc ⊆ S: the set of sentences containing a discourse marker.
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Gsplit ⊆ G: the set of gateways with one input flow and more than one output

flow4.

ν : G → G ∪ {⊥}: a function that given a gateway returns the corresponding

gateway such that the two delimit a single-entry single-exit region in the

model [54], or ⊥ if there is no such gateway.

In order to obtain a solution, the aforementioned properties are encoded in

the following ILP:

maximize:
∑
s∈S

∑
n∈N σn,s · sim(n, s)

subject to:
∑
s∈S σp,s = 1 ∀p ∈ P

∑
sd∈Sdisc

σg,sd ≤ 1 ∀g ∈ G
∑
g∈G σg,sd ≤ 1 ∀sd ∈ Sdisc

σp,s′ + σp′,s ≤ 1 ∀(s, s′) ∈ S × S, (p, p′) ∈ P × P, p � p′ ∧ s s′

σg,sd + σs,p ≤ 1 ∀s ∈ S, sd ∈ Sdisc, g ∈ Gop, p ∈ P, p � g, sd  s

σg,sd + σs,p ≤ 1 ∀s ∈ S, sd ∈ Sdisc, g ∈ Gop, p ∈ P,
ν(g) 6= ⊥, ν(g) � p, s sd

variables:

an,s ∈ {0, 1} ∀s ∈ S, n ∈ N

The variables σn,s can be interpreted as binary variables meaning: “Model

node n corresponds to sentence s”, i.e: σs,n = 1 ⇐⇒ s ∼ n. The first

set of three constraints enforce the Cardinality consistency property5. This is

4Note that we purposefully avoid considering anomalous cases such as multiple inputs

and outputs or single-input single-output gateways and restrict ourselves to the subset of

well-formed BPMN models.
5Note that these equations can also be encoded using the Special Ordered Sets (SOS)

constraint of the form: at,1, · · · , at,|S| for all model elements t, which denotes exactly the

same constraint, and has better performance on the ILP solvers that implement it.
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naturally encoded in ILP by restricting the sum of a subset of binary variables

to either exactly one, or at least one depending on the desired cardinality. The

second set of three constraints encodes the Order consistency property. This is

done by explicitly restricting pairs of s ∼ p correspondences, i.e. they cannot be

both true at the same time, for those pairs that constitute an order violation.

3.4. Predictor-based Refinement

The alignments that results from Section 3.3 are established under the as-

sumption that a process model and a textual process description describe the

same process, i.e., that the two representations do not contain inconsistencies.

By operating under this assumption, we are able to impose constraints that have

considerable positive effects on the quality of the resulting alignments, most

notably resulting from the application of the ordering constraints described in

Section 3.3.1. Nevertheless, it is important to acknowledge that varying descrip-

tions of a process can contradict each other in practical settings [50]. Therefore,

this section presents the final step of our approach in which we set out to detect

the presence of inconsistencies and, if so, adapt obtained alignments accordingly.

To perform this refinement step, we first apply so-called predictors that quan-

tify the likelihood that an obtained alignment contains inconsistencies. This no-

tion of a predictor is inspired by according notions used to analyze alignments in

the context of schema and process model matching [14, 56] and were originally

applied in Van der Aa et al. [48]. The core premise underlying predictors is that

alignments associated with consistent and inconsistent model-text pairs differ.

For a consistent model-text pair, all process model elements should be aligned

to a sentence with a high similarity score. By contrast, the similarity scores

of the correspondences in the alignment of an inconsistent model-text pair will

have different characteristics. Predictors quantify these characteristics and, as

such, quantify the likelihood that an alignment contains a particular kind of

inconsistency. If these predictors indeed detect likely inconsistencies, we sub-

sequently weaken the alignment constraints accordingly in order to establish a

refined alignment that takes the presence of likely inconsistencies into account.

22



s : “A manager must review the claim before he can accept it”

dke fragment

Review claim

Accept claim

Reject claim
negative review

positive review

Figure 6: Example of a missing activity

We perform this refinement step for two types of inconsistencies: (i) process

model elements that are missing from a textual description and (ii) ordering

conflicts.

3.4.1. Missing Process Steps

The alignment technique described in Section 3.3 aligns each activity and

event to a single sentence. However, it can happen that not all model elements

are actually described in the text. Consider for instance the example depicted

in Figure 6. In this fragment of a model-text pair, the textual description only

focuses on the positive outcome of a review step and, therefore, does not describe

the possibility that a claim can also be rejected. By contrast, the process model

shows both possibilities.

The similarity scores of correspondences included in an alignment represent

highly valuable indicators to identify missing elements. Process model elements

that are contained in a textual description are expected to be aligned to sen-

tences with a high similarity score. By contrast, if a process model element is

not described in a textual description, it cannot be aligned to a sentence with

a high similarity score, because none of the sentences in the text describe the

same process step as the model elements. For instance, none of the sentences

related to the example from Figure 6 contain terms related to the rejection of a

claim, which results in considerably lower similarity scores for the “reject claim”

activity. Given these lower similarity scores of missing process model elements,
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s1: The junior officer enters the details 
of the settlement into the system.

s2: Finally, a notification is sent to the 
customer.

a1: Send 
notification 

a2: Enter 
details into 

system

Figure 7: Example of an ordering conflict

we use predictors that recognize such instances.

To distinguish between high and low similarity scores, we evaluate similarity

scores in an optimal alignment according to the following predictors:

• p-sim(p, s): the likelihood that a correspondence p ∼ s relates to a missing

step, given as the similarity score between the step p and the sentence s i.e.

sim(p, s).

• p-rel-S (p, s): the value of the previous predictor, normalized by the max-

imum similarity between s and any other process step, i.e.

sim(p,s)
max {sim(p′,s) | p′∈P}

Subsequently, we remove correspondences from the obtained alignment that

are likely to be missing from the textual description, i.e. the correspondences

for which the predictor values are below a certain threshold. In this manner

we can improve the quality of obtained alignments in terms of their precision,

because incorrect correspondences will be excluded.

3.4.2. Ordering Conflicts

The ordering constraints imposed on alignments, described in Section 3.3.1,

assume that a process model and a corresponding textual description describe

the various steps of a process in the same order. However, when a model-text

pair is inconsistent, it can happen that text and model contain ordering conflicts.

Figure 7 presents an example of this, in which the two artifacts denote a different

order of the “send notification” and “enter details into system” activities.
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Due to the applied ordering constraints, alignments cannot contain both

correspondences a1 ∼ s2 and a2 ∼ s1, even though these denote actual cor-

respondences between model and text. To refine such alignments, we apply a

predictor that aims to identify ordering conflicts, which allows us to remove

the ordering constraints that impede the ability to establish alignments. The

existence of conflicting orders between model and text can manifest itself in the

form of large differences between the similarity scores contained in an optimal

alignment and potential similarity scores that could have been achieved with-

out these ordering constraints. For instance, in the above example, the total

similarity scores of having the true correspondences a1 ∼ s2 and a2 ∼ s1 will

be much higher than the similarity scores of the correspondences that abide to

the ordering constraints.

We capture this characteristic difference between consistent and inconsistent

model-text pairs in the predictor max-constrained. This predictor quantifies the

maximum difference that exists between the aligned and potential score for a

single process step in a model-text pair. It thus captures the largest similarity

difference caused by imposing ordering restrictions on the optimal alignment.

We operationalize this as follows:

• max-constrained(∼̂): the maximal difference between the potential and

aligned similarity scores for a process step p ∈ P .

For the cases where the predictor detects a likely ordering conflict, i.e. where

the value of max-constrained is above a certain threshold, our approach re-

computes a renewed alignment without ordering constraints. For instance, for

the provided example, the refined alignment will contain both correspondences

a1 ∼ s2 and a2 ∼ s1.

4. Evaluation

To demonstrate the capabilities of our approach, we conduct a quantitative

evaluation by comparing automatically generated model-text alignments to a
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manually created gold standard. The goal of this evaluation is to assess the

quality of the automatically generated alignments. Both the data collection

and the implementation of our approach used to conduct the evaluation are

publicly available 6.

4.1. Test Collection

To perform the evaluation, we use a set of 74 model-text pairs obtained from

various sources. Given the different nature of these sources, we partition the set

into two data collections.

The first collection consists of 49 model-text pairs, corresponding to the

original dataset used for the evaluation of existing model-text alignment ap-

proaches [48, 37]. In this test collection, we detected 30 models (61%) contain-

ing at least one missing activity and an average of 1.32 nodes per sentence. The

model-text pairs in this dataset have been obtained from 11 different indus-

trial and academic sources, including inubit AG, the Federal Network Agency

of Germany, and various universities. [48] provides an in-depth overview of

these sources. The gold standard alignments of this collection were built on the

already established ones used in [37]. However, since the existing gold stan-

dard only included activity-to-sentence correspondences, we augmented it with

correspondences involving events and gateways.

The second collection consists of 25 additional model-text pairs. For this

second test collection, we observed 12 models (48%) with at least one missing

activity and an average of 1.54 nodes per each sentence. The process models

in this collection have been obtained from the repository of the BPM Academic

Initiative[10]. The texts accompanying these models were authored by 8 expe-

rienced modelers. In order to obtain textual descriptions covering a variety of

styles, the experts were asked to perform the following three steps: (i) Study the

process model diagram. (ii) Write the textual description without looking at the

source model. (iii) Compare the textual description with the source model to

6https://github.com/setzer22/alignment_model_text
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make sure the text accurately describes the process model. This final step was

introduced to reduce the amount of inconsistencies between texts and models.

Furthermore, the authors of the text were not involved in the development of

the approach of this paper nor aware of the exact purpose of their task. For the

25 model-text pairs in this new collection, the gold standard alignments were

annotated and subsequently verified by the authors of this paper.

Table 2 provides an overview of the characteristics of the model-text pairs

included in the evaluation set.

Table 2: Characteristics of model-text pairs in the test collections

Collection P Pma N A G E S N/S

Original 49 30 11.99 8.12 1.66 2.21 9.13 1.32

New 25 12 12.40 7.44 2.80 2.16 7.72 1.54

Total 74 42 12.13 7.89 2.05 2.19 8.65 1.39

Legend: P = Model-text pairs, Pma = Amount of model-text pairs with

missing elements, N = Nodes per model (avg.), A = Activities per model

(avg.), G = Gateways per model (avg.), E = Events per model (avg.) S

= Sentences per text (avg.), N/S = Nodes per sentence (avg.)

4.2. Setup

To conduct the evaluation, we have implemented our proposed alignment

approach in the form of a Java prototype. For this implementation we used

Freeling [34] for the natural language processing and Gurobi as the ILP solver

to compute optimal alignments.

To quantify the quality of a generated alignment for a given model-text

pair we compute the widely-employed accuracy metric. This metric quantifies

the number of correct correspondences with respect to the total number of

correspondences. Let σ be the alignment generated by our approach over a set

of sentences S and a set of process model nodes N . furthermore, let σ∗ be
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the gold standard alignment. We then define the accuracy of our approach as

follows:

accuracy =
|σ ∩ σ∗|
|N |

In order to operationalize our implementation, the parameters of the ap-

proach have been set in the following way: The feature family weights used

were tuned using a genetic algorithm exploration. The predictor used for miss-

ing elements is p-rel-S, with a threshold value of 0.1. The predictor used for

order conflicts was max-constrained, with a threshold value of 0.8. In Section 4.4

we explore the impact of alternate parameter settings on the performance of

our approach. Finally, as a benchmark, we compare the performance of our

approach to the two earlier proposed alignment techniques from [37, 48].

4.3. Results

Table 3 shows an overview of the evaluation results for our approach with and

without predictors, as well as for the two benchmark approaches. In particular,

we depict the accuracy our approach achieves on the alignment of activities,

events, gateways, and the overall accuracy.

The result shows that our approach achieves an overall high accuracy of 0.71

for the total test collection. When considering the different types of nodes, we

observe that the approach performs best for the alignment of activities, achiev-

ing an accuracy of 0.79. For events (0.56) and gateways (0.50), the approach

is less accurate. This difference in performance could be explained by the fact

that our approach is more informed with respect to activities than the other

two element types. Particularly, the agent, action and business object features

are not extracted for gateways and do not always fit the writing style of event

descriptions. Furthermore, we can observe that the use of predictor-based re-

finement has a positive impact on the accuracy of the approach, increasing the

accuracy from an overall of 0.69 to 0.71. The benefits of using predictors are

most apparent for the alignment of gateways, where the accuracy increases from

0.40 to 0.50.
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Table 3: Overview of the evaluation results

Accuracy

Collection Configuration Activities Events Gateways Overall

Original Approach from [37] 0.76 n/a n/a n/a

Approach from [48] 0.78 n/a n/a n/a

Without predictors 0.78 0.42 0.32 0.66

With predictors 0.78 0.44 0.43 0.68

New Approach from [37] 0.79 n/a n/a n/a

Approach from [48] 0.77 n/a n/a n/a

Without predictors 0.81 0.80 0.55 0.75

With predictors 0.80 0.80 0.63 0.76

Total Approach from [37] 0.78 n/a n/a n/a

Approach from [48] 0.77 n/a n/a n/a

Without predictors 0.79 0.55 0.40 0.69

With predictors 0.79 0.56 0.50 0.71

The results show that our approach slightly improves upon the accuracy

achieved by the existing approaches from [37, 48]. However, the primary dif-

ference, as clearly shown in Table 3 is that our proposed approach provides

much more complete alignments in terms of the process model elements that it

considers.

When comparing the performance of the approach across the two test col-

lections, we observe that the performance is comparable with respect to the

alignment of activities (0.78 versus 0.80). However, for events (0.44 versus 0.80)

and gateways (0.43 versus 0.63), the approach performs considerably better on

the model-text pairs in the new collection. There are several factors that may

have influenced this performance gap. On one hand, the new dataset has a

substantially higher amount of labelled gateways, which help create more in-

formed alignments. On the other hand, generating textual descriptions from

models may favor a more literal style when describing events when compared
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to the some independently developed descriptions of the original dataset. De-

spite these differences, the evaluation results show that the approach achieves

promising results for model-text pairs from a wide range of sources.

By taking a more in-depth look at the results, we can furthermore make the

following observations:

• Our approach is able to establish alignments even when a model contains

multiple activities with identical or near-identical labels. This is achieved

because the approach considers additional semantic information obtained

from features like actors and the structural information provided by the

ordering constraints.

• The size of a process models, in terms of the notes to be aligned, has

no significant impact on the performance of our approach. The average

alignment accuracy for models with N > 15 is 0.70 and 0.65 for N > 20,

which does not differ significantly from the average performance of 0.75 for

al modes (with average N = 12.13). This observation is confirmed through

a Pearson correlation test [6], which yielded a correlation coefficient of -

0.11 and a p-value of 0.33, indicating no significant correlation between

model size and alignment accuracy.

• Using the tf-idf as a multiplicative factor for word-based features helps

automatically regulate their importance: A word that is used throughout

the process does not contribute as much to the similarity as one that is

only mentioned in a subset of the description. This is important in the

case of gateways, where the high-level information –i.e. agent, action and

business object– cannot be obtained and the word-level features alone

determine the similarity.

• Our approach currently treats events in the same way as activities. While

some events are typically described like activities, some other event types

are more naturally described in a different style. One such example is

timer events, where sentences like “After X days have passed” are more
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common. Parsing errors that result from trying to find activity structure

in those events result in less informed alignments.

• Most gateway alignments missed in the evaluation were implicitly de-

scribed in the textual description. For example, a process model described

different alternatives for sorting invoices with an exclusive gateway, but

the textual description simply stated: “The invoices can be sorted in two

ways: by amount and by vendor.” Such implicit descriptions cannot be

detected by our alignment tool since no discourse marker is present.

4.4. Influence of the Parameters

The parametrization of our proposed approach can have a considerable im-

pact on the quality of the obtained results. In order to understand how this

occurs, we study the effect of the following parameters:

Feature family weights (Section 3.2.2) define the importance of features with

respect to each other.

Predictors, and their thresholds (Section 3.4) define the strategy and like-

lyhood of detecting a missing node or an order inconsistency in the pro-

cess.

In the next two sections we report the exploration done which additionally

lead us to the final parameters parameters used to obtain the results shown in

Table 3.

4.4.1. Effect of Feature Weights

To assess the influence of feature weights, we considered several exploration

techniques. Using an exhaustive exploration technique, or an experimental de-

sign requires discreticising the weights. Due to the high sensibility of the param-

eters and the computation time required to evaluate each individual combina-

tion, we avoided such an exhaustive analysis. Instead, we opted for an heuristic

search based on genetic algorithms, which are well known for metaparameter
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Figure 8: Evolution of the genetic algorithm

optimization showing the population maxi-

mum, average and minimum fitness values.

Figure 9: Accuracy of the tool when varying

the threshold for different predictors.

optimization. In order to guide the search, the fitness function was defined as

the overall accuracy obtained by the tool using the original dataset.

Figure 8 shows the evolution of the optimization for one of the executions.

The maximum and average values for the population fitness have a tendendy to

increase, which shows the positive effect of a good parametrization. On the other

hand, the minimum values fluctuate uniformly because of random individuals

being added at each generation. This shows the impact of the weight parameters

in our technique. While a bad set of weights affects the results negatively, the

algorithm can still perform with a reasonable accuracy even with such bad

parametrization.

Some common characteristics were observed in the fittest individuals of the

last generation: The most important features were actions, business objects

and discourse markers. On the other hand, word-based features and actors had

substantially lower weights. Finally, for features that distinguish the main word,

such as contains actor word and actor main word, the latter type was found

to consistently have a higher weight.
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4.4.2. Effect of Predictors and Thresholds

In order to study the effect of predictors, we conducted an experiment using

only the first test collection. The goal was to observe the effect of the predictor

type (p-sim or p-rel-S ), as well as the threshold value used to detect a missing

step, on the overall accuracy.

Figure 9 shows the performance of the tool when using both predictors and

varying their thresholds from 0 to 1, with a step length of 0.05. The value at 0

indicates the performance of the tool when not using predictors, while the value

at 1 represents the maximum achievable improvement of using predictors for

the detection of missing elements.

As shown, all predictor types have an initial peak region where perform-

ing the predictor-based refinement offers some benefit. After some point, the

approach becomes too strict and considers too many elements as missing, re-

sulting in a drop in the overall accuracy. This peak region is similar for the

three approaches, but p-rel-S is more stable since it offers a less steep curve.

This exploration shows us the potential benefits of predictor-based refine-

ment in our technique. We conclude a good range of values for the similarity

threshold lays in the interval (0.05, 0.2). Finally, the increased stability of the

p-rel-S predictor makes it more suited for a generic approach.

5. Conclusions

This paper presented a fully automated approach to align textual descrip-

tions to process models. The proposed approach combines tailored NLP process-

ing techniques, semantic matching, and predictors in order to establish optimal

alignments between the nodes of a process model and the sentences of a textual

description. Unlike existing approaches that address this task, our approach

aligns a broad range of process model elements, including events and gateways,

rather than just focusing on the alignment of activities. A quantitative eval-

uation performed on a collection 74 model-text pairs demonstrates that our

approach achieves satisfactory results.
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We foresee several research directions that can be followed. On the one

hand, incorporating support to more element types and constructs may lead to

a more precise analysis; among others, we may consider subprocesses. Another

interesting direction is to improve the characterization and computation of the

order for the sentences in the text, for instance learning a classifier tailored

towards describing control flow in textual descriptions.
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[34] L. Padró, E. Stanilovsky, FreeLing 3.0: Towards Wider Multilinguality,

in: Proceedings of the Eighth International Conference on Language Re-

sources and Evaluation, LREC 2012, Istanbul, Turkey, May 23-25, 2012,

2473–2479, URL http://www.lrec-conf.org/proceedings/lrec2012/

summaries/430.html, 2012.

[35] F. Pittke, H. Leopold, J. Mendling, G. Tamm, Enabling reuse of process

models through the detection of similar process parts, in: International

Conference on Business Process Management, Springer, 586–597, 2012.

[36] M. Rosemann, Potential Pitfalls of Process Modeling: Part A, Business

Process Management Journal 12 (2) (2006) 249–254.
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Barbara Weber, Josep Carmona, and Lluı́s Padró

Abstract—The creation of a process model is primarily a
formalization task that faces the challenge of constructing a
syntactically correct entity which accurately reflects the semantics
of reality, and is understandable to the model reader. This
paper proposes a framework called Model Judge, focused towards
the two main actors in the process of learning process model
creation: novice modelers and instructors. For modelers, the
platform enables the automatic validation of the process models
created from a textual description, providing explanations about
quality issues in the model. Model Judge can provide diagnostics
regarding model structure, writing style, and semantics by
aligning annotated textual descriptions to models. For instructors,
the platform facilitates the creation of modeling exercises by
providing an editor to annotate the main parts of a textual
description, that is empowered with natural language processing
(NLP) capabilities so that the annotation effort is minimized.
So far around 300 students, in process modeling courses of five
different universities around the world have used the platform.
The feedback gathered from some of these courses shows good
potential in helping students to improve their learning experi-
ence, which might, in turn, impact process model quality and
understandability. Moreover, our results show that instructors
can benefit from getting insights into the evolution of modeling
processes including arising quality issues of single students, but
also discovering tendencies in groups of students. Although the
framework has been applied to process model creation, it could
be extrapolated to other contexts where the creation of models
based on a textual description plays an important role.

Index Terms—Natural language processing (NLP), process of
process modeling, textual annotation, Business Process Model
and Notation (BPMN).

I. INTRODUCTION AND MOTIVATION

PROCESS models play an important role in the analysis
and improvement of business processes [1]. Moreover,

they are often used as basis for process execution. Due to their
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wide usage in organizations their quality is paramount: Process
models should be syntactically correct, and follow the rules
provided by the modeling grammar (i.e., syntactic quality),
they should be complete in terms of requirements and only
contain correct and relevant statements of the domain (i.e.,
semantic quality), and be understandable to the human model
reader (i.e., pragmatic quality) [2], [3].

Research has shown that industrial process models often
contain errors [4]. While some of these errors can be automat-
ically identified by the verification support of state-of-the art
modeling environments [5], others—especially those concern-
ing the semantics of a model—are not sufficiently supported
up to now. Moreover, a recently conducted exploratory study
by Haisjackl et al. investigated how humans inspect process
models [6], and came to the conclusion that a systematic
support for model inspection would be fundamental, either
in form of test-driven development, or in form of (automated)
checklists.

This paper picks up this challenge, and proposes a frame-
work called Model Judge for the automatic validation of pro-
cess models and providing explanations about quality issues
in therein. The framework proposed is inspired by similar
practices in other educational contexts, e.g., the success of
judges in supporting learning to program [7]–[11]. Remark-
ably, we use natural language processing (NLP), together with
optimization techniques [12], to validate process models with
respect to textual descriptions of processes.

Model Judge provides diagnostics regarding issues on syn-
tactic, pragmatic and semantic quality. The framework un-
derlying Model Judge is grounded on aligning annotated
textual descriptions with the models as basis for providing
diagnostics [12]. Using Model Judge, novice modelers can
be guided through continuous feedback. Instructors, in turn,
can create new exercises, and obtain insights into modeling
behaviors and better understand the evolution of error types
and their lifetime in the model. Currently, we have applied
our tool it in the context of five modeling courses totaling
around 300 students. To demonstrate the applicability of our
framework we monitored and analysed student data from one
of the courses with 26 students and the results show that Model
Judge has potential to support process modeling learners in
improving the quality of their models.

In this paper we apply our framework to the creation of
process models. However, a similar approach could be taken
for other types of models, like Universal Modeling Language
(UML) class diagrams or UML activity diagrams, in settings
where learners need to create a model starting from a textual
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description.
The remainder of this paper is structured as follows: Sec-

tion II gives an overall description of the Model Judge platform
and its features. Section III explores the related work in the ex-
isting literature. Section IV provides the preliminaries for our
work. Subsequently, Section V presents the specific modeling
guidelines that were used in the design of Model Judge as
well as the details behind the implementation of the platform.
Finally, Section VI evaluates Model Judge’s performance in a
modeling course before Section VII concludes the paper.

II. A TOUR THROUGH THE MODEL JUDGE

This section describes the main features that users can
find in the Model Judge. The Model Judge is a web-based,
platform, that can be accessed through any web browser at
https://modeljudge.cs.upc.edu. It is designed both for helping
students in the process of creating a process model, and
instructors in the task of designing modeling exercises in an
agile way.

To use Model Judge, a user (being student or instructor)
needs to create an account, with its associated storage space.
In this space, a student can save models, which will be always
accessible once she logs in. On the other hand, instructors
have the ability to create courses and exercises. A course is
designed as a set of exercises the students must solve, which
can be taken from the existing list of examples, or created by
the instructors.

Registered students can attempt to solve any exercise for
the courses they are enrolled to. This enrolling process is
performed by introducing a course code provided by the
instructor. Upon selecting an exercise, the main working zone
will be displayed (see Fig. 1): on the left part, a textual
description of the process is provided, so that the student un-
derstands the process to model. Next to the textual description,
a model editor allows the students to create the process model.
The students enrolled in a particular course may enable the
platform to record every few minutes a copy of their work-
in-progress. This can be used for analyzing their behavior,
which can be then reported back to both the student and the
instructor.

During the modeling session, two important checks are
available to help novice modelers:

• Validation: returns an aggregated diagnostic that reflects
if the model has some errors (more details on the
types of errors detected by Model Judge can be seen in
Section V-C), however, the exact source of the error is
omitted from this message. The motivation for this check
is to allow for a mild test to guide the students. This is
shown at the right part of Fig. 1, using a traditional color
code (green meaning positive facts, red meaning negative
facts, and yellow meaning warnings).

• Complete Validation: This check provides a more thor-
ough list of all the problems detected, which individually
addresses each of the issues with the model. The moti-
vation for this check is to allow an assessment similar to
the one obtained if a teacher was correcting the model.

Two important monitoring features are included in Model
Judge for instructors to get further insights from the modeling

sessions. On the one hand, instructors have access to a real-
time dashboard during the modeling session that can be used
to monitor the students’ progress. This dashboard allows
inspecting useful statistics like how much are students using
the validation functionality, their overall progress measured in
the number of error diagnostics, and the actual process models.
This dashboard is shown in Fig. 2.

On the other hand, instructors have the option to access the
data stored from students of the course once their modeling
task is finished. This data contains the final models, which can
be used for assessment, but also the intermediate models and
their diagnostics in order to perform a more detailed analysis
with the progression of the students during the exercise, similar
to what is shown in Section VI.

Furthermore, an exercise editor is available for instructors,
in order to create new exercises. For this, instructors must
provide both the problem statement text and its corresponding
annotations, which are used to describe the exercise solution
to Model Judge (see Section V). An on-line exercise editor is
provided which handles the generation of partial annotations
and allows its further refinement, as seen in Fig. 3. Typically,
the necessary work to create a new exercise consists of
removing the automatically highlighted elements that are not
relevant from the process perspective, as well as manually
annotating any activities that were implicitly described. From
our experience with the tool, we have estimated that a trained
instructor can create a new exercise for a well-known process
in less than an hour.

In summary, the Model Judge platform consists of three
inter-related tools, each focused on a different aspect of an
exercise’s lifecycle. We next detail the ecosystem behind our
platform, with the main functionalities of every tool.

1) MJ-Core: MJ-Core is the main tool in the Model Judge
platform. Its main purpose is to present a space for students to
solve exercises in, and instructors to create and manage their
courses. Additionally, the core platform provides the login
and registration capabilities for all other applications in the
platform. The source code for this tool is available inside the
modeljudge project at our source code repository [13].

2) MJ-Editor: MJ-Editor is a tool aimed at instructors that
allows the creation of new exercises for the core platform. In
order to create a new exercise, a natural language description
of a process must be annotated. This editor, shown in Fig. 3, is
a standalone web application which can also be used offline.
This editor is built using the React framework for Javascript,
and its source code is also available online inside the atd-editor
project at our source code repository [13].

3) MJ-Dashboard: MJ-Dashboard is a tool that helps
instructors to follow their existing courses by summarizing
student and exercise data. The tool is built using a custom
framework on top of the Compojure library. Currently it is
only available to instructors, due to the advanced nature of
the information displayed.

III. RELATED WORK

There exist very few works in the literature that jointly
propose a learning framework for process modeling, and
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Fig. 1. The Model Judge: (Left) The textual description, (Center) the created model, (Right) The result of a validation.

Fig. 2. The Model Judge Dashboard: (Left) ranking of students according to the gathered diagnostics (left), (Right) selected student evolution.

exploit NLP capabilities for automating the validation of
created process models. Still, we can find existing examples
of learning frameworks designed to aid students in conceptual
modeling, such as the one presented in Pimentel et. al, where
a gamification setup is defined to engage students in the task
of creating i* models [14]. Another are the works presented in
Bogandova et. al and Buchmann et. al, which aim to create a
taxonomy of common student errors when learning conceptual
modeling [15], [16].

There have also been prior efforts to design e-learning
systems for modeling notations, such as UML [17]. In this
system, a very shallow textual validation for the main model
components is done, and it is required to decide a priori all
the possible solutions for a given exercise. Our framework is
much more flexible, so that the space of solutions is merely
defined by the problem statement itself. NLP applied to both
text and model enables to implicitly account for all possible
correct solutions without enumerating them explicitly.

There is related work that explores the human behavior
in modeling, an aspect that influences the work of this pa-
per. In Störrle et al., a study is conducted to evaluate how
human modelers visually parse UML diagrams using eye-
tracking technology [18]. A more recent study follows a
similar approach for the case of reading process models during
a modeling session [19]. Incorporating insights arising from
these studies, as well as well-known principles and guidelines,
can be used to automatically improve the readability of a
model [20].

Finally, the interaction between NLP and Business Process
Management has some prior studies outside the scope of
education. There has been work addressing the problem of the
translation from textual to graphical representations of models
(e.g., UML diagrams [21], [22], or Business Process Model
and Notation (BPMN) [23], [24]) as well as schema [25]
or process model [26] matching. The alignment technique
presented in this paper is an adapted version of a prior work
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Fig. 3. The Model Judge Exercise Editor: the text describing the process (right) can be annotated (left) and relations between annotations reported (arcs in
the text).

[12].
To the best of our knowledge, the proposal of this paper is

the first one to tackle the challenges in the development of an
automated system to support novices in the creation of busi-
ness process models. Commercial tools (e.g., Signavio Process
Manager) are already capable of providing feedback concern-
ing some predefined modeling conventions. This feedback,
however, is typically quite elementary and completely domain
agnostic. Instead, the framework proposed is inspired on
code judges for programming, which are extremely successful
on guiding novice programmers towards obtaining solutions
to programming exercises [7]–[11] by providing suggestions
specifically tailored to the context of the exercise. As it is done
in some of the aforementioned learning environments (e.g.,
Petit et al. [11]), in our framework we allow for a detailed
diagnostic list, enabling the modeler to easily locate errors.

IV. PRELIMINARIES

A. Contextual Example: Modeling from Textual Descriptions

To illustrate the kind of modeling task we address in our
work, let us consider the process of patient examination based
on the description provided by the Women’s Hospital of Ulm.
Both the text and the model are extracted from the paper by
Cabanillas et al. [27]. A part of the textual description of this
process is provided in Fig. 4. A novice modeler would be
confronted to this text in order to perform the creation of the
corresponding process model. Fig. 5 shows a possible solution
to this modeling task, i.e., a process model in BPMN [28].

For readers not familiar with the BPMN language’s features,
a short description is provided in Section IV-B.

The process starts when the female patient is examined
by an outpatient physician, who decides whether she is
healthy or needs to undertake an additional examination.
(...) In the latter case, an examination and follow-up
treatment order is placed by the physician. (...) A delegate
of the physician arranges an appointment of the patient
with one of the wards. The latter is then responsible for
taking a sample to be analyzed in the lab later. (...) After
receiving the sample, a physician of the lab validates
its state and decides whether the sample can be used
for analysis or whether it is contaminated and a new
sample is required. (...) Finally, a physician from the
outpatient department makes the diagnosis and prescribes
the therapy for the patient.

Fig. 4. Fragment of a textual description for a patient examination process.

B. Process Modeling Notations

Process models can be created using a variety of modeling
languages, such as Petri nets, Event-Driven Process Chains
(EPCs), and BPMN. Although we focus in BPMN, the contri-
butions of this paper are independent of the specific notation
used to define a process model.

In particular, we focus on BPMN 2.0, a notation created
as standard for business process modeling. BPMN has three
different kinds of elements. First, the main elements are the
nodes in the diagram, which may belong to three different
types: Activities (Fig. 6, a), which represents some task that is
performed; Events (Fig. 6, b), which represen that something
happens; and Gateways (Fig. 6, c), which split or join flow
control according to their type: parallel tasks are defined
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Fig. 5. Process model for the patient examination process.
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Fig. 6. Different constructs in the BPMN notation. Activity (a), Event (b),
Gateway (c), Pool and Lane (d).

through the + gateway, whilst alternative paths are defined
through the x gateway. Second, the notation has different
edges to connect nodes, so that control-flow dependencies
can be defined. A solid line indicates the process workflow,
while dashed lines represent messages sent between process
participants. Finally, there are organization elements such as
lanes that contain activities performed by the same participant,
and pools (Fig. 6, d), that group several related lanes. Fig. 5
shows an example of the BPMN model corresponding to the
patient examination process described in Fig. 4. Note that, for
simplicity, in the process model of Fig. 5 we do not show
pools or lanes.

C. Natural Language Processing and Annotation

In order to compare textual descriptions (like the one shown
in Fig. 4) with a formal model, the text must be analyzed
and converted to a structured representation that conveys the
semantics of the text, and can be compared to the formal
model.

To perform this step, we rely on existing tools produced
by the NLP community, such as FreeLing [29]. The NLP
analyzers are used to obtain a semantic representation of the

text. Particularly, we extract the actions being described in
the text, the agents who perform each action, and the patients
upon which each action is performed. Note that agent and
patient terms are borrowed from linguistics, and the latter has
no relation to the medical patients described in our running
example. For instance, in Fig. 4 the sentence an examination
and follow-up treatment order is placed by the physician, the
agent is physician, the action is place, and the patient is order.

Additionally, we also extract per-word information such as
the part of speech (PoS) tag and its ontological sense. By
collecting this lower-level information, we allow our technique
to fall back to the word level whenever the predicate level
description is ambiguous or incomplete (e.g., detecting that
word place occurs as a verb in a sentence is useful to discover
that such action is being described, even if the information
about the agent or the patient could not be extracted by the
NLP tools).

More specifically, we apply a NLP pipeline consisting
of tokenization, sentence splitting, morphological analysis,
part-of-speech tagging, named entity recognition, word sense
disambiguation, dependency parsing, semantic role labelling,
and coreference resolution.

The steps up to word sense disambiguation provide word-
level information such as the PoS (e.g., placed → verb past
participle), the lemma (e.g. placed → place), or the sense (an
entry in an ontology that will link to synonyms—e.g., arrange
for— or other semantically close words—e.g., request, order,
ask for).

The three last steps are of special relevance, since they allow
the top-level predicate construction, and the identification of
actors throughout the whole text: Dependency parsing identi-
fies syntactic subjects and objects (which may vary depending,
e.g., on whether the sentence is active or passive), while
semantic role labeling identifies semantic relations (the agent
of an action is the same regardless of whether the sentence
is active or passive). Coreference resolution identifies several
mentions of the same actor as referring to the same entity
(e.g., in Fig. 4, a delegate of the physician and the latter refer
to the same person, as well as the same object is mentioned
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as the sample requested and it).
To compare formal models to textual descriptions, we will

need annotated versions of those texts (i.e., enriched with
all the linguistic information described above). Ideally, those
annotations would be automatically performed by NLP tools,
but given the limitations of the current NLP technology, we
will resort to a certain amount of human annotation to improve
the quality of our semantic representations. More details are
provided in Section V-A.

Creating annotated versions of texts is usual in the NLP
field, where many approaches are based on machine learning
and require annotated text corpora both for training and for
evaluating the performance of the developed systems. This
need for annotated text has led the NLP community to develop
several general-purpose annotation tools (e.g., Brat [30]).
However, inspired on those resources, we have developed
our own annotation tool tailored to Model Judge’s use case
in order to offer a better user experience. This tool is also
able to automatically infer partial annotations, as seen later in
Section V-A.

V. FRAMEWORK UNDERLYING THE MODEL JUDGE

By observing the grading process of several process mod-
eling courses, we have established a set of diagnostics that
are suitable for being computed automatically. As done in the
literature [2], we have split these diagnostics in three different
categories: Syntactic diagnostics consider the control flow of
the model. Pragmatic diagnostics consider the interpretability
aspects of the model. Finally, semantic diagnostics check if
there is no missing information from the underlying process
and all the information provided is relevant and valid. Note
that we use the terms syntactic, semantic, and pragmatic as it
is usually done in the Process Modeling field, which differs
from the meaning these terms have in linguistics and NLP.

This section describes our proposed framework for the auto-
matic computation of diagnostics. The Model Judge produces a
list of recommendations that the student can generate upon de-
mand during the modeling process. Fig. 7 shows an overview
diagram. The inputs to the system are the student’s Process
Model and the Textual Description, in natural language, that
is being used as the exercise’s statement.

The textual description is analyzed by the Text Annotation
module, to produce a structured annotated description where
the relevant concepts in the process model are identified.
This annotation is then completed with human intervention
to include domain expertise not available to NLP tools. After
these steps—performed only once when the instructor creates
a new exercise—students can work with the exercise.

In order to produce the diagnostics for a student-built model,
the Alignment between the student process model elements—
such as activities or gateways—and the annotations in the text
is computed. Then, this alignment is used to compare the
process model with the textual description in the Diagnostics
module. In the remainder of this section we describe the
aforementioned modules in detail.

A. Formalizing Annotated Textual Descriptions

Using natural language alone for the formal description of
process models has some drawbacks. On one hand, the lack
of structure in natural language text makes automatic analysis
more difficult. On the other hand, the inherent ambiguity of
written text makes it difficult to establish which parts of the
text are relevant to describe the process.

NLP tools are getting increasingly better at extracting
structure out of plain text. However, some ambiguities re-
main an open issue to this day. Furthermore, we argue that
some of these issues cannot be automatically solved reliably
enough, since they require extensive domain knowledge. For
instance, in the example from Fig. 4, the sentence ”The latter
[physician] is then responsible for taking a sample to be
analysed in the lab later” highlights two important sources
of ambiguity in the analysis of textual descriptions: (i) The
action analyse is described, but it may not happen until later
into the process, as hinted by the word later. Extracting this
kind of temporal relationships from textual descriptions is a
very complex task [31], with no good solutions in the context
of business processes. (ii) Depending on the purpose of the
process, the same analyze verb could actually be irrelevant
from an organizational point of view, if the lab were to be
considered an external entity. This presents an issue that cannot
be solved without deep understanding of the organization. This
is why in Fig. 7 we incorporate a stage on human annotation,
so that these ambiguities can be resolved.

In order to bridge the gap between the textual descriptions
and the formal process models, we introduce the concept
of Annotated Textual Descriptions (ATD). The goal of this
representation is to use text annotations, typically found in
the context of textual corpus labeling, to define a structured
representation of text that still benefits from the flexibility
and interpretability offered by natural language. Annotations
are used as an intermediate language, and are generated in
two steps: First, an automatic NLP tool generates a candidate
annotation. Afterwards, the annotations are refined by a human
(in our case, the instructor) to refine the annotation, e.g.,
discard unnecessary labels, or add missing or relevant details
using domain expertise.

Even though obtaining accurate annotations requires some
human intervention, our e-learning framework for self-
assessment still enables for automation, since the annotations
only need to be made once for an exercise, and from that
moment on, they can be used to correct any number of
proposed models for that exercise.

Formally, we can define an ATD as a 〈T,A,R〉 tuple, where
T is a string of characters representing the textual descrip-

tion.
A is a set of annotations. Each annotation α =
〈type, start, end〉 marks a relevant aspect of the business
process. The start and end integers mark the positions
of a substring of T, and the type is used to add semantics
to the annotation.

R is a set of triples 〈t, αi, αj〉 representing binary relations
of type t between pairs of annotations αi, αj

Next, we describe each of the annotation and relation types
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Fig. 7. Overview of the Model Judge framework to support the creation of process models.

that we consider for ATDs. Table I shows an example of an
ATD which we will use for the remainder of this section.

1) Annotations: Annotations are used to mark an important
region of the text. In the case of ATDs we consider the
following types of annotations which directly map to some
well-known concepts in the context of business processes.

Action. The action annotation is used to represent the steps
of the business process model, which are often associated
with verbs. An example action would be placing (α1) an
examination order. Each action corresponds to a single
activity in the process model. We additionally allow to
specify an action as optional. The optional action annota-
tion is used to indicate that the associated action could be
elided from the process description without a substantial
change in its semantics. For instance, in the sentence ”the
patient can leave”, the action of leaving (α8) could be
considered as part of the process. However, that action
does not add a substantial amount of semantic value,
and thus can be considered optional. In our framework,
optional actions can be used by the instructor to allow
for a more flexible answer to the exercise, since both the
solution that contains the action and the one that does not
can be considered correct.

Role. The role annotation is used to represent the autonomous
actors involved in the process, like the outpatient physi-
cian (α5). Any mention of an entity that performs some
Action is considered a Role. Roles are associated with
swimlanes in business processes (see Fig. 6 (d)).

Business Object. The business object annotation is used to
mark all the relevant elements of the process that do
not take an active part in it, such as an examination
order (α6). In the business process, correspondences with
business objects are typically found in activity labels and
explicit elements such as data object references.

Condition. A condition annotation indicates a part of the
text that represents a pre-requisite for some part of the
process being executed, such as the patient being healthy
(α7). Conditions are typically associated with exclusive
gateways, their labels and their surroundings.

2) Relations: Relations represent binary relationships be-
tween annotations. In ATDs, we consider the following rela-
tions. Note that the terms agent and patient have been chosen
to highlight that the relations are consistent with the linguistic
definition of the sentence semantic roles, as typically seen in
linguistics (see Section IV).
Agent. A role is the agent of an action whenever the entity

represented by the role performs that action. For instance,
relation r1 tells us it is the physician who places some-
thing.

Patient. A role, or business object is the patient of an action
whenever it acts as the recipient of the action. Relation
r2 tells us that what is placed is an examination order
something.

Control Flow. The sequential, exclusive and parallel binary
relationships, which are borrowed from behavioral pro-
files [32], are used to indicate the order between actions
in the textual description. Due to the characteristics of
natural language text, there is an open world assumption
on the set of control flow relationships: Assuming an
absence of contradictions, everything that is stated as
relationship is enforced. However, no assumptions are
made on things that are not specified. In our example,
analyse (α2) is sequential (r3) to—i.e., happens before—
validates (α3)

Coreferences. A role is a coreference of another role when
they refer to the same entity. The coreference relation
forms a graph with one connected component per process
entity. All ocurrences of the ”patient” role in the example
text are coreferences. However, there are two different
”physician” roles in the text, the ”outpatient physician”
(α4, α5) and the ”physician of the lab” (α14), which form
two disconnected coreference graphs.

B. Alignment of Models and Annotated Texts

The goal of aligning a process model and a textual pro-
cess description is to identify correspondences between the
elements of the process model and parts of the textual process
description [12], [33], [34]. In particular, all elements that
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Type Text Fragment
α1 action “an examination and follow-up treatment order is placed by the physician”
α2 action “is then responsible for taking a sample to be analysed in the lab”
α3 action “After receiving the sample, a physician of the lab validates its state”
α4 role “an examination and follow-up treatment order is placed by the physician”
α5 role “the female patient is examined by an outpatient physician”
α6 object “an examination and follow-up treatment order is placed by the physician”
α7 condition “decides whether she is healthy or needs to undertake additional examination”
α8 optional, “the patient can leave”

ending
α9 implicit “The patient is asked to sign an informed consent” (Added text)
α10 action “The required examination and sampling is prepared by a nurse”
α11 action “The required examination and sampling is prepared by a nurse”
α12 object “The required examination and sampling is prepared by a nurse”
α13 object “The required examination and sampling is prepared by a nurse”
α14 role “After receiving the sample, a physician of the lab validates its state”

Type αi αj

r1 agent α1 α4

r2 patient α1 α6

r3 sequential α2 α3

r4 coreference α4 α5

r5 patient α10 α12

r6 patient α11 α13

r7 fusionable α10 α11

TABLE I
EXAMPLE FRAGMENT OF ANNOTATED TEXTUAL DESCRIPTION WITH ANNOTATIONS (LEFT) AND RELATIONS (RIGHT)

describe the flow in a process model, i.e., activities, events, and
gateways, are aligned to (parts of) the sentences of a textual
process description. For instance, the sentence containing the
text ”... a delegate of the physician arranges an appointment
of the patient with one of the wards.” would be aligned with
the task ”Make Appointment” of the BPMN model. Similarly,
the gateway with the decision ”Patient Agrees ?” must be
mapped to the sentence If the patient signs an informed
consent ...”. This previous example clearly shows the challenge
of computing alignments when textual descriptions are not
annotated. Fig. 8 shows an example alignment for an initial
fragment of our running example.

The process  starts  when  the  

female  patient  is  examined  

by  an outpatient physician, 

who decides whether she is 

healthy or needs to undertake 

an additional examination. 

In the former case,  the  

physician  fills  out  the  

examination  form  and  the

patient  can  leave.

yes

P
hy
si
ci
a
n

H
os
pi
ta
l

Fill out
examination

form

Examine
Patient

Patient is
healthy?

Fig. 8. Alignment between annotated textual description and BPMN process
model.

In Model Judge, establishing the correspondence between
the annotations in the annotated textual description and the
elements in the business process model is necessary in order to
compute some diagnostics, such as the semantic-related ones.
The goal of this computation is to be able to assess which
parts of the process model have been correctly modeled by
the student, according to the textual description.

In this paper we extend our alignment framework presented
in earlier works [12], [34] by assuming that textual de-
scriptions are annotated. This assumption allows strengthening
some of the constraints in the algorithm by having the certainty
that information that comes from annotated texts is precise and

complete.
An overview of the details behind of our alignment tech-

nique can be seen in Fig. 9: (i) First, linguistic features from
the textual description and the process model are extracted to
map both representations into a canonical form in a Feature
Extraction step. During this step we extract high-level informa-
tion such as word senses (using WordNet) and semantic roles.
In order to do this, we apply the full NLP pipeline described
in Section IV-C. (ii) We can then use well-known similarity
functions such as the Jaccard Index or Cosine Similarity to
compare the feature vectors in the Similarity Computation
phase. (iii) After that, the similarity information is encoded in
an optimization algorithm, implemented as an Integer Linear
Program, to find a valid alignment which maximizes similarity.
(iv) Finally, in order to detect unnecessary activities, i.e.,
activities that are present in model but not in the text, we
use predictors, adapted from Van der Aa et al. [33].

We refer the interested reader to the aforementioned work
for a detailed description of the techniques.

C. Automatic Generation of Diagnostics

The core of our approach consists on the automatic gen-
eration of diagnostics. This computation uses the information
from the annotated textual description, the process model, and
the alignment between them. In this section we detail which
diagnostics are currently generated by our tool and how they
are computed.

1) Syntactic Diagnostics: A good process model should
have a clear and unambiguous control flow. Syntactic diag-
nostics identify common patterns that typically result in less
understandable and maintainable process models. Illustrative
examples for the presented syntactic errors can be found in
Fig. 10.
Gateway Reuse and Implicit Gateways. (Fig. 10, a and b)

Gateway reuse refers to a gateway that acts both as a
split (more than two ouptuts) and a join (more than
two inputs). Implicit Gateways exist when an activity
has multiple input or output flows. The semantics for
these two constructs are not clear and can lead to hidden
modeling errors. Because of that, avoiding gateway reuse
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Fig. 9. Overview of alignment between textual descriptions and process models.

a) b)

c)

Fig. 10. Examples of several syntactic errors: Gateway Reuse (a), Implicit
Gateway (b), Non-natural Loop (c).

and implicit gateways is a well-known best practice in
business process models [6], [20], [35].

Non-Natural Loops. (Fig. 10, c) Due to their similarity, some
desirable properties of program’s control flow graphs are
also relevant in the context of process model diagrams.
Ideally, process models should contain only Natural
Loops. That is, there is only a single way to enter the
loop. We have observed non-natural loops are a common
pattern among novice students.

Soundness. A well-known desirable property of process mod-
els is soundness [36], which guarantees the process model
is free from livelocks, deadlocks, and other anomalies that
can be detected without domain knowledge.

Notice that the last two syntactic diagnostics can also be
applied to other languages, like Petri nets. The computation
of syntactic diagnostics only requires the process model,
and they can be implemented use well-known algorithms.
Particularly, checking the use of implicit gateways or gateway
reuse consists of a very simple structural check. On the other
hand, the presence of non-natural loops can be determined by
checking for cycles in the process graph after removing all its
back edges, computed from the dominator tree [37].

2) Pragmatic Diagnostics: Pragmatics in process modeling
can be described as the interpretability of the model, which
can be impacted by factors such as complexity, modularity,
secondary notation or activity labelling style [38]. It is that last
aspect of pragmatics that Model Judge is focused on. Process
model diagrams define a large portion of their semantics using

natural language. It is desirable to restrict the language to a
strict writing style (e.g, the verb-object rule in Mendling et
al. [20], G6), in order to avoid ambiguous phrasing [39]. A
simple and strict style is also important when considering au-
tomatic analysis of the process model language. For example,
while it is acceptable in the text to include the sentence: “The
latter is then responsible for taking a sample to be analysed
in the lab later”, having that sentence as an activity label
in the process model adds unnecessary complexity, since the
aim is to have label text to be as simple as possible, and not
contain details about the control flow of the process. A simpler
model label using the verb-object rule for the aforementioned
sentence would be “Analyse sample”.

Previous studies [39]–[42] have established the common
structures in label descriptions. However, these structures are
not always followed by novice students. Because of that, an
automatic detection of invalid writing styles is beneficial for
student self-improvement.

The approach we present for checking adherence to a
writing style is based on using a custom NLP parser for labels.
The core of this technique consists of parsing the labels with
a custom-made context-free grammar. This grammar is able
to recognise most label syntactic structures defined by Pittke
et al. and Leopold et al. [41], [42], and is built in such a way
that the root node of the parse tree will be labeled with the
identified writing style. For example, a label written in the
noun-action style will have this information reflected at the
root node of the tree. Parsing is then done as follows:

1) The n most likely part-of-speech (PoS) sequences of the
label are computed.

2) For each of the part-of-speech sequences, the label is
parsed using a chart parser with the aforementioned
context-free grammar.

3) If all the parse tree roots are found to have an undesired
style or none of the parse trees could be parsed by the
grammar, the label writing style is not correct.

For instance, let us consider the activity label sample
patient. The possible PoS sequences are 〈noun, noun〉 (i.e.,
a sample patient) and 〈verb, noun〉 (i.e., to sample a patient).
After trying to parse the text considering each sequence, we
see that the most likely sequence, 〈noun, noun〉, does not
match any valid label pattern. Thus, the second sequence is
chosen, which matches one of the valid action patterns. We
can then say that the label’s writing style is correct, while if
no valid pattern is found in any of the possible sequences, the
label is considered to have an incorrect style.
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In our implementation, patterns of labels describing double
actions are also detected (e.g. Close Ticket and Inform the
Manager) and, in this case, the system suggests the student to
create two separate activities. It is worth noticing that this
technique can be adapted so any instructor can enforce a
label writing style in a flexible way, just defining a simple
grammar to detect label patterns, and accept or reject the labels
depending on the matched pattern.

Furthermore, this analysis helps avoiding common issues
with general-purpose NLP tools when faced with the kind of
text in business process models. For example, a general parser
lacks the necessary context to infer that activity labels should
always describe an action. As we can see with sample patient,
adding knowledge about the context of a sentence into the
parser solves the issue.

3) Semantic Diagnostics: A process model diagram has to
communicate the semantics of the underlying process in a clear
and unambiguous way. All the information provided has to be
correct, and in the right order. On the other hand, unnecessary
information introduces noise that can generate confusion.
Semantic diagnostics help enforcing these properties on the
process model.
Missing/Unnecessary activities. This problem arises when a

relevant activity of the process is omitted from the process
model or, symmetrically, when additional activities are
added which are either wrong or add no relevant infor-
mation. This can be caused by an oversight or a poor
understanding of the process being modeled.

Missing/Unnecessary Roles. When process models use role
information, such as swimlanes in BPMN, the same
diagnostics of missing and unnecessary roles can be
applied as well, to ensure all the relevant actors are
properly modeled.

Control-Flow Consistency. All the information in the pro-
cess model should be consistent with the control flow of
the process being described. For example, if the text states
that an activity A must happen before an activity B can be
executed, it is incorrect to model them as two separate
branches of a choice. If a temporal relation described
in the text is not accurately incorporated in the process
model, then a control-flow consistency violation would
be communicated to the novice modeler.

Semantic checks are concerned with the underlying process
semantics. Computing these diagnostics requires all the in-
formation from the annotated textual description, the process
model and the alignment.

To detect that an activity is missing from the process model,
the alignment information is used. Particularly, if there is
an action in the ATD with no correspondences from the
process model, the activity is missing from the process model.
The system can then inform the modeler by generating a
detailed error message using the annotated data from the
textual description.

Detecting unnecessary activities also relies on the align-
ment. In this case, there will be a process model activity
aligned to some text action. If the similarity between them
is low enough the activity is considered unnecessary, as there
is no good match for the activity in the text.

Coverage of roles is performed similarly to activities. In this
case, the similarity function is used to assess the similarity
between role annotations and the process model’s swimlanes.

Control flow validations have a preliminary implementation
using the predictor technique described in the aforementioned
prior work [12], [33]. However, there is still room for substan-
tial improvements in this regard.

VI. EVALUATION

The goal of this section is to provide an evaluation of the
Model Judge. More specifically, we aim at investigating the
following questions:
RQ1. Is the Model Judge perceived useful and accurate by

the students? This question is answered in Section VI-A;
RQ2. How are the Model Judge diagnostics and validations

associated with actual modeling errors? This question is
answered in Section VI-B1;

RQ3. How does the process of process modeling evolve over
time, when the Model Judge is available? This question
is answered in Section VI-B2.

To answer the above research questions, data from a mod-
eling session at the Technical University of Denmark (DTU)
was analyzed. During the modeling session 26 students were
asked to individually create a process model given a textual
description using the Model Judge (cf. Section II). There was
no time limit imposed. Students had a validation functionality
available during model creation. The diagnostics generated by
the validation functionality provided some indication about the
type of error (e.g., missing activity), but did not reveal the
exact source of the error. Moreover, Model Judge provides a
complete validation functionality offering more detailed diag-
nostic feedback. Students were instructed to use the complete
validation only at the end of the modeling process, once
they have completed the modeling. This way, during the
modeling students were incentivated to find out the reasons
why certain types of errors arised, without actually knowing
the exact errors. We believe this facilitates the learning process.
It is important to note that in our experimental setting the
conditions for having a control group were not met.

A. Subjective Perception (RQ1)

To answer RQ1 a survey was conducted at the end of the
modeling session. Students were asked to assess the valida-
tion and complete validation functionalities of Model Judge
in terms of perceived accuracy and usefulness. Moreover,
students were asked to write down any complaints and/or
improvement suggestions concerning Model Judge. Overall,
18 out of 26 students participated in the survey.

Fig. 11 shows the results of the survey: Our results demon-
strate that 67% (12 out of 18) found the validation function-
ality useful (i.e., strongly agree or agree). Similarly, 67% (12
out of 18) perceived the complete validation useful.

In terms of accuracy, 44% (8 out of 18) perceived the
validation functionality of the Model Judge as accurate (i.e.,
strongly agree or agree). For the complete validation the
agreement was with 56% (10 out of 18) slightly higher.
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Fig. 11. Results of the student survey for the modeling courses. Each chart reports the results referring to a different question asked.

Additionally, it can be noted that the perceptions concerning
usefulness were better than for accuracy. This is supported
by the written feedback provided by the students. While in
general, students appreciated the support provided by Model
Judge, some students pointed out that the tool in did not
recognize all their process model labels. In addition, some
students stated that a more precise feedback would have
been useful (e.g., “I disliked the feedback [provided by the
validation functionality]. I could not know what was wrong,
just that something was.”.

Moreover, it can be noted that the complete validation
functionality is perceived as slightly more useful and accurate
when compared to the validation functionality. This is not
surprising, since the complete validation functionality provided
a more detailed feedback to the students.

In general, we can answer research question RQ1 partially
positively, i.e., Model Judge is perceived by the majority of
the students as useful but, concerning accuracy, the majority
agrees that just the complete validation is accurate.

B. Analysis of the Modeling Session Data (RQ2, RQ3)

To answer research question RQ2 and RQ3 we analyzed
the recordings of the modeling session.

Data Collection. For every student, we stored periodically
(every minute) information for the whole modeling session.
Additionally, information was also saved each time the user
performed a simple or complete validation. In particular, we
recorded a total of 1584 intermediate models for 26 students.
For the snapshots, we stored: (i) A unique user identifier;
(ii) The process model in BPMN (XML) format; (iii) The
timestamp of the snapshot; (iv) The type of information: auto-
matic, validation or complete validation; and (v) The validation
results of our tool for the particular process model. Note that

the validation results were computed for all snapshots, despite
the fact that the students only saw the ones they explicitly
requested.

The dataset used to answer RQ2 and RQ3 is available online
at the PADS-UPC research group website [43].

1) Association of the Tool on Diagnostics with Modeling
Errors (RQ2): In this section, we provide an answer to RQ2:
we analyze the association between diagnostics of the Model
Judge and actual modeling errors.

The actual modeling errors were derived based on the
evaluation criteria agreed by two researchers, a Ph.D student
and an associate professor affiliated to different institutions.
Both assessors have teaching experience in business process
management: The PhD student has contributed in the teaching
of the course for 2 consecutive years, while the associate
professor has been teaching the course for the past 7 years.
Additionally, both researchers are familiar with evaluating pro-
cess models derived by students. The criteria were set based on
the guidelines provided by the SEQUAL [44] and 7PMG [20]
frameworks. All the covered criteria have been discussed by
both assessors before proceeding with the evaluation of the
models.

We analyzed to what extent the provided diagnostics (iden-
tified by the Model Judge) are associated with modeling
errors (identified by manual inspections). In terms of model
diagnostics we considered: Davg = “Average number of bad
diagnostics during the modeling session,” Dend = “Number
of bad diagnostics at the end of the exercise” and in term
of modeling errors we considered: Em = “Errors as missing
activities,” Ec = “Errors in the organization of the control-
flow,” and Et = “Errors in the model semantics.”

Results, expressed as Spearman’s correlation tests, between
diagnostics and actual errors are reported in Table II. The
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Davg Dend

Em Spearman’s ρ .502 .576
p-value .009 .002

Ec Spearman’s ρ .476 .569
p-value .014 .002

Et Spearman’s ρ .445 .520
p-value .023 .007

TABLE II
SPEARMAN’S CORRELATION TEST RESULTS BETWEEN DIAGNOSTICS

AND ACTUAL ERRORS

Davg Dend

Vs Spearman’s ρ -.724 -.763
p-value < .001 < .001

Vc Spearman’s ρ -.607 -.687
p-value < .001 < .001

TABLE III
SPEARMAN’S CORRELATION TEST RESULTS BETWEEN DIAGNOSTICS

AND NUMBER OF VALIDATIONS

correlation between the number of bad diagnostics and the
different errors are moderate and all significant. This suggests
that the Model Judge’s diagnostics is capable of approximating
to a certain extent the actual modeling errors.

Starting from the previous results, we additionally studied
the presence of correlations between the number of validations
performed by the students and the number of bad diagnostics
obtained. To that end, we computed a Spearman’s correlations
between Vs = “Number of validations,” Vc = “Number of
complete validations,” Davg (average bad diagnostics), Dend

(bad diagnostics by the end). Besides the obvious correlations
Vc ∼ Vs and Davg ∼ Dend, we also found significant and
strong negative correlations between the two pairs of variables,
as seen in Table III. This means that, as the number of
validations grows, the number of bad diagnostics decreases.

In another analysis, we correlated Vs (i.e., number of
validations) and Vc (i.e., number of complete validations) with
the number of modeling errors observed by the end: Em

(errors as missing activities), Ec (errors in the organization of
the control-flow), Et (total semantics mistakes). The results
are reported in Table IV and, as for the previous cases, all
correlations are significant as well as negative. This means that
as the number of validations grows the number of actual errors
decreases. Based on previous results, this should not surprise:
we already observed that diagnostics inversely correlate with

Vs Vc

Em Spearman’s ρ -.487 -.430
p-value .012 .028

Ec Spearman’s ρ -.576 -.547
p-value .002 .004

Et Spearman’s ρ -.457 -.441
p-value .019 .024

TABLE IV
SPEARMAN’S CORRELATION TEST RESULTS BETWEEN ERRORS AND

NUMBER OF VALIDATIONS

Fig. 12. Evolution of the diagnostic types for the modeling session.

the number of validations in (see Table III) and that diagnostics
and errors positively correlate (see Table II).

Finally, to answer research question RQ2, we can conclude
that both the diagnostics and the validation capabilities of
the Model Judge are associated with actual modeling errors.
In particular, there are correlations between Model Judge’s
diagnostics and actual errors. We also observed negative corre-
lations between the number of validations and diagnostics and
between number of validation and actual errors (which mean
that an increase in the number of validations is associated with
less errors).

2) Evolution of the Modeling Sessions (RQ3): The final
investigation we performed aimed at understanding how the
process modeling evolves when the Model Judge is available
(RQ3). For this, we analyzed after the modeling course ended
the collected snapshots with the goal to observe the evolu-
tion of the number of validation errors during the modeling
sessions. Note that, for this analysis, we considered individual
modeling sessions, with some students having performed more
than one session.

In a first investigation, we analyzed how the frequency of
different diagnostics varies during the sessions. Fig. 12 shows
the evolution of the average amount of diagnostics for all
students, per diagnostic type. To better observe the relative
behavior of each type, regardless of the amount of diagnostics
in the category, we plot the values relative to the maximum
of each category. We have encountered substantial differences
between diagnostic types. “Missing Activity” diagnostics de-
crease as the session advances, since less activities will be
missing as the modeling session progresses. “Unnecessary
Activity” and “Implicit Gateway” increase for the first half
of the session, then decrease. This behavior is consistent with
the fact that most students do not start using the complete
validation feature until the second half of the session. The
more detailed feedback of the complete validation then helps
them finding the more subtle errors in their process model.
The remaining diagnostic types have an oscillatory behavior,
but still increase for the duration of the session. This can be
explained by the fact that, as the modeling session progresses,
there is a greater chance of a student introducing an error
leading to one of these diagnostics. However, the drops after
75% progress could indicate that some students delay the
correction of these errors until the end of the modeling session.
This is in line with existing research that modelers differ in
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Fig. 13. Density plot of the diagnostic lifetimes variable.

Fig. 14. Three characteristic behaviors observed in the modeling sessions. The
blue circles represent simple validations, while green squares denote complete
validations.

term of their validation behavior [45].
To get a deeper insight into the modeling session data,

we computed the lifetime of the diagnostics given to the
students. We define the diagnostic lifetime as the elapsed time
between the moment a student introduces a mistake in the
model, and the moment that mistake is corrected. Note that this
metric is independent of the validations made by the student,
since diagnostics are computed for all snapshots regardless of
the student used the validation function or not. The average
lifetimes follow a long-tailed distribution (Fig. 13). That is,
in the average case mistakes are quickly corrected by the
students. However, for a few cases, it can take a very long
time to solve those mistakes.

Finally, by manual inspecting the session data, we identified
some “modeling profiles,” i.e., typical approaches followed by
students while solving their modeling task. Fig. 14 shows a
representative for each of the identified profiles, when plotting
number of validation errors vs. time (in seconds) together with

simple and complete validations. Note that there are a few
outlier sessions that do not match any of the three profiles
shown. An instructor can obtain a good overview of the
students evolution by looking at these student’s plots. These
are the three profiles we identified: (i) The first group (on
top of Fig. 14) is composed of modeling sessions where stu-
dents frequently use the intermediate and complete validation
functions, and ended up with almost no bad diagnostics. This
group corresponds to 26.0% of the sessions; (ii) The modeling
sessions from the second group (in the middle of Fig. 14)
correspond to students who frequently use the validation,
however, they only check the complete validation at the end of
the session. The final amount of bad diagnostics for this group
is comparable to the previous one. This group corresponds to
59.3% of the students; (iii) The modeling sessions from the
third group (at the bottom of Fig. 14) correspond to students
who started working on the exercise but finished before fixing
the majority of bad diagnostics. We have observed that the
students in this group performed substantially less validations.
This group corresponds to 14.8% of the students.

In this section we answered RQ3 by examining how the
modeling sessions evolve when the Model Judge is used:
we observed the distribution of the diagnostics as well as
the density plot of the diagnostic lifetimes. Additionally, we
identified three typical modeling profiles that can be used
by instructors to gather some initial understanding on the
modeling approach followed by students.

VII. CONCLUSION

In this paper we provide both the framework and an
evaluation of the Model Judge. The framework is grounded in
the use of NLP techniques together with an algorithm to align
textual descriptions and graphical process models notations
such as BPMN.

Our experience of applying Model Judge in different uni-
versities shows that it can be easily incorporated in a modeling
course, where novice modelers can benefit from an environ-
ment that produces continuous support in the task of creating
a process model. As for instructors, they are able to better
support students by monitoring modeling sessions and easily
create new exercises to fit their needs.

As future work we plan to extend the capabilities of the
framework (multilingual support, expand the type and quality
of diagnostics, among others), and apply it in more courses so
that more conclusions can be drawn on the data gathered.
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Abstract. With the aim of having individuals from different backgrounds
and expertise levels examine the operations in an organization, different
representations of business processes are maintained. To have these dif-
ferent representations aligned is not only a desired feature, but also a real
challenge due to the contrasting nature of each process representation.
In this paper we present an efficient technique for aligning a textual de-
scription and a graphical model of a process. The technique is grounded
on using natural language processing techniques to extract linguistic fea-
tures of each representation, and encode the search as a mathematical
optimization encoded using Integer Linear Programming (ILP) whose
resolution ensures an optimal alignment between both descriptions. The
technique has been implemented and the experiments witness the signif-
icance of the approach with respect to the state-of-the-art technique for
the same task.

Keywords: Process Models, Natural Language Processing, Integer Linear Pro-
gramming

1 Introduction

Nowadays organizations store processes descriptions in various representations.
The reason for this is the different nature stakeholders have: while textual de-
scriptions of processes are well-suited for non-technical users, they are less appro-
priate for describing precise aspects of the underlying process [1]. In contrast,
formal and graphical process notations (e.g., BPMN) are unambiguous repre-
sentations which can be the basis for automating the corresponding processes
within the organization [2], but they are oriented to specialized users. In this
context, due to the evolving nature of processes, there is a high risk of hav-
ing deviations between the different representations, a problem that may have
serious consequences for any organization [3].

In the last decade, the field of Natural Language Processing (NLP) has grown
up to a mature enough level, where the algorithmic support to analyze any text
is high. Currently, there are several powerful open-source libraries that can be
integrated easily to any software project, thus making linguistic analysis a reality
in many contexts [4–7]. In this paper we exploit state-of-the-art NLP algorithms
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to extract advanced linguistic features for the text found in both representations,
so that the corresponding linguistic footprint can be mapped to a canonical
form. Several similarity metrics can be defined on top of this canonical form,
including weighted versions which may favor particular characteristics of process
descriptions such as the action performed.

Once the similarity metric is chosen, the problem is casted as an optimization,
whose solution(s) represent an assignment between tasks and sentences such
that the accumulated sum of similarity is maximum. In particular, we encode
the problem as an Integer Linear Programming (ILP) model whose resolution
provides the optimal alignment between the text and the model.

The work of this paper is inspired by and shares the motivation of the seminal
work [8, 9] (see Section 3 for an accurate comparison of both approaches). Re-
markably, although the core algorithm for searching solutions of the techniques
is very different from our approach’s, the quality of both approaches is similar.
However, due to the simplicity of the encoding proposed, the method proposed
is much faster and can deal with model-text pairs of medium/large size in a
feasible time, a crucial distinctive feature of our approach with respect to [8, 9].
By mapping the problem as an ILP, we clearly separate problem encoding from
computation, thus allowing to easily incorporate new dimensions to consider (as
we have done in this paper by incorporating actors). Notably, the technique pro-
vides a result very fast, thus widenning the application scope from post mortem
or batch analysis to real-time analysis.

The research method followed in this work is Design Science [10], which
“creates and evaluates IT artifacts intended to solve identified organizational
problems”.

The remainder of the paper is organized as follows: we provide a motivat-
ing example in the next section. Then, in Section 3 a detailed comparison with
related work is reported. Preliminaries are then provided in Section 4, and the
main contribution of the paper is presented in Section 5. Experiments on ref-
erence benchmarks are presented in Section 6. Finally, Section 7 concludes the
paper and provides future lines for research.

2 Motivating Example

To give some intuition let us consider the example represented by the textual
description and its corresponding BPMN model in Figure 1. The technique we
present derives the correct alignment between sentences 1-13 and tasks A-P ,
except for task J , as this task is not mentioned in the text.

In the simpler cases, the correct alignment between a task and a sentence can
be obtained just by comparing the words in the sentences and the task labels.
In this work, we aim to expand on previous techniques by considering more
information about the tasks in the form of features. To better illustrate this, let
us consider sentences 6 and 8, which correspond to tasks G and L respectively.
When performing the comparison only by looking at the task labels, there is no
clear way to distinguish G from L since they have the same label. Because of





or process model [15] matching. Also, there has been work on generating process
models from group stories [16] and from use-cases [17], which are less related to
this work since they restrict the form of the textual description used to describe
the process. For the problem considered in this paper, the transformation ap-
proches can only be applied when the source process description is unambiguous,
and the transformation used does not modify the underlying process. Hence, the
rest of the section considers only the work that computes alignments without
requiring a transformation between process descriptions.

The seminal work [8, 9] proposed an algorithm for aligning textual descrip-
tions and process models, with the particular aim of detecting inconsistencies
between both representations. Their approach consists on using a linguistic anal-
ysis that derives a bag-of-words summary (i.e., resolving anaphoric references,
extracting relevant clauses or removing prepositions) of the main elements in
each representation. Then, a similarity computation between these elements is
applied, and finally an optimal alignment which globally maximizes the similar-
ity is computed, using a best-first search technique.

In our case, we extend the linguistic analysis with semantic role labeling,
coreference resolution, and the computation of the semantic graph. Moreover, we
encode the problem of computing an alignment as the resolution of an ILP model.
As we will see in the experiments, this algebraic representation of the alignment
problem represents a significant reduction (of several orders of magnitude) in the
time requirements for computing an alignment. Finally, we map text sentences to
feature vectors with a rich unbounded set of features, which do not depend on an
apriori assumption on the importance of certain constructions. This rich feature
representation allows to differentiate semantic roles such as actor or object, and
also allows to include other process information besides the task labels.

Table 1 shows the derived alignment for the example in Section 2, by both
our tool and the one introduced in [9]. We want to stress that in spite of our
better performance for this particular example, the quality of our approach and
the one in [9] is similar. We believe both contributions can be naturally combined
to boost the quality of the alignments derived.

Task A B C D E F G H I J K L M N O P
Groundtruth 2 3 4 5 13 13 6 7 6 − 11 8 9 12 10 10
[9]’s approach ✓ ✓ 3 ✗ 6 ✗ ✓ ✓ ✓ 12 ✗ ✓ 6 ✗ ✓ 6 ✗ ✓ ✓ ✓ ✓
Our approach ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 6 ✗ ✓ ✓ ✓ ✓ ✓ ✓

Table 1. Errors in task-to-sentence alignments produced by our approach and by [9]’s
for the example in Section 2.



4 Preliminaries on Process Models and NLP

4.1 Graphical Process Notations

There exist a plethora of graphical notations to model processes. A full descrip-
tion of them is beyond the scope of this paper. In this paper we focus on BPMN,
a notation that has become one of the most widely used to model business pro-
cesses. However, the techniques presented can be adapted to other notations like
EPCs, Petri Nets, YAWL, among others.

BPMN models are composed by three types of nodes: events, activities and
gateways. Events (represented as circles) denote something that happens (e.g.,
time, messages, . . . ), rather than Activities (rounded-corner rectangles) which
are something that is done. Finally, gateways (diamond shapes) are used to
describe the control flow. These elements can be partitioned into pools or lanes,
to group activities performed by the same actor (person, department, institution,
etc). An example of BPMN is shown in Figure 1.

4.2 Natural Language Processing

Natural Language Processing (NLP) is a wide research area inside Artificial
Intelligence that includes any kind of technique or application related to the
automatic processing of human language. NLP goals range from simple basic
processing such as determining in which language a text is written, to high-
level complex applications such as Machine Translation, Dialogue Systems, or
Intelligent Assistants.

However, linguistic analysis tools can be used as a means to structure infor-
mation contained in texts for its later processing in applications less related to
language itself. This is our case, where we use NLP analyzers to convert a textual
description of a BPM into a structured representation that can be compared,
mapped, or analyzed using more conventional tools.

The NLP processing software used in this work is FreeLing1 [5], an open–
source library of language analyzers providing a variety of analysis modules for
a wide range of languages. More specifically, the natural language processing
layers used in this work are:

Tokenization & sentence splitting: Given a text, split the basic lexical terms
(word, punctuation signs, numbers, ZIP codes, URLs, e-mail, etc.), and
group these tokens into sentences.

Morphological analysis: For each word in the text, find out its possible parts-
of-speech (PoS).

PoS-Tagging: Determine which is the right PoS for each word in a sentence.
(e.g. the word dance is a verb in I dance all Saturdays but it is a noun in I
enjoyed our dance together.)

Named Entity Recognition: Detect named entities in the text, which may
be formed by one or more tokens, and classify them as person, location,
organization, time-expression, numeric-expression, currency-expression, etc.

1 http://nlp.cs.upc.edu/freeling



Word sense disambiguation: Determine the sense of each word in a text (e.g.
the word crane may refer to an animal or to a weight-lifting machine). We use
WordNet [18] as the sense catalogue and synset codes as concept identifiers.

Constituency/dependency parsing: Given a sentence, get its syntatic struc-
ture as a constituency/dependency parse tree.

Semantic role labeling: Given a sentence identify its predicates and the main
actors in each of them, regardless of the surface structure of the sentence
(active/passive, main/subordinate, etc.)

Coreference resolution: Given a document, group mentions referring to the
same entity (e.g. a person can be mentioned in the text as Mr. Peterson, the
director, or he.)

Semantic graph generation: All the information extracted by the previous
analyzers can be organized in a graph depicting events (mainly coming from
predicates in the text), entities (coming from detected coreference groups),
and relations between them (i.e. which entities participate in which events
and with which role). This graph can be converted to triples and stored in
an RDF database if needed.

5 Aligning Model and Text with ILP

5.1 Overview

A general description of the approach is shown in Figure 2. The overall process
can be separated into three categories. The modules handling the text in natural
language (white), the ones treating the process model (light gray) and finally,
those working on feature vectors (dark gray).

As a first stage, the model task labels and the textual process description
are analyzed using FreeLing to obtain a structured representation of the text.
After that, a phase of feature extraction follows where the model tasks and the
text sentences are both converted into a canonical feature vector representation.
These vectors can then be compared by means of standard distance metrics.

Parallel to that, a chronological partial order of both the sentences in the text
and the tasks in the model is computed. To find an optimal alignment between
model and text, these ingredients are encoded as an ILP model, whose solution
denotes an optimal alignment between tasks and sentences. That assignment
is used afterwards to both present the results to the end user and compute a
numerical similarity score.

5.2 Linguistic Analysis of Text and Model

We perform a full NLP analysis on the text body corresponding to the input
text, as listed in Section 4.2. This is a distinctive aspect of our approach with
respect to [8, 9], since we gather the linguistic information from the semantic
graph, which contains a structured semantic representation of the text.





contains action(a) This is extracted from a target text where the action a (typ-
ically a verb) is found.

agent contains(l, v) This feature encodes who is performing the text or task ac-
tion. It is extracted for text sentences whenever l is found as the agent of verb
v, or for model tasks containing verb v and belonging to a swimlane/pool
containing l.

contains synset(s) This feature is extracted whenever the WordNet synset s
appears in the target text.

contains hypernym(s) This feature is extracted from a target text containing a
word for which s is an hypernym3 at distance HL or less. HL is a parameter
of the algorithm.

object contains(l, v) This feature is extracted when l is found as the direct ob-
ject of verb v in the target text.

follows conditional containing(l) This feature is extracted when l is found in
a clause after a conditional statement (i.e. then, or else) in the text sentence,
or when l is found in a task following an exclusive gateway with a question.

Table 2 shows some of the features extracted for sentence 3 in the example
from Section 2, “If he wants an individual membership, he must prepare his per-
sonal information”. Note that the features include information such as lemma
customer being mentioned, when it does not appear in the sentence. This is
because the coreference resolution module detected that pronoun he in this sen-
tence is referring to the actor customer mentioned somewhere else in the text.
Also, output of the Semantic Role Labeler is also encoded in features stating
that customer is the agent of action want and prepare, and that information is
the object of prepare.

contains lemma(customer, noun) contains lemma(want, verb)
contains lemma(individual, adj.) contains action(want)
contains action(prepare) contains synset(09984659-n::client)
contains hypernym(10741590-n::user) agent contains(customer, wants)
agent contains(customer, prepare) object contains(prepare, information)

Table 2. Set of features (some omitted for brevity) for example sentence 3.

Clearly, because the features are instantiated by words, this generates an open
space of potentially infinite dimensions. For instance, the feature contains action
is instantiated twice for the sentence The crane catched a fish and flew away :
contains action(catch) and contains action(fly). In practice, this is handled by
using a sparse representation of vectors.

The set of features proposed encodes high-level semantic information such as:
who is the agent of the action, what is the action, or under what conditions is
the task executed. That context is sometimes crucial in detecting whether a task

3 A word w1 is a hypernym of w2 iff w1 describes a superclass of w2 (e.g. mammal is
a hypernym of cat, and document is a hypernym of letter). Hypernymy is obtained
from WordNet.



is describing an action, referring to it or just using similar terms. The model and
the text should generate similar feature vectors whenever the similarity between
a sentence and a task is high, and vice-versa. This means the chosen features
must represent properties that can be found both in the BPMN model and the
textual description.

5.4 Similarity Metrics

After the feature vector transformation defined in 5.3 it suffices to compare
similarities between feature vectors in order to compute the similarity between a
task and a sentence. In order to adjust the relevance of a feature f , we associate
a scalar weight wf to it as the product of two values: a constant value wc

f that is
particular for each feature class (e.g: contains lemma), and a variable value wv

f

whose magnitude depends on certain conditions. The set of constant weights of
each feature class is a parameter of the algorithm. As an example, the particular
weight of a feature such as contains lemma(customer, noun) can be defined as
the product of a constant factor for all instances of contains lemma and the
tf-idf 4 score of this lemma in the sentence.

Three similarity metrics are available as parameters: The Cosine similarity
and the weighted versions of the Jaccard index and the Overlapping index. We
have evaluated all three metrics and have chosen the last one as the default
for our tool, since it gives more intuitive numerical values and the performance
between all three does not differ significantly:

Weighted overlapping index This metric expands the Overlapping index by
considering weighted elements in the set, such as in our case:

WeightedOverlapping(A,B) =

∑
f∈A∩B wf∑

g∈smallest(A,B) wg

This metric returns a bounded value between 0 and 1.

5.5 Text and Model Ordering

When only considering the similarity metrics defined in the previous section,
a task and a sentence might be very similar but may appear at very different
parts of the corresponding representations [8]. For example, the action described
by the sentence might occur in the last part of the text, while the task could
be amongst the first tasks to execute in the process model. This means the
chronological order of the events must be taken into account when trying to
determine whether a task and a sentence refer to the same action.

Consequently, we seek to find the partial order relation � between the ele-
ments of both representations, text and model, such that e � e′ means: “Element

4 The tf-idf of a token t is the product of tf := (Number of appearances of t in its
sentence / Number of tokens in that sentence) and idf := loge(Total number of
sentences / Sentences containing t)



e happens before, or at the same time as e′”. This allows us to define the strict
order relation  as

e e′ ⇐⇒ e � e′ ∧ e′ � e

In the process model, the computation of the strict ordering relation goes
beyond the mere structure of the model, and instead should be computed from
the underlying behavior. Fortunately, there are efficient techniques to determine
the strict order relation [19, 20] of a process model. In this paper, the relation
 corresponds to that same relation in the behavioral profile of the model as
explained in [19].

Using the example in Section 2, a full behavioral profile would be extracted
containing relations such as G I (happens before), B+C (exclusive) or H||L
(parallel).

For the case of the text, it has been shown that the ambiguities present in
textual descriptions make it impossible to determine the order of the tasks in
them with total certainty [21]. This makes it hard to precisely extract the order
unless techniques for extracting temporal relations are applied [22, 23]. In our
case, we have chosen to simplify the problem assuming a sequential order of the
events depicted in the text. This assumption fails whenever the text deliberately
reports events in reverse order such as in: “Task A is performed. But before A,
Task B must have been executed.”. In practice we hardly found such reverse
ordering constructions in the texts describing process models.

5.6 Optimal Alignment Computation

This final step aims to find the optimal alignment between sentences in the
textual description and tasks in the model. That information is then used in
order to compute the global similarity between the model and the text as a
numeric score. The information found in the optimal alignment can also aid in
finding the actual inconsistencies between both representations as seen in [8]:
i) Tasks describing actions not appearing in the text, ii) Sentences describing
actions which are not in the model, and iii) Different orderings of tasks.

For a formal definition of the problem, let the task set be T , the sentence
set be S and sim(s, t) be the computed similarity between s ∈ S and t ∈ T 5

(cf Section 5.4). We assume for all pairs of elements both in S and T the order
relation  has been computed.

We define an alignment as a partial function fA : T 7→ S of tasks to sentences
such that fA(t) = s, meaning that task t is describing the same actions as
sentence s. In a fashion similar to that of [8], we define the optimal alignment
f∗
A to be the alignment fulfilling the following properties:

Partial assignment The domain of f∗
A, denoted by Dom(f∗

A) is a subset of the
whole set of tasks, i.e. all t ∈ T ′, for T ′ ⊆ T .

5 In this case, sim(s, t) corresponds to WeightedOverlapping(vs, vt) where vs and vt
are the feature vectors of s and t respectively.



Order consistency Let s = f∗
A(t) and s′ = f∗

A(t
′) for some pair of different

tasks (t, t′). Then, the following restriction must hold: t t′ =⇒ s � s′

Optimality The value of
∑

t∈Dom(f∗
A) sim(t, f∗

A(t)) is the maximum value such

that the two other properties hold.

In order to obtain a solution, the aforementioned properties can be encoded
in the following ILP:

maximize:
∑

s∈S

∑

t∈T

at,s · sim(t, s)

subject to:

∀t ∈ T :
∑

s∈S

at,s = 1

∀(s, s′) ∈ S × S, (t, t′) ∈ T × T, t t′ ∧ s′  s : at,s + at′,s′ ≤ 1

variables:

∀s ∈ S, t ∈ T : at,s ∈ {0, 1}

The variables at,s can be interpreted as: “Task t is assigned to sentence s”, i.e:
as,t ⇐⇒ s = f∗

A(t). The first family of constraints limits the number of sen-
tences per task to exactly one6; this contradicts the requirement for function f∗

A

to be partial, since a solution to the ILP model will has domain T . In practice,
however, a threshold is used on the value sim(t, s), and hence, assignments be-
tween tasks and sentences below this threshold are discarded. Finally, the second
family of constraints encodes the Order consistency property by discarding the
cases in which the order restriction would be violated.

Theorem 1. The ILP model for aligning textual descriptions and process mod-
els is feasible and computes an optimal alignment f∗

A for a similarity metric
sim.

6 Experiments and Tool Support

The techniques of this paper have been implemented and are available as a
web application7. The tool uses FreeLing for linguistic analysis, and Gurobi [24]
as ILP solver. As similarity metric, we used the weighted overlapping index.
Below we provide the two main experiments performed, devoted to analyze the
positioning of the tool with respect to the state-of-the-art tool for the same
task, (Section 6.1) and to test the tool capabilities in handling large instances
(Section 6.2). The experiments for both tools have been performed on the same
machine.
6 Note that these equations can also be encoded using the Special Ordered Sets (SOS)
constraint ∀t : at,1, · · · , at,|S| , which denotes exactly the same constraint, and yields
better performance in the ILP solvers that implement it.

7 The web application is available at: http://xorrai.cs.upc.edu:8080/bpmninterface/.
The tool we present in this paper corresponds to the BPMN vs Text tab.



6.1 Comparison with the Technique from [9]

[9] approach Our proposal
Model |T | |S| Acc. ms/task Acc. ms/task

Model1-2 8 6 100.0% 98 100.0% 29
Model1-4 7 11 100.0% 256 100.0% 45
Model10-1 4 3 75.0% 94 75.0% 27
Model10-10 10 8 70.0% 92 80.0% 26
Model10-11 9 7 77.8% 53 66.7% 23
Model10-12 5 4 80.0% 14 80.0% 23
Model10-13 4 3 100.0% 15 100.0% 25
Model10-14 10 5 50.0% 595 60.0% 29
Model10-3 12 11 91.7% 807 75.0% 28
Model10-4 11 9 90.9% 1,221 90.9% 28
Model10-5 4 4 100.0% 338 100.0% 24
Model10-6 4 3 75.0% 89 75.0% 20
Model10-7 8 7 100.0% 555 100.0% 19
Model10-8 5 7 80.0% 374 60.0% 27
Model10-9 8 5 100.0% 388 75.0% 23
Model2-1 26 38 76.9% 7,532 76.9% 134
Model2-2 19 30 63.2% 7,706 73.7% 84
Model3-1 6 7 100.0% 97 83.3% 28
Model3-2 6 4 100.0% 72 100.0% 20
Model3-3 4 5 100.0% 228 100.0% 29
Model3-4 2 4 50.0% 153 50.0% 56
Model3-5 11 9 81.8% 214 72.7% 31
Model3-6 6 8 83.3% 515 83.3% 28
Model4-1 18 40 33.3% 30,757 55.6% 173
Model5-1 2 6 0.0% 341 0.0% 73
Model5-2 5 5 60.0% 572 80.0% 30
Model5-3 9 10 55.6% 1,015 55.6% 34
Model6-2 4 5 75.0% 255 75.0% 33
Model6-3 5 9 80.0% 985 80.0% 1,880
Model6-4 9 14 66.7% 1,204 44.4% 47
Model7-1 4 7 100.0% 442 100.0% 30
Model8-1 5 3 100.0% 167 80.0% 18
Model8-2 5 6 40.0% 461 60.0% 26
Model8-3 5 5 100.0% 445 80.0% 26
Model9-1 7 8 71.4% 151 85.7% 33
Model9-3 6 4 100.0% 83 66.7% 25
Model9-4 7 5 28.6% 89 71.4% 26
Model9-5 8 7 62.5% 579 62.5% 24
Model9-6 8 13 37.5% 1,275 25.0% 45
BicycleManuf. 9 12 100.0% 772 66.7% 41
ClaimsCreation 6 5 83.3% 467 100.0% 30
HotelService 12 11 91.7% 196 83.3% 33
Dispatch-of-g. 7 7 71.4% 709 100.0% 35
Hospital 14 14 28.6% 25,109 71.4% 35
Hotel 12 11 83.3% 198 83.3% 30
Self-service 18 13 83.3% 1,002 88.9% 38
Underwriter 7 11 85.7% 274 100.0% 43
Zoo 15 12 46.7% 214 73.3% 31

Micro average 73.7% 3,517 76.3% 76
Macro average 75.6% 1,860 76.4% 79

Median 80.0% 357.5 80.0% 29.5

Table 3. Accuracy and solving time of our pro-
posal and the one in [9].

To validate the quality of the
results provided by our tool,
we compare them with the
ones generated by the approach
in [9], on a gold standard
from [13] that was later ex-
tended by the authors of [9].
We also expanded the gold stan-
dard with the last group of mod-
els, taken from [13]. The models
in this benchmark were manu-
ally analyzed in [13, 9] to obtain
the correct assignment between
tasks and sentences, so that the
quality of a tool can be assessed.

Table 3 reports the results.
For each model, we provide the
number of tasks and sentences.
Moreover, for each approach we
report the accuracy (ratio of
tasks correctly assigned to its
matching sentence) and the ex-
ecution time (average time per
task) for each tool. To obtain a
global perspective of the results,
we provide a micro-average (to-
tal computation time over total
number of tasks in all models), a
macro-average (total computa-
tion time over number of mod-
els) and a median. The hughe
differences between both meth-
ods are caused by a small sub-
set of models that are more dif-
ficult to solve than the rest.
Although our approach pro-
duces slightly better accuracies
than [9], the difference is not
significant. However, our ap-
proach can obtain the same accuracy in the alignment with a remarkable re-
duction of computation time.



6.2 Experiments on Large Instances

In the previous experiment validated the quality of the results provided by our
technique. In this second experiment we focus on the time performance, using
models of increasing size. This will allow to extrapolate the capabilities of our
approach for larger instances. For the sake of comparison, we also include the
execution times for the current implementation of the tool described in [9].

Due to the small number of available model–text pairs, and to reduced range
of model sizes in existing data, we opted for generating a synthetic dataset
of model-text pairs. The model generation consists of two steps: first we use
the PGL2 tool [25] to generate the structure of a BPMN model. The second
step consists of enriching the generated model by replacing model labels with
randomly generated task descriptions. Once a process model is generated, a text
is also generated with a random number of sentences |S| = |T | ± k, where |T |
is the number of tasks in the model, and k was set to three in the experiments.
Both the text sentences and the task descriptions in the model are generated
with a simple word–bigram Markov model built using [26], trained with all the
textual descriptions from the benchmark in Section 6.1. The generated synthetic
benchmark has 400 model–text pairs ranging from 1 to 115 tasks.

Figure 3 shows the execution time of both tools for all model sizes8. The
plots show that our approach has an asymptotic behavior with a complexity
much lower than the methods in [9]. Remarkably, there is a correlation between
the variance in the execution time and the input size: from size 50 upwards in
the plot of the right of Figure 3, one can see that the execution time for models
of similar size varies significantly. This suggests that other factors, apart from
the model size, influence the execution time.

Fig. 3. Left: Execution times (in seconds) for [9] and our approach. Right: Zoom-in for
the execution times of our approach.

8 We could not include all the executions for the approach from [9] since instances
bigger than 46 tasks hit the imposed 4 hours time limit.



7 Conclusions and Future Work

In this paper we have proposed a novel approach for aligning textual descriptions
and graphical models of processes. By applying a full linguistic analysis that
results in an extensive set of features, and casting the problem as a mathematical
optimization, we were able to align instances of unprecedented size. Moreover, in
terms of quality the technique performs similar to the state of the art approach.

As a future work, we plan to expand the capabilities of the tool in different
dimensions. First, we plan to incorporate the analysis of temporal relations in
the text so that the control flow is better described. Second, a full exploration
of the parameters of the technique (e.g., the weights for the similarity metric)
will be done to boost the quality of the results. Finally, we plan to evaluate the
tool in more realistic scenarios.
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Abstract. The existence of unstructured information that describes
processes represents a challenge in organizations, mainly because this
data cannot be directly referred into process-aware ecosystems due to
ambiguities. Still, this information is important, since it encompasses
aspects of a process that are left out when formalizing it on a particu-
lar modelling notation. This paper picks up this challenge and faces the
problem of ambiguities by acknowledging its existence and mitigating it.
Specifically, we propose a framework to partially automate the elicita-
tion of a formal representation of a textual process description, via text
annotation techniques on top of natural language processing. The result
is the ATDP language, whose syntax and semantics are described in this
paper. ATDP allows to explicitly cope with several interpretations of the
same textual description of a process model. Moreover, we link the ATDP

language to a formal reasoning engine and show several use cases. A pro-
totype tool enabling the complete methodology has been implemented,
and several examples using the tool are provided.

1 Introduction

Organizing business processes in an efficient and effective manner is the overar-
ching objective of Business Process Management (BPM). Classically, BPM has
been mainly concerned with the quantitative analysis of key performance dimen-
sions such as time, cost, quality, and flexibility [10] without considering in depth
the analysis of textual data that talks about processes.

Hence, textual descriptions of processes in organizations are a vast and rather
unexploited resource. Not neglecting the information that is present in natural
language texts in a organization brings opportunities to complement or correct
process information in conceptual models. In spite of this, only very recently
Natural Language Processing (NLP)-based analysis has been proposed in the
BPM context, as reported in [12, 15, 14, 22].

This paper is a first step towards the challenge of unleashing formal reasoning
on top of textual descriptions of processes. By relying on textual annotations, we



propose ATDP, a multi-perspective language that can be connected to a reasoner
so that a formal analysis is possible. From a raw textual description, annota-
tions can be introduced manually, or selected from those inferred by NLP anal-
ysis (e.g., from libraries like [16]), thus alleviating considerably the annotation
effort. Remarkably, our perspective differs from the usual trend in conceptual
modelling, i.e., ATDP specifications can contain several interpretations, so am-
biguity is not forced to be ruled out when modelling, for those cases when the
process is under-specified, or when several interpretations are equally valid.

We formalize ATDP, and describe its semantics using linear temporal logic
(LTL), with relations defined at two different levels, thanks to the notion of
scopes. Then we show how to cast reasoning on such a specification as a model
checking instance, and provide use cases for BPM, such as model consistency,
compliance checking and conformance checking. Notably, such reasoning tasks
can be carried out by adopting the standard infinite-trace semantics of LTL,
or by considering instead finite traces only, in line with the semantics adopted
in declarative process modeling notations like Declare [17]. Finally, a tool to
convert ATDP specifications into a model checking instance is reported.

The paper is organized as follows: in the next section we provide the work
related to the contributions of this paper. Then Section 3 contains the prelim-
inaries needed for the understanding of the paper content. Section 4 describes
a methodology to use ATDP in organizations. In Section 5 we provide intuition,
syntax and semantics behind the ATDP language. Then in Section 6 it is shown
how reasoning on ATDP specification can be done through model checking and
finally Section 7 concludes the paper.

2 Related Work

In order to automatically reason over a natural language process description,
it is necessary to construct a formal representation of the actual process. Such
generation of a formal process model starting from a natural language description
of a process has been investigated from several angles in the literature. We can
project these techniques into a spectrum of support possibilities to automation:
from fully manual to automatic.

The first available option consists in converting a textual description into
a process model by manually modeling the process. This approach, widely dis-
cussed (e.g., [10, 9]), has been thoroughly studied also from a psychological
point of view, in order to understand which are the challenges involved in such
process of process modeling [18, 4]. These techniques, however, do not provide
any automatic support and the possibility for automatic reasoning is completely
depending on the result of the manual modeling. Therefore, ambiguities in the
textual description are subjectively resolved.

On the opposite side of the spectrum, there are approaches that au-
tonomously convert a textual description of a process model into a formal
representation [13]. Such representation can be a final process model (e.g., as
BPMN) [7] and, in this case, it might be possible to automatically extract in-
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formation. The limit of these techniques, however, is that they need to resolve
ambiguities in the textual description, resulting in “hard-coded” interpretations.

In the middle of the spectrum, we have approaches that automatically process
the natural language text but they generate an intermediate artifact, useful to
support the manual modeling by providing intermediate diagnostics [8, 20]. The
problem of having a single interpretation for ambiguities is a bit mitigated in this
case since a human modeler is still in charge of the actual modeling. However,
it is important to note that the system is biasing the modeler towards a single
interpretation.

The approach presented in this paper drops the assumption of resolving all
ambiguities in natural language texts. Therefore, if the text is clear and no
ambiguities are manifested, then the precise process can be modeled. However,
if this is not the case, instead of selecting one possible ambiguity resolution, our
solution copes with the presence of several interpretations for the same textual
description.

3 A Recap on Linear Temporal Logics

In this paper, we use Linear Temporal Logic (LTL) [19] to define the semantics of
the ATDP language. In particular, we use the standard interpretation of temporal
logic formulae over infinite traces.

LTL formulae are built from a set P of propositional symbols and are closed
under the boolean connectives, the unary temporal operator ◦ (next-time) and
the binary temporal operator U (until):

ϕ ::= a | ¬ϕ | ϕ1 ∧ ϕ2 | ◦ϕ | ϕ1 U ϕ2 with a ∈ P
Intuitively, ◦ϕ says that ϕ holds at the next instant, ϕ1 U ϕ2 says that at

some future instant ϕ2 will hold and until that point ϕ1 always holds. Common
abbreviations used in LTL include the ones listed below:
– Standard boolean abbreviations, such as >, ⊥, ∨, →.
– ♦ϕ = >U ϕ says that ϕ will eventually hold at some future instant.
– �ϕ = ¬♦¬ϕ says that from the current instant ϕ will always hold.
– ϕ1 W ϕ2 = (ϕ1 U ϕ2 ∨ �ϕ1) is interpreted as a weak until, and means that

either ϕ1 holds until ϕ2 or forever.
Recall that the same syntax can also be used to construct formulae of LTL

interpreted over finite traces [6]. Later on in the paper we show how our approach
can also accommodate this interpretation. Recall however that the intended
meaning of an LTL formula may radically change when moving from infinite to
finite traces [5].

4 A Framework for Semantic Reasoning of Natural
Language Descriptions of Processes

We briefly describe our envisioned framework for process modelling and man-
agement based on natural language. Figure 1 overviews the framework. Given a
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Fig. 1. Annotation framework overview

textual description of a process, automatic or manual annotation (or a combi-
nation of both) is used to obtain an Annotated Textual Description of a Process
(ATDP), which contains all the interpretations of the original text. This specifica-
tion can then be automatically transformed into temporal formula that encom-
passes the semantics of the process. The temporal formula can then be queried
with the help of a reasoner (e.g., a model checker). Typical use cases may require
the encoding of additional inputs, e.g., traces of an event log, compliance rules,
among others. The result of the reasoner is the satisfaction or rebuttal (with the
corresponding counterexample) of the query. Notice that query results may not
hold in all possible interpretations of the text.

5 Processes as Annotated Textual Descriptions

We now propose ATDP, a language for annotated textual descriptions of processes
starting with a gentle introduction relying on a real-world example. Specifically,
we use the textual description of the examination process of a Hospital extracted
from [21]. Figure 2 shows the full text, while Figure 3 contains a a fragment of
the visualization for an ATDP specification of the description.

One of the key features of the ATDP approach is the ability to capture am-
biguity. In our example, we can see this at the topmost level: the text is asso-
ciated to three different interpretations I1, I2 and I3, providing three different
process-oriented semantic views on the text. Each interpretation is a completely
unambiguous specification of the process, which fixes a specific way for under-
standing ambiguous/unclear parts. Such parts could be understood differently
in another interpretation. A specification in ATDP then consists of the union of
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all the valid interpretations of the process, which may partially overlap but also
contradict each other.

Each interpretation consists of a hierarchy of scopes, providing a recursive
mechanism to isolate parts of text that correspond to “phases” in the process.
Each scope is thus a conceptual block inside the process, which is in turn decom-
posed as a set of lower-level scopes. Each scope dictates how its inner scopes are
linked via control-flow relations expressing the allowed orderings of execution of
such inner scopes. In our example, I1 contains two scopes. A sequential relation
indicates that the second scope is always executed when the first is completed,
thus reconstructing the classical flow relation of conventional process modeling
notation. All in all, the scope hierarchy resembles that of a process tree, following
the variant used in [1].

Inside leaf scopes, text fragments are highlighted. There are different types
of fragments, distinguished by color in our visual front-end. Some fragments
(shown in red) describe the atomic units of behavior in the text, that is, activities
and events, while others (shown in blue) provide additional perspectives beyond
control flow. For example, outpatient physician is labelled as a role at the
beginning of the text, while informs is labelled as an activity. Depending on
their types, fragments can be linked by means of fragment relations. Among
such relations, we find:
• Fragment relations that capture background knowledge induced from the text,

such as for example the fact that the outpatient physician is the role re-
sponsible for performing (i.e., is the Agent of) the informs activity.
• Temporal constraints linking activities so as to declaratively capture the ac-

ceptable courses of execution in the resulting process, such as for example the
fact that informs and signs an informed consent are in succession (i.e.,
informs is executed if and only if signs an informed consent is executed
afterwards).

As for temporal relations, we consider a relevant subset of the well-known pat-
terns supported by the Declare declarative process modeling language [17]. In
this light, ATDP can be seen as a multi-perspective variant of a process tree where
the control-flow of leaf scopes is specified using declarative constraints over the
activities and events contained therein. Depending on the adopted constraints,
this allows the modeler to cope with a variety of texts, ranging from loosely
specified to more procedural ones. At one extreme, the modeler can choose to
nest scopes in a fine-grained way, so that each leaf scope just contains a single
activity fragment; with this approach, a pure process tree is obtained. At the
other extreme, the modeler can choose to introduce a single scope containing all
activity fragments of the text, and then add temporal constraints relating arbi-
trary activity fragments from all the text; with this approach, a pure declarative
process model is obtained.

5.1 ATDP Models

ATDP models are defined starting from an input text, which is separated into
typed text fragments. We now go step by step through the different components
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The process starts when the female patient is examined by an outpatient physician, who

decides whether she is healthy or needs to undertake an additional examination. In the

former case, the physician fills out the examination form and the patient can leave. In

the latter case, an examination and follow-up treatment order is placed by the physician,

who additionally fills out a request form. Furthermore, the outpatient physician informs

the patient about potential risks. If the patient signs an informed consent and agrees to

continue with the procedure, a delegate of the physician arranges an appointment of the

patient with one of the wards. Before the appointment, the required examination and

sampling is prepared by a nurse of the ward based on the information provided by the

outpatient section. Then, a ward physician takes the sample requested. He further sends

it to the lab indicated in the request form and conducts the follow-up treatment of the

patient. After receiving the sample, a physician of the lab validates its state and decides

whether the sample can be used for analysis or whether it is contaminated and a new

sample is required. After the analysis is performed by a medical technical assistant of

the lab, a lab physician validates the results. Finally, a physician from the outpatient

department makes the diagnosis and prescribes the therapy for the patient.

Fig. 2. Textual description of a patient examination process.

of our approach, finally combining them into a coherent model. We then move
into the semantics of the model, focusing on its temporal/dynamic parts and
formalizing them using LTL.

Fragment types. Fragments have no formal semantics associated by them-
selves. They are used as basic building blocks for defining ATDP models. We
distinguish fragments through the following types.

Activity. This fragment type is used to represent the atomic units of work
within the business process described by the text. Usually, these fragments
are associated with verbs. An example activity fragment would be validates
(from validates the sample state). Activity fragments may also be used
to annotate other occurrences in the process that are relevant from the
point of view of the control flow, but are exogenous to the organization
responsible for the execution of the process. For instance, (the sample) is

contaminated is also an activity fragment in our running example.
Role. The role fragment type is used to represent types of autonomous actors

involved in the process, and consequently responsible for the execution of
activities contained therein. An example is outpatient physician.

Business Object. This type is used to mark all the relevant elements of the
process that do not take an active part in it, but that are used/manipulated
by activities contained in the process. An example is the (medical) sample

obtained and analyzed by physicians within the patient examination process.

When the distinction is not relevant, we may refer to fragments as the entities
they represent (e.g. activity instead of activity fragment).

Given a set F of text fragments, we assume that the set is partitioned into
three subsets that reflect the types defined above. We also use the following dot
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notation to refer to such subsets: (i) F.activities for activities; (ii) F.roles for
roles; (iii) F.objects for business objects.

Fragment relations. Text fragments can be related to each other by means of
different non-temporal relations, used to express multi-perspective properties of
the process emerging from the text. We consider the following relations over a
set F of fragments.
Agent. An agent relation over F is a partial function

agentF : F.activities→ F.roles

indicating the role responsible for the execution of an activity. For instance,
in our running example we have agent(informs) = physician, witnessing
that informing someone is under the responsibility of a physician.

Patient. A patient relation over F is a partial function

patientF : F.activities→ F.roles ∪ F.objects

indicating the role or business object constituting the main recipient of an
activity. For instance, in our running example we have patient(prepare) =
sample, witnessing that the prepare activity operates over a sample.

Furthermore, the outpatient physician informs the patient 
about potential risks. If the patient signs an informed consent 
and agrees to continue with the procedure, a delegate of the 
physician arranges an appointment of the patient with one of 
the wards. 

Before the appointment, the required examination and 
sampling is prepared by a nurse of the ward based on the 
information provided by the outpatient section. Then, a ward 
physician takes the sample requested. He further sends it to 
the lab indicated in the request form and conducts the follow-
up treatment of the patient.

After receiving the sample, a physician of the lab validates its 
state and decides whether the sample can be used for 
analysis or whether it is contaminated and a new sample is 
required. 

After the analysis is performed by a medical technical 
assistant of the lab, a lab physician validates the results. 
Finally, a physician from the outpatient department makes the 
diagnosis and prescribes the therapy for the patient. 
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Furthermore, the outpatient physician informs the patient 
about potential risks. If the patient signs an informed consent 
and agrees to continue with the procedure, a delegate of the 
physician arranges an appointment of the patient with one of 
the wards.

Before the appointment, the required examination and 
sampling is prepared by a nurse of the ward based on the 
information provided by the outpatient section. Then, a ward 
physician takes the sample requested. He further sends it to 
the lab indicated in the request form and conducts the follow-
up treatment of the patient.

After receiving the sample, a physician of the lab validates its 
state and decides whether the sample can be used for 
analysis or whether it is contaminated and a new sample is 
required. 

After the analysis is performed by a medical technical 
assistant of the lab, a lab physician validates the results. 
Finally, a physician from the outpatient department makes the 
diagnosis and prescribes the therapy for the patient. 
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Furthermore, the outpatient physician informs the patient 
about potential risks. If the patient signs an informed consent 
and agrees to continue with the procedure, a delegate of the 
physician arranges an appointment of the patient with one of 
the wards.

 

Before the appointment, the required examination and 
sampling is prepared by a nurse of the ward based on the 
information provided by the outpatient section. Then, a ward 
physician takes the sample requested. He further sends it to 
the lab indicated in the request form and conducts the follow-
up treatment of the patient.

After receiving the sample, a physician of the lab validates its 
state and decides whether the sample can be used for 
analysis or whether it is contaminated and a new sample is 
required. 

After the analysis is performed by a medical technical 
assistant of the lab, a lab physician validates the results. 
Finally, a physician from the outpatient department makes the 
diagnosis and prescribes the therapy for the patient. 
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SEQUENTIAL

ITERATING
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...
Fig. 3. Example annotation of a textual process description with multiple ambiguous
interpretations. Some relations are omitted for brevity.
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Coreference. A coreference relation over F is a (symmetric) relation

coref F ⊆ F.roles× F.roles ∪ F.objects× F.objects

that connects pairs of roles and pairs of business objects when they represent
different ways to refer to the same entity. It consequently induces a coref-
erence graph where each connected component denotes a distinct process
entity. In our running example, all text fragments pointing to the patient

role corefer to the same entity, whereas there are three different physicians in-
volved in the text: the outpatient physician, the ward physician and the
physician of the lab. These form disconnected coreference subgraphs.

Text scopes. To map the text into a process structure, we suitably adjust the
notion of process tree used in [1]. In our approach, the blocks of the process tree
are actually text scopes, where each scope is either a leaf scope, or a branching
scope containing a one or an ordered pair4 of (leaf or branching) sub-scopes.

Each activity is associated to one and only one leaf scope, whereas each leaf
scope contains one or more activities, so as to non-ambiguously link activities
to their corresponding process phases.

Branching scopes, instead, are associated to a corresponding control-flow
operator, which dictates how the sub-scopes are composed when executing the
process. At execution time, each scope is enacted possibly multiple times, each
time taking a certain amount of time (marked by a punctual scope start, and a
later completion). We consider in particular the following scope relation types:
Sequential (→) A sequential branching scope s with children 〈s1, s2〉 indicates

that each execution of s amounts to the sequential execution of its sub-
scopes, in the order they appear in the tuple. Specifically: (i) when s is
started then s1 starts; (ii) whenever s1 completes, s2 starts; (iii) the com-
pletion of s2 induces the completion of s.

Conflicting (×) A conflicting branching scope s with children 〈s1, s2〉 indi-
cates that each execution of s amounts to the execution of one and only one
of its children, thus capturing a choice. Specifically: (i) when s is started,
then one among s1 and s2 starts; (ii) the completion of the selected sub-scope
induces the completion of s.

Inclusive (∨) An inclusive branching scope s with children 〈s1, s2〉 indicates
that each execution of s amounts to the execution of at least one of s1 and
s2, but possibly both.

Interleaving (∧) An interleaving branching scope s with children 〈s1, s2〉 indi-
cates that each execution of s amounts to the interleaved, parallel execution
of its sub-scopes, without ordering constraints among them. Specifically:
(i) when s is started, then s1 and s2 start; (ii) the latest, consequent com-
pletion of s1 and s2 induces the completion of s.

Iterating (�) An iterating branching scope s with child s1 indicates that each
execution of s amounts to the iterative execution of s1, with one or more

4 We keep a pair for simplicity of presentation, but all definitions carry over to n-ary
tuples of sub-blocks.
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iterations. Specifically: (i) when s is started, then s1 starts; (ii) upon the
consequent completion of s1, then there is a non-deterministic choice on
whether s completes, or s1 is started again.

All in all, a scope tree TF over the set F of fragments is a binary tree whose
leaf nodes Sl are called leaf scopes and whose intermediate/root nodes Sb are
called branch nodes, and which comes with two functions:

– a total scope assignment function parent : F.activities → Sl mapping each
activity in F to a corresponding leaf scope, such that each leaf scope in Sl

has at least one activity associated to it;
– a total branching type function btype : Sb → {→,×,∨,∧,�} mapping each

branching scope in Sb to its control-flow operator.

Temporal constraints among activities. Activities belonging to the same
leaf scope can be linked to each other by means of temporal relations, inspired by
the Declare notation [17]. These can be used to declaratively specify constraints
on the execution of different activities within the same leaf scope. Due to the
interaction between scopes and such constraints, we follow here the approach in
[11], where, differently from [17], constraints are in fact scoped.5

We consider in particular the following constraints:

Scoped Precedence Given activities a1, . . . , an, b, Precedence({a1, . . . , an}, b)
indicates that b can be executed only if, within the same instance of its
parent scope, at least one among a1, . . . , an have been executed before.

Scoped Response Given activities a, b1, . . . , bn, Response(a, {b1, . . . , bn}) indi-
cates that whenever a is executed within an instance of its parent scope,
then at least one among b1, . . . , bn has to be executed afterwards, within the
same scope instance.

Scoped Non-Co-Occurrence Given activities a, b, NonCoOccurrence(a, b) in-
dicates that whenever a is executed within an instance of its parent scope,
then b cannot be executed within the same scope instance (and vice-versa).

Scoped Alternate Response Given activities a, b1, . . . , bn,
AlternateResponse(a, {b1, . . . , bn}) indicates that whenever a is executed
within an instance of its parent scope, then a cannot be executed again until,
within the same scope, at least one among b1, . . . , bn is eventually executed.

Terminating Given activity a, Terminating(a) indicates that the execution of
a within an instance of its parent scope terminates that instance.

Mandatory Given activity a, Mandatory(a) indicates that the execution of a
must occur at least once for each execution of its scope.

Interpretations and models. We are now ready to combine the components
defined before into an integrated notion of text interpretation. An ATDP interpre-
tation IX over text X is a tuple 〈F, agentF , patientF , coref F , TF , CF , 〉, where:
(i) F is a set of text fragments over X; (ii) agentF is an agent function over F ;
(iii) patientF is a patient function over F ; (iv) coref F is a coreference relation
over F ; (v) TF is a scope tree over the activities in F ; (vi) CF is a set of temporal

5 It is interesting to notice that Declare itself was defined by relying on the patterns
originally introduced in [11].
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constraints over the activities in F , such that if two activities are related by a
constraint in, then they have to belong to the same leaf scope according to TF .

An ATDP model MX over text X is then simply a finite set of ATDP interpre-
tations over X.

5.2 ATDP Semantics

We now describe the execution semantics of ATDP interpretations, in particular
formalizing the three key notions of scopes, scope types (depending on their
corresponding control-flow operators), and temporal constraints over activities.
This is done by using LTL, consequently declaratively characterizing those exe-
cution traces that conform to what is prescribed by an ATDP interpretation. We
consider execution traces as finite sequences of atomic activity executions over
interleaving semantics.

Scope Semantics.

To define the notion of scope execution, for each scope s, we introduce a
pair of artificial activities sts and ens which do not belong to F.activities. The
execution of s starts with the execution of sts , and ends with the execution of
ens. The next three axioms define the semantics of scopes:

A1. An activity a inside a scope s can only be executed between sts and ens:

¬aW sts ∧�(ens → ¬aW sts)

A2. A scope s can only be started and ended inside of its parent s′:

¬(sts ∨ ens)W sts′ ∧�(ens′ → ¬(sts ∨ ens)W sts′)

A3. Executions of the same scope cannot overlap in time. That is, for each
execution of a scope s’s start there is a unique corresponding end:

♦ens → (¬ens U sts) ∧ �(sts → ♦ens) ∧
�(sts → ◦(♦sts → (¬sts U ens))) ∧
�(ens → ◦(♦ens → (¬ens U sts)))

Temporal Constraint Semantics. In this section, we define the semantics of
temporal constraints between activities. Note that, in all definitions we will use
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the subindex s to refer to the scope of the constraint.

Precedences({a1, .., aK}, b) :=
N∨

i=1

�(sts → (¬bU(ai ∨ ens)))

Responses(a, {b1, .., bN}) :=
N∨

i=1

�(sts → (a→ (¬ens U bi))U ens)

NonCoOccurrencep(a, b) := �(sts → (a→ (¬bU ens))U ens) ∧
�(sts → (b→ (¬aU ens))U ens)

AlternateResponsep(a, b) := Responsep(a, b) ∧
�(sts → (a→ ◦(¬aU(b ∨ ens)))U ens)

Terminatingp(a) := �(a→ ◦ens)

Mandatoryp(a) := �(sts → (¬ens U a))

Scope Relation Semantics. In all our definitions, let 〈s1, s2〉 denote the chil-
dren of a branching scope s, associated to the control-flow operator being de-
fined. Note that by Sequence(a, b) we refer to the formula Precedence({a}, b) ∧
Response(a, {b}).

Sequential (→) : Sequences(ens1 , sts2) ∧Mandatorys(sts1) ∧Mandatorys(sts2)

Conflicting (×) : Mandatorys(st s1)⊕Mandatorys(st s2)

Inclusive (∨) : Mandatorys(st s1) ∨Mandatorys(st s2)

Interleaving (∧) : Mandatorys(st s1) ∧Mandatorys(st s2)

Iterating (�) : This relation is defined by negation, with any non-iterating
scope s, child of s′, fulfilling the property:

(sts′ → (¬ens′ U sts ∧ (sts → ◦(¬sts U ens′))U ens′))

Additionally, iterating scopes may be affected by the presence of terminating
activities, as defined by the following property: A terminating activity at inside
an iterating scope s, child of s′, stops the iteration. That is, its execution cannot
be repeated anymore inside its parent:

A4. �(sts′ → ((at → (¬sts U ens′))U ens′))
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6 Reasoning on ATDP Specifications

A specification in ATDP is the starting point for reasoning over the described
process. This section shows how to encode the reasoning as a model checking
instance, so that a formal analysis can be applied on the set of interpretations
of the model. Furthermore, we present three use cases in the scope of business
process management: checking model consistency, compliance checking and con-
formance checking.

6.1 Casting Reasoning as Model Checking

Reasoning on ATDP specifications can be encoded as an instance of model check-
ing, which allows performing arbitrary queries on the model. The overall system
can be defined by the following formula

(A ∧ CF ∧ CTF
) =⇒ Q (1)

where A is the conjunction of all LTL formulas defined by the axioms, CF is the
conjunction of the activity temporal constraints, CTF

is the conjunction of all
LTL formulas defined by the semantics of the process tree, and Q is an arbitrary
query expressed in LTL (cf. Section 5.2).

In this paper, we present an encoding of the ATDP’s semantics into NuSMV, a
well-known software for model-checking [3]. First, the notion of process execution
is defined using an activity variable, with a domain of all the activities in the
ATDP. At any given step, the system may choose a single value for this variable,
meaning that this activity has been executed. This ensures that simultaneous
execution of activities will not happen.

The system definition for an ATDP is then split into two parts: a transition
system and an LTL property specification. The transition system is a graph
defining the next possible values for the activity variable given its current value.
In our proposed encoding the transition system is specified as a complete graph,
since all the behavioural constraints are specified in A, CF and CTF

as parts
of the property specification, as seen in Eq. (1). This property specification is
directly encoded as a single LTL formula.

We can adapt NuSMV, which performs model checking on infinite traces, to
check properties on finite traces when necessary. In order to do that, we add
a special activity value STOP. In the transition system, an edge is added from
any possible activity to STOP. Additionally, the constraint ♦STOP is added to
the antecedent of the LTL property specification. This enforces that all traces
accepted by the model end in an infinite loop repeating the (only) execution of
the STOP activity, which is equivalent to terminating execution.

Non-temporal information can be introduced in the queries without increas-
ing the problem complexity, since the information is statically defined. For ex-
ample, when the text mentions that several activities are performed by a certain
role, this information remains invariant during the whole model-checking phase.
Thus, queries concerning roles can be translated directly into queries about the
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set of activities performed by that role. A possible encoding of this into a model
checker consists of adding additional variables during the system definition.

When dealing with multiple interpretations, the above framework is extended
with two types of queries:

Existential: Is the proposition true in any interpretation of the process?
∃I ∈ ATDP : (AI ∧ CFI

∧ CTFI
) =⇒ Q

Complete: Is the proposition true in all interpretations of the process?
∀I ∈ ATDP : (AI ∧ CFI

∧ CTFI
) =⇒ Q

Existential and complete queries can be used to reason in uncertain or incomplete
specifications of processes.

An application of complete queries would be finding invariant properties of
the process. That is, a property that holds in all possible process interpreta-
tions. Existential queries, in turn, fulfill a similar role when the proposition being
checked is an undesired property of the process. By proving invariant proper-
ties, it is possible to extract information from processes even if these are not
completely specified or in case of contradictions. A negative result for this type
of query would also contain the non-compliant interpretations of the process,
which can help the process owner in gaining some insights about which are the
assumptions needed to comply with some business rule.

Tool Support.
The encoding technique described in Section 6.1 has been implemented in a

prototype tool, ATDP2NuSMV. The tool can be used to convert an ATDP specifi-
cation into a NuSMVinstance.

ATDP2NuSMV is distributed as a standalone tool, that can be used in any
system with a modern Java installation, and without further dependencies. A
compiled version as well as the source code can be found in the following repos-
itory: https://github.com/setzer22/atdp2nusmv.

In the next subsection, we present use cases that have been tested with
ATDP2NuSMV and NuSMV. The ATDP specifications as well as the exact query en-
codings can be found in the repository. The use case examples are based on a
full version of the specification presented in Figure 3.

Use Case 1: Model Consistency. An ATDP specification can be checked
for consistency using proof by contradiction. Specifically, if we set Q = ⊥, the
reasoner will try to prove that A ∧ CF ∧ CTF

→ ⊥, that is, whether a false
conclusion can be derived from the axioms and constraints describing our model.
Since this implication only holds in the case ⊥ → ⊥, if the proof succeeds we
will have proven that A∧CF ∧CTF

≡ ⊥, i.e. that our model is not consistent. On
the contrary, if the proof fails we can be sure that our model does not contain
any contradiction.

To illustrate this use case, we use interpretations hosp-1 and hosp-1-bad,
available in our repository. The first interpretation consists of a complete
version of the specification in Figure 3, where F.activities includes a1 =
takes (the sample) and a2 = validates (sample state), and constraints
in CF include: Mandatory(a1), Precedence({a1}, a2) and Response(a1, {a2}).
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NuSMVfalsifies the query in interpretation hosp-1 with a counter-example. When
the model is consistent, the property is false, and the resulting counter example
can be any valid trace in the model.

The second specification, hosp-1-bad adds Precedence({a2}, a1) to the
set of relations R. This relation contradicts the previously existing
Precedence({a1}, a2), thus resulting in an inconsistent model. Consequently,
NuSMVcannot find a counter-example for the query in interpretation hosp-1-bad.
This result can be interpreted as the model being impossible to fulfill by any
possible trace, and thus inconsistent.

Use Case 2: Compliance Checking.
Business rules, as those arising from regulations or SLAs, impose further re-

strictions that any process model may need to satisfy. On this regard, compliance
checking methods assess the adherence of a process specification to a particular
set of predefined rules.

The presented reasoning framework can be used to perform compliance check-
ing on ATDP specifications. An example rule for our running example might be:
“An invalid sample can never be used for diagnosis”. The relevant activities
for this property are annotated in the text: a3 = (the sample) can be used,
a4 = (the sample) is contaminated, a5 = makes the diagnosis, and the
property can be written in LTL as: Q = �(a4 → (¬a5 U a3)).

In the examples from our repository, interpretations hosp-2-i, with
i={1,2,3}, correspond to the three interpretations of the process shown in Fig-
ure 3. Particularly, the ambiguity between the three interpretations is the scope
of the repetition when the taken sample is contaminated. The three return-
ing points correspond to: sign an informed consent, sampling is prepared

and take the sample. NuSMVfinds the property true for all three interpretations,
meaning that we can prove the property �(a4 → (¬a5 U a3)) without resolving
the main ambiguity in the text.

Use Case 3: Conformance Checking. Conformance checking techniques put
process specifications next to event data, to detect and visualize deviations be-
tween modeled and observed behavior [2]. On its core, conformance checking
relies on the ability to find out whereas an observed trace can be reproduced by
a process model.

A decisional version of conformance checking can be performed, by encoding
traces inside Q as an LTL formulation. Given a trace t = 〈a1, a2, · · · , aN 〉, we
can test conformance against an ATDP interpretation with the following query6:

Q = ¬(a1 ∧◦(a2 ∧◦(... ∧◦(aN ∧◦STOP))))

This query encodes the proposition “Trace t is not possible in this model”.
This proposition will be false whenever the trace is accepted by the model.

6 The proposed query does not account for the start and end activities of scopes, which
are not present in the original trace. A slightly more complex version can be crafted
that accounts for any invisible activity to be present between the visible activities
of the trace. We do not show it here for the sake of simplicity.
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Other variants of this formulation allow for testing trace patterns: partial traces
or projections of a trace to a set of activities. In this case, the counter-example
produced will be a complete trace which fits the model and the queried pattern.

As an example of this use-case, we provide the example ATDP interpre-
tation hosp-3 in our repository. We project the set of relevant activities to
the set a6 = informs (the patient), a7 = signs (informed consent)

a8 = arranges (an appointment). Two trace patterns are tested, the first:
t1 = 〈· · · a6, a7, a8, · · · 〉 and t2 = 〈· · · a7, a6, a8, · · · 〉. NuSMVfinds the trace pat-
tern t1 fitting the model, and produces a full execution trace containing it. On
the other hand, t2 does not fit the model, which is successfully proven by NuSMV.

7 Conclusions and Future Work

This paper proposes ATDP, a novel multi-perspective language for the repre-
sentation of processes based on textual annotation. On the control-flow dimen-
sion, ATDP is a mixture of imperative constructs at general level via scopes, and
declarative constructs inside each scope. In a way, the language generalizes pro-
cess trees, allowing declarative relations instead of atomic activities in the leaf
nodes. The paper also shows how to translate ATDP specifications into temporal
formulas that are amenable for reasoning. Three use cases in the context of BPM
are shown, illustrating the potential of the ideas in this paper.

Several avenues for future work are under consideration. First, to explore
alternatives or refinements of the encoding in Eq. (1) to make it more suitable
in a model-checking context. Second, to validate the proposed language against
more examples and use cases, specifically by testing how the ATDP primitives
accommodate to different document styles. Finally, studying the connection be-
tween ATDP and other process model notations may serve as a bridge between
textual descriptions and their operationalization within an organization.
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graphical descriptions of processes through ILP techniques. In Proceedings of
the 29th International Conference on Advanced Information Systems Engineering
(CAiSE), pages 413–427, 2017.

21. F Semmelrodt. Modellierung klinischer prozesse und compliance regeln mittels
BPMN 2.0 und eCRG. Master’s thesis, University of Ulm, 2013.

22. Han van der Aa, Josep Carmona, Henrik Leopold, Jan Mendling, and Llúıs Padró.
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Abstract. The effect of digital transformation in organizations needs to
go beyond automation, so that human capabilities are also augmented. A
possibility in this direction is to make formal representations of processes
more accessible for the actors involved. On this line, this paper presents
a methodology to transform a formal process description into a conversa-
tional agent, which can guide a process actor through the required steps
in a user-friendly conversation. The presented system relies on dialog
systems and natural language processing and generation techniques, to
automatically build a chatbot from a process model. A prototype tool
–accessible online– has been developed to transform a process model in
BPMN into a chatbot, defined in Artificial Intelligence Marking Lan-
guage (AIML), which has been evaluated over academic and industrial
professionals, showing potential into improving the gap between process
understanding and execution.

1 Introduction

Formal process modeling notations are ubiquitous in organizations. They pre-
cisely describe a business process, using a graphical notation that has a formal
execution semantics, amenable for automating certain tasks of the underlying
process [3]. These notations, among which Business Process Model and Notation
(BPMN) is a prominent example, are not always suitable or understandable by
any actor involved in the process. A good example is a logistic processes, where
several agents are required, ranging from agents to transport the goods, down
to accountants that keep track of the finances of the whole process.

Hence, one cannot assume always that all the actors of a process would be
able to understand a BPMN model, in order to know what they need to do
for the successful execution of the process. The fact that digital transformation
aims at a better maturity and elicitation of an organization’ processes [7], would
only contribute to increasing the complexity and size of the process repositories
in organizations, which in turn causes a pressure on process’ actors. The main
goal of the work of this paper is to alleviate this pressure. A similar observation
and motivation was presented in the seminal work to convert a BPMN model
into a textual description [6], from which this paper shares some parts of the
methodology proposed.
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In this paper we are inspired by a trend seen in the last few years in online
services. Often, these sites have a section called Frequently Asked Questions,
where users can read some solutions to common problems. Sometimes, these
pages also have guides to execute some complicated processes or tasks. The
main problem is that users have to search for their solution through all the
web content, which is often a tedious task. That is why companies are using
alternatives to help their customers [15]. One of the most implemented options
currently is the conversational bot or chatbot1.

Chatbots allow a user to query a complex content, so that a more human
interaction with it is enabled. Moreover, the user is relieved from the burden of
searching for a solution, which is now a task carried out by the chatbot.

In this paper we present a methodology that takes as input a BPMN model,
and generates a chatbot aimed to guide a process actor through the modeled
business process. The actor can be guided step-by-step through the process, ask
questions about who should perform certain task, or to whom should a document
be sent, etc. In this way, a more flexible process interaction is envisioned at a
very low cost, since using the methodology proposed some of the processes of a
process repository can be transformed into chatbots. The methodology has been
validated over 33 individuals, both from academy and industry.

The methodology proposed relies on script-based dialog management [16],
in which the dialog state determines what is the system expecting at a given
moment, and the user utterance will determine the system’s answer and the
transition to a new dialog state. We generate the finite state dialog automaton
from the BPMN structure, and the system utterances from the textual com-
ponents of the model (task labels, pool and swimlane names, ...), and we add
additional states and transitions to deal with user questions about actors (e.g.
who should do a task) and objects (e.g. to whom a document must be sent).

The organization of this paper is as follows: next section provides a simple
example to illustrate the contributions of this paper. Then, in Section 3 we
provide the necessary background to understand the methodology that will be
presented in Section 4. In Section 5 we describe the prototype tool implementing
the methodologys of this paper, which is then validated in Section 6. Finally,
Section 7 summarizes the paper milestones and reports future challenges ahead.

2 Motivating Example

To illustrate the contribution of this paper, Figure 2 shows an interaction with
the chatbot obtained by applying the methodology proposed on the simple pro-
cess model shown in Figure 12. The interaction is shown in the following page.

By a careful look at the interaction, one can see the main ingredients of the
methodology described in this paper. First, Natural Language Processing (NLP)

1 One can see an example for the case of computer repair at
http://www.toshiba.co.uk/generic/yoko-home/.

2 This example was found in the Signavio Academic Initiative pool of BPMN models.
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Fig. 1. BPMN representation of the ‘Procure parts’ business process

is required to analyze the text in the different elements of the BPMN model.
Second, a tailored finite state automata representation of the underlying process
model is used, so that the conversation state is unambiguous depending on the
previous questions. Finally, natural language generation is used, so that sentences
are created to describe the task to the user in a human-readable manner: see for
instance the third-person form when explaining the tasks performed.

3 Preliminaries

3.1 Process Modeling

As it has been already acknowledged in the introduction, formal process no-
tations are an important part of any digitalization initiative, since they open
the door to an unambiguous and focused (process) automation. A recent article
reports three different process management levels, ranging from multi-process
management, to the classical process management level, down to process in-
stance level [8].

Process models can be created using a variety of modeling languages, such
as Petri nets, Event-Driven Process Chains (EPCs), and BPMN. Although we
focus in BPMN, the contributions of this paper are independent of the specific
notation used to define a process model. In particular, we focus on BPMN 2.0,
notation created as a standard for business process modeling. BPMN has three
different kinds of elements. First, the main elements are the nodes in the dia-
gram, which may belong to three different types: Events, which represent that
something happens; Activities, which represents some task that is performed;



4 A. López et al.

Bot: Hi, which process do you want to see?
You: I’m interested in the procure parts process.
Bot: The process begins when the parts are required by the Department.

What do you want to do now?
You: Who checks the purchase order?
Bot: The Central Purchasing checks the purchase order.
You: Follow process.
Bot: Parts out of stock/Parts in stock ?
You: Parts out of stock.
Bot: The Department specifies and quantifies the requirements.
You: Next.
Bot: The Department completes the purchase order.
You: Next.
Bot: The Central Purchasing checks the purchase order. Vendor known?
You: Yes.
Bot: The Central Purchasing creates the order template from purchase order.
You: Who did you say before that checks the purchase order?
Bot: The Central Purchasing checks the purchase order.
You: ok.
Bot: The Approver approves the purchase order.
You: Next.
Bot: After that, the Central Purchasing executes process called “receipt of

goods”.
You: Next.
Bot: Then, the process is finished.

Fig. 2. Example of dialog with the bot generated for the “procure parts” process.

and Gateways, which split or join flow control. Second, the notation has differ-
ent edges to connect nodes. A solid line indicates the process workflow, while
dashed lines represent messages sent between process participants3. Finally, there
are organization elements such as lanes that contain activities performed by the
same participant, and pools, that group several related lanes.

3.2 Dialog Systems

Dialog is the most natural way for humans to communicate, and since the dawn of
computers, researchers have aimed to devise ways to communicate with machines
as we do with people. From Eliza [19] –the first reactive chatbot– to modern
assistants like Siri, Alexa, or Google Assistant, dialog systems construction still
strongly rely on large amounts of human intervention, to establish which topics
the chatbot should be aware of, and provide useful answers to.

Regardless of whether the dialog interface is oral or written, traditional dia-
log systems are tailored to a specific task (e.g. helping the user to buy a plane
ticket, post a claim for a wrong product, etc.) since the system requires a pre-
cise definition of domain concepts and actions to execute depending on the user

3 Dashed lines can also represent data associations.
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input. For this reason, they usually are expensive to develop, and not easily cus-
tomizable to new application domains. This is also the case of modern personal
assistants.

On the other hand, there are the so-called recreational (also known as conver-
sational) chatbots which do not target a specific task, but only aim to entertain
the user, or to win a Turing’s Test competition [19, 18].

Dialog systems typically consist of four main components:

– User input processing and understanding: Takes care of processing the user
input (which may be speech- or text-based, or even multimodal) and ex-
tracting the relevant information and intention.

– Dialog manager: Keeps track of the dialog state, and decides how to update
it, and which tasks should be executed at each moment.

– Task Manager: Deals with the back-office operations required for the dialog
goal (retrieving information from a database, purchasing tickets, booking
reservations, etc).

– Output generator: Produces the appropriate answer or feedback (speech,
text, or multimodal) to be sent to user.

Each of this components may be realized at different levels of complexity:
Input processing may range from a simple keyword matching on the user text
to an advanced Natural Language Processing system. Dialog managers can fol-
low a simple stateless reactive pattern, be based on finite state automata or
more complex state-keeping structures, or rely on advanced Machine Learning
methods (which require lots of annotated data –actual dialogs– relative to the
target domain to be trained). Task Manager –which is missing in non-task ori-
ented dialog systems– is the most domain-dependent component, and must be
taylored for each application. And finally, output generation can be approached
with techniques ranging from basic pre-written fixed sentences or patterns, up
to complete Natural Language Generation systems.

See [5, 1] for more details on dialog systems architectures and technologies.

3.3 Natural Language Processing and Generation

Apart from the internal logic or domain-related reasoning that a dialog system
must carry out (e.g. access a database to extract available flights matching user’s
needs, decide which may be most useful, etc.), a crucial part of the dialog is
understanding user utterances.

For that, NLP tools are required in order to convert the text spoken or
written by the user into structured data that can be used by the system.

In our case, we are generating a chatbot from a BPMN model. For that,
we need to extract information from the language components in the model –
basically the task labels and pool and lanes descriptions– and for this we also
resort to NLP tools to extract the actions being described in the labels, the agents
who perform each action, and the objects upon which action is performed. The
way we extract this information follows a similar strategy to the one presented
in [6].
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Another important component in any dialog system is that in charge of gener-
ating the system reply that will be sent to the user. Ideally, the system utterance
should sound natural, avoid reiteration of already shared information, use a var-
ied set of language structures and lexica, etc. This is addressed by a subfield
of NLP known as Natural Language Generation (NLG), that given a semantic
representation of the concepts to be expressed, generates the appropriate sen-
tences. NLG is used not only to generate system replies in dialog systems, but
also in automatic document generation, either to generate reports from raw from
data (data-to-text NLG) or from other texts (text-to-text NLG) (e.g. automatic
summarization).

NLG can be approached at different complexity levels, depending on the task
and on the expected results. Simple dialog systems often use pre-canned sen-
tences (which may contain wildcards that are appropriately replaced). A varied
set of pre-canned sentences for each situation, from which an answer is randomly
chosen when needed, may be enough to avoid a too repetitive user experience.

However, for more advanced NLG applications, complex architectures may be
needed. Main steps in a NLG system involve: Determining what to say, planning
the structure of the generated text or document, choosing the words to be used,
generating the sentences expressing each concept, aggregating or merging several
sentences in one to avoid redundancy, introducing pronouns to refer to entities
previously mentioned, and finally, realize all that in appropriate and grammatical
sentences. More details on NLG techniques can be found in [14].

In our process model scenario, we can not resort to pre-canned text, since
each input model may be different. Given that our generated dialog has one
state for each model task (see Section 4) we apply the realization step to obtain
a sentence describing the task, and then we use this generated text as a pre-
canned pattern at execution time.

4 Chatbot Generation from BPMN

To achieve our goal of generating a dialog agent from a process model in BPMN,
we first define which kind of interactions the user is expected to have with the
system, namely:

– Ask who is the actor performing any task.
– Ask to who (from who) is a message or a data object sent (received).
– Be guided step-by-step through the process:
• Find out what is the next task to be executed (or a list of possible tasks, if

several are possible) either by a particular actor or in the general process
• Be asked to provide information when exclusive gateways are reached

and be guided into the appropriate branch
• Be informed when the process ends for a particular actor, or as a whole.

The purpose of these interactions is the use cases that may arise from this
work, i.e., helping users to perform tasks of a process model. This type of inter-
actions was required in a short collaboration we had with a process modelling
software company. Other types of interactions are left for future work.
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Given the expected flows of the dialog, we build a finite state automaton
(FSA) that encodes the interactions and conversation flows that we focus in this
paper.

The utterances that the system will produce when reaching each state in the
FSA are generated analyzing the meaning of the text instances in the BPMN
model (task labels and pool/swimlane names), and then feeding this semantic
representation into a NLG system.

Also, a variety of patterns to match and interpret user response at each
state are generated from model text, plus some general expressions valid for any
process (such as “what is the next task?” or “end this conversation”).

Once the conversation FSA has been generated, it is encoded into AIML [17],
so it can be executed in any available AIML interpretation engine. Figure 3 shows
the main steps in the generation process, detailed in the following sections.

Fig. 3. Chatbot generation process stages (top). Once the chatbot description has been
generated, it can be executed by AIML interpreter to interact with the user (bottom).

4.1 Graph Normalization

We start from the BPMN file, and we parse its XML format in order to load
the process graph. This graph may require some normalization step, in order
to ensure that all blocks in the graph are well-formed. In our case, we aim at
having a BPMN that can be partitioned into Single-Entry Single-Exit (SESE)
components [13]: for instance, the activities P1, P2 and P3 together with the two
adjacent parallel gateways form a SESE in Figure 5(a). Several transformation
techniques can be applied in case a process model is not well-formed (e.g., [12]).
Hence, in the rest of this paper, we assume the process is well-formed.
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4.2 Label Processing

Once the graph is normalized, we have to collect the linguistic information of
model labels. We use FreeLing4 library [10] to desambiguate the part-of-speech of
the label text, and to run it through a custom grammar that extracts the action,
the object, as well as other complements. The subject is usually ommitted in
the task label, so it is retrieved from the pool or swimlane name.

For instance, the label Retrieve parts from storage in swimlane Department
in Figure 1 would produce the semantic structure in Figure 4.

[ action: retrieve,
subject: department,
object: parts,
complement: from storage ]

Fig. 4. Semantic structure produced by NLP analysis of the sentence Retrieve parts
from storage in swimlane Department from Figure 1.

We use a custom grammar and not a general purpose natural language parser
such as those provided by FreeLing or other similar library because of the partic-
ular structure of model task labels: Task labels are commonly written in simple
patterns action-object (retrieve parts), or object-nominalized action (parts re-
trieval) with sometimes some additional complement(s) [11]. Also, the subject
is usually ommitted, which causes general purpose PoS taggers and parsers to
fail more often. Having an ad-hoc grammar allows us to (1) control precisely
which patterns should be detected, and (2) feed the parser with k most-likely
PoS annotations from the tagger to find out if any of them matches the ex-
pected patterns, thus recovering from errors in the tagging step that would lead
to wrong parsing results.

4.3 Dialog graph construction

Next step is generating the dialog graph, that is, the FSA that encodes all the
possible dialog flows. This is a typical architecture followed by many simple
chatbots, specially those based on AIML. The dialog graph consists of a set
of states and transitions between them. Transition from one state to the next
depends on the user utterance.

Definition 1. A dialog graph FSA is a tuple, (Q, T , δ, A,Ω), where:

Q is a finite set of state nodes,
T is the set of all possible text utterances emmited by the user,
δ : Q × T → Q is a transition function that given the current state q ∈ Q
and a text utterance t ∈ T computes the destination state,

4 http://nlp.cs.upc.edu/freeling
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A ⊆ Q is the set of start state nodes, and
Ω ⊆ Q is the set of final state nodes.

Note that the transition function δ does not work on a closed alphabet as
in normal FSAs. Function δ may range from a simple set of regular expressions
performing pattern matching on the user sentence, to a highly sophisticated
language analysis system using the latest Artificial Intelligence techniques. In
our case, since AIML supports only regular expression based transitions, we
restrict ourselves to that approach, though with some extensions provided by
the used interpeter (see Section 4.5).

Fig. 5. Initial dialog state graph (right) corresponding to a BPMN model (left). Dotted
lines show how split (join) gateways are fused with preceeding (following) elements.
Note the expansion of the parallel block into all its possible paths. Self-loops are added
later to handle questions or commands valid in any state.

The created dialog graph has a structure that resembles the original BPMN
graph, but with some differences to make it suitable for dialog control:

– Join gateways: In the BPMN semantics, join gateways describe the point
where the branches of a previous split gateway are merged. This kind of
node makes no sense in a dialog flow (it would be confusing that the system
uttered “Now there is a join. what do you want to do?”). Thus, this kind of
nodes are removed from the graph, and its entering edges are associated to
the following element.

– Parallel blocks: A parallel block consists of the flow elements between a
split and a join inclusive gateway. In BPMN, parallel block are interpreted as
meaning that the involved tasks may be executed in any order. To account
for this behavior in the dialog graph, we create a path in the dialog graph for
each valid permutation of the tasks in the parallel branches. In this way, the
user can choose the order in which she wants to perform the tasks5. Notice
that as commented in Section 4.1, our strategy to transform parallel blocks
(see bellow the formalization of the algorithm for this specific part) assumes

5 In case of a parallel block consisting on a large amount of parallel tasks, in principle
it is not needed to offer all the permutations in the dialog graph, if that contributes
to a state-space explosion: the artifact would be that the user only sees a subset of
the possibilities offered by the process model, which in some cases can be acceptable.
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that all parallel blocks in the BPMN are well-structured (a parallel block is
well-structured when the number of branches going out the split gateway is
equal to the number of branches entering the join gateway).

Figure 5 shows a simple example of the transformation of a BPMN model
into a graph dialog that guides the user through the process.

The steps performed to recursively expand the parallel blocks and gener-
ate the corresponding dialog graph fragment are now overviewed. First of all, a
depth-first search traversal is performed to detect split parallel gateways. When
one is found, a new parallel block instance is pushed onto a general stack. The
stack contains parallel blocks in depth-first order, because we need to guarantee
the correct transformation of internal parallel blocks at every depth. Within a
particular parallel scope, all the nodes encountered are added to the correspond-
ing parallel branch. If the node is a join gateway, then all the active open branches
of the containing parallel block instance are closed, and then the parallel block
with the new expanded instance is replaced. For every parallel block detected,
we check if there is any parallel block inside. If there is one, we call the function
for that node. If there is no block, all the permutations of the branches of the
selected block are created in the corresponding newly created FSM fragment.
Then, these permutations are connected to the rest of the dialog graph.

Once the control-flow is completely transferred to the dialog graph, the last
step of the construction is to also transfer the additional information contained in
the BPMN model: messages, actors and data objects. These mainly correspond
to self-loops on any conversation state, where information is reported to the user
while retaining the conversation state (e.g. the user may ask who did you say
before that checks the purchase order? even when the conversation is not in the
state corresponding to this task).

4.4 Sentence generation

The dialog graph at this point has the definitive structure, but sentences that
will be emmitted by the system at each state have not been generated yet. To
generate these sentences, we proceed in consecutive stages.

First, we create the syntactic specifications for each node. This step uses
the semantic structures generated during label processing (Section 4.2). Using
these annotations –and depending on the BPMN element type they correspond
to– a syntactic structure is created with the appropriate characteristics (kind of
sentence –affirmative, interrogative–, verb features –tense, person, ...–, modifiers,
etc.) Note that some node types require a special treatment. For instance, at the
process start node, the sentence will be headed by the text The process starts
when, to give the user a better context information. Also, exclusive gateways
will be generated as questions and not as affirmative sentences.

Each dialog node can have more than one syntactic structure. Also, the or-
der of the structures can affect the way sentences are generated. The syntactic
structures are provided to the realization engine, a module that applies syntac-
tic, grammatical and morphological rules to produce a correct phrase with the
requested features.
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We use the realization engine provided by SimpleNLG6 library [4], an open-
source project that uses basic English lexicon and grammar to transform the
input into an appropriate sentence. One of the benefits of SimpleNLG is its
potential to be adapted to other languages, using existing linguistic resources
and performing some code adaptation.

SimpleNLG provides classes representing different kinds of phrases (verb
phrase, noun phrase, prepositional phrase, etc). The calling application can
instantiate any phrase specifying the desired features. SimpleNLG engine will
build the sentences using grammar rules to properly combine the input phrase
instances to form a valid syntactic tree. In our case, we build the phrases using
the semantic structures previously created and we use them as required by the
node type. Once the phrase instances are created, they are sent to the realization
engine to obtain a full sentence.

The realization engine follows several steps to build the final sentence: First,
the syntactic rules are applied to obtain the post-syntax tree. This decides, for
example, the appropriate order for the words in the target language. Then, the
morphological transformations –like selecting the correct determiners or the verb
tense– are applied on the obtained tree. Finally, the last step is the orthography
function, where sentence punctuation is revised and corrected. If there is some
special format required, it is applied after these steps.

Once the sentences for each graph node are generated, we use them as basic
information to create the message sentences and the questions:

When the model contains a message element, the user is asked to choose be-
tween continuing with the next task in the current lane, or to follow the message
and see which task the message recipient will perform7. Message information is
often encoded in the task originating it, and not in the message element itself,
thus the generator needs to check both possibilities and decide which is the right
text to use to generate sentences relative to message sending/receiving.

We also generate possible questions about the elements on the process. We
resort to the same realization engine to produce questions about who is the re-
sponsible for each task, which is the object of an action, or who is the sender/re-
cipient of a message. After some generalization to allow for variations, these
questions are included in the set of regular expressions recognized by function
δ. Also, this nodes are associated with the related task, so after asking, e.g. who
checks the purchase order and getting the answer, the user may decide to follow
the process from that point, or to remain in the current state.

4.5 AIML encoding

Once the dialog graph is complete and all the needed text has been generated,
the dialog can be exported to the desired format to be interpreted by a chatbot
engine.

6 https://github.com/simplenlg
7 This can only be done if the information is present in the original BPMN model.
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We use Artificial Intelligence Modeling Language (AIML) standard because
it is the conversational bot definition format most widely used. This XML-based
format builds on the concepts of topics, which correspond to dialog states, and
categories to represent the expected transitions from each state. Each category
specifies a pattern –a regular expression to be matched with the user input–,
and a template providing the answer the bot must emit and the new state to
transition to. Since AIML basically describes extended FSAs, it is straightfor-
ward to convert our dialog graph into this format. AIML patterns allow for the
use of wildcards that will match zero or more words in the user input, as well
as sets, that allow specifying that a word in the user utterance may be any of
a given list. We use both this mechanisms to add flexibility to user sentence
interpretation, allowing for synonyms, or for extra words inserted in the user
input. We pre-encode our sets in general synonym dictionaries extracted from
WordNet [9].

AIML also supports some features over a pure FSA, such as the possibility of
having internal variables to store any relevant information, that may be needed
further along in the dialog (e.g. to store some user-provided information such
as her name, or some other internal information not encoded in the state). In
future versions of our bot generator this could be used, for instance, to ask the
user which process role she wants to play, so when describing tasks executed by
the selected role, the system would output e.g. You check the purchase order
instead of Central Purchasing checks the purchase order.

4.6 AIML Interpretation

Once the AIML dialog definition file has been generated, it can be executed
using any available AIML interpretation engine, so a user can actually interact
with the bot.

Among the many open source available options, we use ProgramY 8. It is
maintained by AIML Foundation (who defines the evolution of the standard),
and it is kept in sync with the latest standard updates. Also, it includes some
useful additional features, like custom tags o full RegEx support, as well as a va-
riety of front-ends to integrate the dialogs in different environments (standalone,
web-based, Telegram, Twitter, Facebook, etc.).

5 Tool support

The methodology of this paper is available through the NLP4BPM platform [2],
accessible at https://bpm.cs.upc.edu/bpmninterface/. Once logged in9, the user
can go to the tab ”BPMN to AIML” where a BPMN file can be uploaded and
get as a result the AIML corresponding to the created chatbot, applying the

8 https://github.com/keiffster/program-y
9 An anonymous user is temporarily available for review purposes with the username

”demo” and password ”caisedemo”.
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Fig. 6. Example of interpretation for several BPMN process models (available at
https://bpm.cs.upc.edu/chatbot).

methodology of this paper. On the tab ”Interpreting AIML” the user can upload
the AIML generated to interact with the created chatbot.

For a fast insight on the contribution of this paper, we have set up an AIML
interpreter demonstrating some generated chatbots for a collection of BPMN
models, so that a user can interact with them. Figure 6 shows a screenshot of
the environment, accessible at https://bpm.cs.upc.edu/chatbot.

6 Evaluation, Limitations and Use Cases

To evaluate the contribution of this paper, we collected feedback of 33 individuals
from academia (27) or industry (6). After interacting with the chatbot for a
couple of processes, the following questions were answered:
Q1: How was your interaction with the chatbot ? (1: not fluent – 4: very fluent)
Q2: Did the Process Model Chatbot answer your questions about the process? (1:
it did not – 4: it did)
Q3: Do you see potential for this kind of application in organizations? (1: no
potential – 4: large potential).
Two more informations were asked, were individuals could provide free text on
the following two questions;
Q4: What did you like / dislike about the tool ?
Q5: Do you have any suggestions in order to improve the Process Model Chatbot?.

From the answers to Q1-Q2, one can see that there is room for improvement
in the implementation of our ideas: in both questions, more than half of the
answers where on lowest scores. This is an artifact of the limited functionality
of the current implementation, which lacks some flexibility and needs to be
extended to be able to cover more parts of the process. In spite of this, through
the answers to Q3 (81.8% agree on the huge potential of the ideas), we are
confident that by improving theses weakness we will be able to come up with a
solution that can be of practical use in organizations.
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The answers to Q4-Q5 where an interesting source of ideas for improvement
and encouragement, but confirmed the limited capabilities of the current imple-
mentation. Also, suggestions on use cases where provided, e.g., to help in the
training of individuals, to help in the management of process changes, to have a
state-aware dialogue between the actors and the process, among others.

7 Conclusions and Future Work

In this paper we have presented a fresh view on the interaction between processes
and humans in organizations. By automating the translation between formal
model notations like BPMN into conversational agents, a more flexible ecosystem
is envisioned. This paper represents the first step towards the ambitious goal of
empowering humans in organizations, so that decision-making is facilitated. We
foresee multiple directions for future research, among which we highlight:

– Extend the capabilities of the interaction, either by extending the language
(in our case, AIML), the types of BPMN constructs to consider, or the
interpretation itself. Also, enable the interaction even when the user does
not know the main activities of the process.

– Incorporate domain knowledge and/or other perspectives, e.g., data access
rights, or security/privacy information.

– Create interactions at the level of process repositories.10

Acknowledgments We would like to thank Gero Decker for drawing our at-
tention to the problem considered in this paper. This work has been supported
by MINECO and FEDER funds under grant TIN2017-86727-C2-1-R.

10 In https://bpm.cs.upc.edu/chatbot we provide very simple queries for detecting
processes in a reporitory. One can think on a more elaborated setting where complex
queries can be allowed.
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1 Introduction

Organizing business processes in an efficient and effective manner is the overarching
objective of Business Process Management (BPM). Process specifications are the
typical way of communicating how and in which order a given set of tasks or
activities should be executed [17]. Several formal languages have been developed
over the years to unambiguously define these processes. However, very often, these
specifications are provided simply using natural language [32,33,2,46]. Due to
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Universitat Politècnica de Catalunya, Barcelona, Spain.
E-mail: {jsanchezf, jcarmona, padro, quishpi}@cs.upc.edu

A. Burattin
Technical University of Denmark, Copenhagen, Denmark.
E-mail: andbur@dtu.tk

M. Montali
Free University of Bozen-Bolzano, Bolzano, Italy.
E-mail: montali@inf.unibz.it





Unleashing Textual Descriptions of Business Processes 3

to detect problems in a specification of a business process, it can be used to
perform interpretation-aware reasoning. For instance, using verification one can
select among the possible interpretations of an ATDP, which ones (if any) satisfy the
reference business rules. Another use is to certify that any interpretation satisfies
the reference business rules, in turn witnessing that the apparent flexibility in the
process execution is not harmful.

Another interesting application of ATDP is simulation: to generate end-to-end
executions (i.e., an event log [53]) that correspond to the underlying process. This
would allow one to apply process mining techniques like discovery, so that a formal
process model can be extracted using well-known discovery algorithms. For this,
we introduce an approach combining state of the art techniques in the simulation
of imperative and declarative process models [24].

This paper presents a revised and extended version of [40], including new re-
lations and an iterated formalization, and a new positioning of the contribution
with respect to related work. Additionally, the following new contributions are
proposed in this paper:

– A new framework to automatically extract ATDP elements from textual descrip-
tions.

– A new technique to simulate ATDP specifications to obtain event data, that
has been tested on three realistic examples and validated using conformance
checking techniques.

– A new open-source implementation of the set of techniques presented.

The rest of the paper is structured as follows: the next section positions this
paper with respect to similar works in the literature. Then, Section 4 introduces the
necessary ingredients for the understanding of the contributions of this paper. The
formal description of ATDP specifications is provided in Section 5. Section 6 provides
an overview of the current uses of ATDP specifications. Section 7 describes the tool-
chain behind this work and illustrates its capabilities through some examples.
Finally, Section 8 summarizes the achievements of this work and provides links for
future work.

2 ATDP in a Nutshell

With the help of a realistic case, in this section we describe an example of ATDP

specification. This will serve as a running example throughout the paper. Specif-
ically, we use the textual description of the examination process of a Hospital,
extracted from [45]. Figure 2 shows the full text, while Figure 3 contains a frag-
ment of the visualization for an ATDP specification of the description.

One of the key features of the ATDP approach is the ability to capture ambigu-

ity. In our example, we can see this at the topmost level: the text is associated
with three different interpretations I1, I2 and I3, providing three different process-
oriented semantic views on the text. Each interpretation is a completely unam-
biguous specification of the process, which fixes a specific way of understanding
ambiguous/unclear parts. Such parts could be understood differently in another
interpretation. A specification in ATDP then consists of the union of all the valid in-
terpretations of the process, which may partially overlap, but also contradict each
other. For instance, in the example from Figure 3, interpretations I1 and I2 differ
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on the scope of the iteration. When a physician of the lab determines a sample is
contaminated, the process needs to be restarted. The scope of this repetition is not
clear from the text alone, and thus, it is not known whether a new appointment
should be arranged or not. In spite of this ambiguity, there are common points in
all interpretations of the text that allow for reasoning to be made, even when the
process is not fully specified.

Each interpretation consists of a hierarchy of scopes, providing a recursive mech-
anism to isolate parts of the text that correspond to “phases” in the process. Each
scope represents a conceptual block, which in turn may be decomposed into a set of
lower-level scopes. Each scope dictates how its inner scopes are linked via control-
flow relations expressing the allowed orderings of execution of such inner scopes.
In our example, I1 contains two scopes. A sequential relation indicates that the
second scope is always executed when the first is completed, thus reconstructing
the classical flow relation of conventional process modeling notation. All in all, the
scope hierarchy resembles that of a process tree, following the variant used in [4].

Inside leaf scopes, text fragments are highlighted. There are different types of
fragments, distinguished by color in our visual front-end. Some fragments (shown
in red) describe the atomic units of behavior in the text, that is, activities and
events, while others (shown in blue) provide additional perspectives beyond control
flow. For example, outpatient physician is labelled as a role at the beginning
of the text, while informs is labelled as an activity. Depending on their types,
fragments can be linked by means of relations. Among such relations, we find:

Fragment relations that capture background knowledge induced from the text, such
as for example the fact that the outpatient physician is the role responsible
for performing (i.e., is the Agent of) the informs activity.

Temporal constraints linking activities so as to declaratively capture the acceptable
courses of execution in the resulting process, such as for example the fact that
informs and signs an informed consent are in succession (i.e., informs is
executed if and only if signs an informed consent is executed afterwards).

As for temporal relations, we consider a relevant subset of the well-known patterns
supported by the Declare declarative process modeling language [35]. In this light,
ATDP can be seen as a multi-perspective variant of a process tree where the control-
flow of leaf scopes is specified using declarative constraints over the activities and
events contained therein. Depending on the adopted constraints, this allows the
modeler to cope with a variety of texts, ranging from loosely specified to more
procedural ones. At one extreme, the modeler can choose to nest scopes in a fine-
grained way, so that each leaf scope just contains a single activity fragment; with
this approach, a pure process tree is obtained. At the other extreme, the modeler
can choose to introduce a single scope containing all activity fragments of the text,
and then add temporal constraints relating arbitrary activity fragments from all
the text; with this approach, a pure declarative process model is obtained instead.

3 Related Work

In order to automatically reason over a natural language process description, it is
necessary to construct a formal representation of the actual process. The gener-
ation of a formal process model starting from a natural language description has



6 Josep Sànchez-Ferreres et al.

been investigated from several angles in the literature. We can classify these tech-
niques along the spectrum of automation support: from fully manual to automatic.

The first available option consists in converting a textual description into a
process model by manually modeling the process. This approach, widely discussed
(e.g., [17,16]), has been thoroughly studied also from a psychological point of view,
in order to understand which are the challenges involved in the “process of pro-
cess modeling” [36,10]. These techniques, however, do not provide any automatic
support, and the possibility for automated reasoning is completely dependant on
the result obtained via the manual modeling. Therefore, ambiguities in the textual
description are subjectively resolved.

On the opposite side of the spectrum, there are approaches that autonomously
convert a textual description of a process model into a formal representation [21,
44,29]. In some cases, this representation is a final process model (e.g., using
BPMN) [21,44,14]. Moreover, if the context of the process description is narrowed
down (e.g., texts describing only cooking recipes [56], or phylogenetic analysis [23]),
a more tailored extraction can be done. The limit of these techniques, however, is
that they need to resolve ambiguities in the textual description, resulting in “hard-
coded” interpretations. For instance, the presence of certain ambiguous phrases in
a text such as “might” or “in the meantime” must be resolved into a concrete
process model, forcing the system to take a specific interpretation.

There has been a recent focus on the extraction of process knowledge from
textual descriptions, which is not necessarily aimed at providing formal process
representations [20,38]. Clearly, by the use of recent deep AI techniques, the afore-
mentioned frameworks have potential, but in order to be applicable, need to learn
over a great amount of training data, a fact which hampers their use in a practical
setting.

With a similar goal (autonomous generation of knowledge), but less related
to the derivation of (formal) process representations, the analysis of textual de-
scriptions to extract events, actions, states or state changes, sequences and simi-
lar knowledge has also been recently studied in different works [7,57,48,27,11,3].
Most of the aforementioned work is aimed at a more general problem (i.e., they are
applicable even in textual descriptions that describe other phenomena, not only
processes), so we believe they can be adapted to the particular case of extracting
process knowledge.

In the middle of the spectrum, there are approaches that automatically process
the natural language text and generate an intermediate artifact, useful to support
consequent manual modeling by providing intermediate diagnostics [50,52,41,43,
15]. The problem of having a single interpretation for ambiguities is a bit miti-
gated in this case since a human modeler is still in charge of the actual modeling.
However, it is important to note that the system is biasing the modeler towards a
single interpretation.

The approach presented in this paper drops the assumption of resolving all
ambiguities in natural language texts. Therefore, if the text is clear and no ambi-
guities are manifested, then a precise process can be modeled. However, if this is
not the case, instead of selecting one possible ambiguity resolution, our solution
copes with the presence of several interpretations for the same textual description.
The work presented in [51] also kept all process interpretations for the analysis,
using the concept of behavioral space as a means to deal with the behavioral am-
biguity of textual process descriptions. Interestingly, reasoning in [51] is casted as
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checking compliance of an execution trace with respect to the behavioral space rep-
resentation of a textual description. In contrast, our work presents a more general
reasoning scheme, in which the aforementioned reasoning from [51] is possible, but
also more general analyses like model checking, or even simulation, can be applied.

Another contribution of this paper is the simulation of ATDP. The generation
of event logs from a process representation has already been investigated in the
literature in the past. Logs generated from these systems can be used in sev-
eral contexts, in particular within the process/data mining research communities,
where having the golden standard (i.e., the reference model) is very important to
improve the outcomes of mining algorithms.

One of the first techniques able to generate actual executions is reported in [13].
The main idea is to enrich a Petri net model with the information needed for
simulation, using Colored Petri Net (CPN) tools as supporting infrastructure.
The approach, though extremely flexible, is tailored to the simulation of Petri nets
and the usage of the tool is also error-prone due to its intrinsic complexity. An
improvement over this manual technique has been proposed in [5], where the author
proposes a fully automatic technique capable of generating a Petri net or a model
described in a subset on BPMN into a process mining-ready event log with support
for data objects, representing not only the control-flow but the data perspective as
well. In [24] a technique for the simulation of large populations of event trees [4] is
reported. All the standard operators can be generated and, in addition, the data
perspective can be generated as well, by consuming a DMN [1] model. Finally, [8]
presents an approach for the generation of execution logs of Declare constraints.
The technique first translates the declarative constraints into regular expressions
and then generates an event log with possible executions compliant with the given
set of constraints.

All these techniques suffer from the problem of being able to use only one
specific type of models (either a Petri net, a BPMN, a Process Tree or a Declare
model) as input. In the context of this paper, however, it is necessary to simulate
specifications defined in a hybrid notation, i.e., imperative structures with declar-
ative models as leaves. In addition, to the best of our knowledge, our simulation
approach is the first one that accepts enriched textual descriptions as inputs.

4 Preliminaries

4.1 Linear Temporal Logics

In this paper, we use Linear Temporal Logic (LTL) [37] to define the semantics of
the ATDP language. While LTL is traditionally defined over infinite traces, we adopt
here a finite-trace interpretation, following [22,12]. This matches the intuition that
business process executions are all expected to reach, sooner or later, one of the
end states defined by the process.

The resulting logic, called LTLf , has the same syntax of LTL , but interprets
formulae on linear models with finitely many time instants. At each instant, the
model indicates which propositional symbols hold. Specifically, LTLf formulae are
built from a set P of propositional symbols and are closed under the boolean
connectives, the unary temporal operator ◦ (next-time) and the binary temporal
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operator U (until):

ϕ ::= a | ¬ϕ | ϕ1 ∧ ϕ2 | ◦ϕ | ϕ1 U ϕ2 with a ∈ P

Intuitively:

– ◦ϕ says that the next instance exists (i.e., we are not at the end of the trace),
and in such a next instant ϕ holds.

– ϕ1 U ϕ2 says that at some future instant ϕ2 will hold and until that point ϕ1

always holds.

Common abbreviations used in LTL and LTLf include the ones listed below:
– Standard boolean abbreviations, such as ⊤, ⊥, ∨, →.
– ♦ϕ = ⊤U ϕ says that ϕ will eventually hold at some future instant.
– �ϕ = ¬♦¬ϕ says that from the current instant ϕ will always hold (until the

last instance of the trace).
– ϕ1 W ϕ2 = (ϕ1 U ϕ2∨�ϕ1) is interpreted as a weak until, and means that either

ϕ1 holds until ϕ2 or in all instants of the trace.
It is important to stress that, even though LTL and LTLf share the same syntax,
the intended meaning of the same formula may radically change when moving from
infinite to finite traces [12]. At the same time, it is possible to embed the finite-
trace semantics of LTLf into the standard LTL setting, at the price of adequately
manipulating the traces and the formulae [12].

4.2 Natural Language Processing and Annotation

Natural Language Processing (NLP) is a wide research area within Artificial Intel-
ligence that includes any kind of technique or application related to the automatic
processing of human language. NLP goals range from simple basic processing such
as determining in which language a text is written, to high-level complex appli-
cations such as Machine Translation, Dialogue Systems, or Intelligent Assistants.
Given the recent advances in many NLP areas, there is an increasing interest in
the applications and possibilities of these technologies to Business Process Man-
agement area [49].

Linguistic analysis tools can be used as a means to structure information con-
tained in texts for its later processing in applications less related to language itself.
This is our case: we use NLP analyzers to convert a textual description of a process
model into a structured representation.

The NLP processing software used in this work is FreeLing1 [34], an open–
source library of language analyzers providing a variety of analysis modules for a
wide range of languages. More specifically, the natural language processing layers
used in this work are:

Tokenization & sentence splitting: Given a text, split the basic lexical terms
(word, punctuation signs, numbers, ZIP codes, URLs, e-mail, etc.), and group
these tokens into sentences.

Morphological analysis: For each word in the text, find out its possible parts-of-
speech (PoS).

1 http://nlp.cs.upc.edu/freeling
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PoS-Tagging: Determine what is the right PoS for each word in a sentence. (e.g.
the word dance is a verb in I dance all Saturdays but it is a noun in I enjoyed

our dance together.)
Named Entity Recognition: Detect named entities in the text, which may be

formed by one or more tokens, and classify them as person, location, organi-

zation, time-expression, numeric-expression, currency-expression, etc.
Word sense disambiguation: Determine the sense of each word in a text (e.g. the

word crane may refer to an animal or to a weight-lifting machine). We use
WordNet [19] as the sense catalogue and synset codes as concept identifiers.

Constituency/dependency parsing: Given a sentence, get its syntatic structure as
a constituency/dependency parse tree.

Semantic role labeling: Given a sentence identify its predicates and the main ac-
tors in each of them, regardless of the surface structure of the sentence (ac-
tive/passive, main/subordinate, etc.)

Coreference resolution: Given a document, group mentions referring to the same
entity (e.g. a person can be mentioned in the text as Mr. Peterson, the director,
or he)

The three last steps are of special relevance since they allow the top-level
predicate construction, and the identification of actors throughout the whole text:
dependency parsing identifies syntactic subjects and objects (which may vary de-
pending, e.g., on whether the sentence is active or passive), while semantic role
labelling identifies semantic relations (the agent of an action is the same regard-
less of whether the sentence is active or passive). Coreference resolution identifies
several mentions of the same actor as referring to the same entity (e.g. in Figure 3,
a delegate of the physician and the latter refer to the same person, as well as the
same object is mentioned as the sample requested and it).

Creating annotated versions of texts is customary in the NLP field, where many
approaches are based on machine learning and require annotated text corpora both
for training and for evaluating the performance of the developed systems. This need
for annotated text has led the NLP community to develop several general-purpose
annotation tools (e.g., Brat [47]). The next section shows how to describe processes
by relying on textual annotations.

5 Processes as Annotated Textual Descriptions

One of the main elements in our framework is the Annotated Textual Descriptions

of Processes, formalized as the ATDP language. We start this section by briefly
introducing the foundational design principles of ATDP language (Section 5.1). Next,
we present the core constructs of the language (Section 5.2) and formally define
its semantics in LTL (Section 5.3).

Note that the aim of this section is not to provide an exhaustive enumeration
of all patterns in ATDP, but rather to set a formal basis for the language allowing
for future extensions to cover control-flow patterns in a more convenient way or
help document other data-oriented aspects of a textual process description.
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5.1 ATDP Design Principles

We have designed ATDP as a flexible modelling language that can capture well the
subtleties of textual descriptions, while still remaining a formal representation to
allow for automatic reasoning. During the design of ATDP, we have chosen to stick
to the following design principles:

1. Models in ATDP are represented as annotations over plain text. This avoids
misalignments between the informal plain text and the formal representation
underneath.

2. ATDP combines imperative and declarative aspects of modelling notations. This
ensures it can capture a wider range of behavioral constructs which we have
found to naturally occur in textual process descriptions.

3. The language needs to directly address ambiguity, because most textual de-
scriptions of processes contain some form of ambiguity. Partial reasoning must
be possible even in the presence of ambiguity.

4. Automatic reasoning over models is paramount. This is why the formal seman-
tics of ATDP are inspired by linear temporal logics and process trees.

5.2 ATDP Models

ATDP models are defined starting from an input text, which is split into typed

text fragments. We now go step by step through the different components of our
approach, finally combining them into a coherent model.

Fragment types. Fragments have no formal semantics associated by themselves.
They are used as basic building blocks for defining ATDP models. We distinguish
fragments through the following types.

Activity. This fragment type is used to represent the atomic units of work within
the business process described by the text. Usually, these fragments are as-
sociated with verbs. An example activity fragment would be validates (the

sample state). Activity fragments may also be used to annotate other occur-
rences in the process that are relevant from the point of view of the control
flow, but are exogenous to the organization responsible for the execution of
the process. For instance, (the sample) is contaminated is also an activity
fragment in our running example.

Role. The role fragment type is used to represent types of autonomous actors
involved in the process, and consequently responsible for the execution of ac-
tivities contained therein. An example is outpatient physician.

Business Object. This type is used to mark all the relevant elements of the process
that do not take an active part in it, but that are used/manipulated by ac-
tivities contained in the process. An example is the (medical) sample obtained
and analyzed by physicians within the patient examination process.

When the distinction is not relevant, we may refer to fragments as the entities
they represent (e.g. activity instead of activity fragment).

Given a set F of text fragments, we assume that the set is partitioned into
three subsets that reflect the types defined above. We also use the following dot
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notation to refer to such subsets: (i) F.activities for activities; (ii) F.roles for roles;
(iii) F.objects for business objects.

Fragment relations. Text fragments can be related to each other by means of
different non-temporal relations, used to express multi-perspective properties of
the process emerging from the text. We consider the following relations over a set
F of fragments.

Agent. An agent relation over F is a partial function

agentF : F.activities → F.roles

indicating the role responsible for the execution of an activity. For instance,
in our running example we have agent(informs) = physician, witnessing that
informing someone is under the responsibility of a physician.

Patient. A patient relation2 over F is a partial function

patientF : F.activities → F.roles ∪ F.objects

indicating the role or business object constituting the main recipient of an
activity. For instance, in our running example, we have patient(prepare) =
sample, witnessing that the prepare activity operates over a sample.

Coreference. A coreference relation over F is a (symmetric) relation

coref F ⊆ F.roles× F.roles ∪ F.objects× F.objects

that connects pairs of roles and pairs of business objects when they represent
different ways to refer to the same entity. It consequently induces a coreference
graph where each connected component denotes a distinct process entity. In our
running example, all text fragments pointing to a patient role corefer to the
same entity, whereas there are three different physicians involved in the text:
the outpatient physician, the ward physician and the physician of the lab.
These form disconnected coreference subgraphs.

Text scopes. To map the text into a process structure, we suitably adjust the
notion of process tree used in [4]. In our approach, the blocks of the process tree
are actually text scopes, where each scope is either a leaf scope, or a branching scope

containing one or an ordered pair3 of (leaf or branching) sub-scopes.
Each activity is associated with one and only one leaf scope, whereas each leaf

scope contains one or more activities, so as to non-ambiguously link activities to
their corresponding process phases.

Each Branching scope, instead, is associated with a corresponding control-flow
operator, which dictates how the sub-scopes are composed when executing the
process. At execution time, each scope is enacted possibly multiple times, each
time taking a certain amount of time (marked by a punctual scope start, and a
later completion). We consider in particular the following scope relation types,
together with their intuitive execution semantics:

2 The term patient, as used in the formalization, is not related to the medical term used in
the running example. Instead, it is borrowed from the related concept in the field of linguistics.

3 We keep a pair for simplicity of presentation, but all definitions carry over to n-ary tuples
of sub-blocks.
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Sequential (→) A sequential branching scope s with children 〈s1, s2〉 indicates that
each execution of s amounts to the sequential execution of its sub-scopes, in
the order they appear in the tuple. Specifically: (i) when s is started then s1
starts; (ii) whenever s1 completes, s2 starts; (iii) the completion of s2 induces
the completion of s.

Conflicting (×) A conflicting branching scope s with children 〈s1, s2〉 indicates
that each execution of s amounts to the execution of one and only one of its
children, thus capturing a choice. Specifically: (i) when s is started, then one
among s1 and s2 starts; (ii) the completion of the selected sub-scope induces
the completion of s.

Inclusive (∨) An inclusive branching scope s with children 〈s1, s2〉 indicates that
each execution of s amounts to the execution of at least one of s1 and s2, but
possibly both.

Concurrent (∧) A concurrent branching scope s with children 〈s1, s2〉 indicates
that each execution of s amounts to the interleaved, concurrent execution of
its sub-scopes, without ordering constraints among them. Specifically: (i) when
s is started, then s1 and s2 start; (ii) the latest, consequent completion of s1
and s2 induces the completion of s.

Iterating (�) An iterating branching scope s with child s1 indicates that each exe-
cution of s amounts to the iterative execution of s1, with one or more iterations.
Specifically: (i) when s is started, then s1 starts; (ii) upon the consequent com-
pletion of s1, then there is a non-deterministic choice on whether s completes,
or s1 is started again.

All in all, a scope tree TF over the set F of fragments is a binary tree whose leaf
nodes Sl are called leaf scopes and whose intermediate/root nodes Sb are called
branching nodes, and which comes with two functions:

– a total scope assignment function parent : F.activities → Sl mapping each activity
in F to a corresponding leaf scope, such that each leaf scope in Sl has at least
one activity associated to it;

– a total branching type function btype : Sb → {→,×,∨,∧,�} mapping each
branching scope in Sb to its control-flow operator.

Temporal constraints among activities. Activities belonging to the same leaf
scope can be linked to each other by means of temporal relations, inspired by the
Declare notation [35]. These can be used to declaratively specify constraints on the
execution of different activities within the same leaf scope. Due to the interaction
between scopes and such constraints, we follow here the approach in [18], where,
differently from [35], constraints are in fact scoped.4

We consider in particular the following constraints:

Scoped Precedence Given activities a1, . . . , an, b, Precedence({a1, . . . , an}, b) indi-
cates that b can be executed only if, within the same instance of its parent
scope, at least one among a1, . . . , an have been executed before.

Scoped Response Given activities a, b1, . . . , bn, Response(a, {b1, . . . , bn}) indicates
that whenever a is executed within an instance of its parent scope, then at
least one among b1, . . . , bn has to be executed afterwards, within the same scope
instance.

4 It is interesting to notice that Declare itself was defined by relying on the patterns originally
introduced in [18].
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Scoped Weak Order Given two activities a, b, WeakOrder(a, b) indicates that, when-
ever a and b are both present in a scope instance, a must appear always first.
Further executions of a cannot occur without an execution of b in between.
However, the execution of either a or b does not imply the other’s. Later on,
in Section 6.1.4 we justify the need for this constraint.

Scoped Non-Co-Occurrence Given activities a, b, NonCoOccurrence(a, b) indicates
that whenever a is executed within an instance of its parent scope, then b

cannot be executed within the same scope instance (and vice-versa).
Scoped Alternate Response Given a sequence of activities a, b1, . . . , bn,

AlternateResponse(a, {b1, . . . , bn}) indicates that whenever a is executed
within an instance of its parent scope, then a cannot be executed again until,
within the same scope, at least one among b1, . . . , bn is eventually executed.

Terminating Given activity a, Terminating(a) indicates that the execution of a

within an instance of its parent scope terminates that instance.
Initial Given activity a, Initial(a) indicates a must be the first activity executed in

its scope.
Mandatory Given activity a, Mandatory(a) indicates that the execution of a must

occur at least once for each execution of its scope.

Interpretations and models. We are now ready to combine the components de-
fined before into an integrated notion of text interpretation. An ATDP interpretation

IX over text X is a tuple 〈F, agentF , patientF , coref F , TF , CF , 〉, where: (i) F is a
set of text fragments over X; (ii) agentF is an agent function over F ; (iii) patientF
is a patient function over F ; (iv) coref F is a coreference relation over F ; (v) TF is a
scope tree over the activities in F ; (vi) CF is a set of temporal constraints over the
activities in F , such that if two activities are related by a constraint in, then they
have to belong to the same leaf scope according to TF .

An ATDP model MX over textX is then simply a finite set of ATDP interpretations
over X.

5.3 ATDP Semantics

We now describe the execution semantics of ATDP interpretations, in particular
formalizing the three key notions of scopes, scope types (depending on their cor-
responding control-flow operators), and temporal constraints over activities. This
is done by using LTLf , consequently declaratively characterizing those execution
traces that conform to what is prescribed by an ATDP interpretation. We consider
execution traces as finite sequences of atomic activity executions using interleaving
semantics to represent concurrency.

Scope Semantics.

To define the notion of scope execution, for each scope s, we introduce a pair
of artificial activities sts and ens which do not belong to F.activities. The execution
of s starts with the execution of sts , and ends with the execution of ens. The
following axioms define the semantics of scopes:

A1. An activity a inside a scope s can only be executed between sts and ens:

¬aW sts ∧�(ens → ¬aW sts)
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A2. A scope s can only be started and ended inside of its parent s′:

¬(sts ∨ ens)W sts′ ∧�(ens′ → ¬(sts ∨ ens)W sts′)

A3. Executions of the same scope cannot overlap in time. That is, for each exe-
cution of a scope s’s start there is a unique corresponding end:

(¬ens W sts) ∧ �(sts → ♦ens) ∧

�(sts → ◦(¬sts U ens)) ∧

�(ens → ◦(¬ens U sts))

A4. Iterating scopes may be affected by the presence of terminating activities, as
defined by the following property: A terminating activity at inside an iterating
scope s, child of s′, stops the iteration. That is, the execution of s cannot be
repeated anymore inside its parent:

�(sts′ → ((at → (¬sts U ens′))U ens′))

Temporal Constraint Semantics. Next, we define the semantics of temporal
constraints between activities. Note that, in all definitions we will use the subindex
s to refer to the scope of the constraint.

Precedences({a1, .., aK}, b) :=
N∨

i=1

�(sts → (¬bW ai))

Responses(a, {b1, .., bN}) :=
N∨

i=1

�(sts → (a → (¬ens U bi)))

NonCoOccurrences(a, b) := �(sts → (a → (¬b U ens))) ∧
�(sts → (b → (¬aU ens)))

AlternateResponses(a, b) := Responsep(a, b) ∧
�(sts → (a → ◦(¬aU(b ∨ ens))))

WeakOrders(a, b) := �(sts → ((¬ens W a ∧ ¬ens W b) →
AlternateResponses(a, b)))

Terminatings(a) := �(a → ◦ens)

Initials(a) := �(sts → ◦a)
Mandatorys(a) := �(sts → (¬ens U a))

Scope Relation Semantics. In all our definitions, let 〈s1, s2〉 denote the children
of a branching scope s, associated to the control-flow operator being defined. Note
that by Sequence(a, b) we refer to the formula Precedence({a}, b) ∧ Response(a, {b})
and the ⊕ operator is the logical exclusive or.
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Operator Meaning

A << B A dominates B
A >> B A is dominated by B
A < B A immediately dominates B
A > B A is immediately dominated by B
A >- B A is the last child of B
A >: B A is the only child of B
A $-- B A is a right sister of B

Table 1 Basic operators to create Tregex patterns

Fig. 5 Dependency tree representation used to apply patterns.

description, NLP analysis is done to extract, among other information, a depen-
dency tree for each sentence (see Section 4.2). Then tree query is performed on the
forest of dependency trees arising from a textual description; to accomplish this,
tree patterns match parts of a dependency tree that reflect with high confidence
a certain ATDP fragment or relation. The remainder of this section will provide the
necessary details to accomplish this step.

Tregex5 [28] is a pattern matching algorithm that allows matching regular-
expression-like patterns on tree structures. If applied on a dependency tree, this
technique can search for complex labeled tree dominance relations involving dif-
ferent types of information in the nodes (e.g. PoS tags, word forms, lemmas). A
Tregex pattern is a regular expression-like pattern that is designed to match node
configurations within a tree where the nodes are labeled, and the expression com-
bines those labels via a set of operators. The basic operators used in this work to
specify Tregex tree queries are listed in Table 1.

To be able to search for ATDP elements, we transform the dependency tree
nodes obtained from the NLP analyzers to a format suitable for Tregex patterns:
A node in the transformed dependency tree is a structured string, containing
information about the lemma and PoS tag of each word. Additionally, some nodes
include an <ACTION> label to mark nodes corresponding to activity fragments in
the process model ATDP, based on the results from the semantic role labelling
step. Figure 5 shows an example of such tree for the input sentence “If he wants

an individual membership, he must prepare his personal information.” The nodes for

5 See https://nlp.stanford.edu/software/tregex.html
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the verbs want and prepare contain [want <verb> <ACTION>] and [prepare <verb>

<ACTION>], respectively.
In each generated dependency tree we apply a cascade of several Tregex pat-

terns, each of which detects a particular ATDP element. Below we provide several
examples of tree queries to extract specific ATDP elements. The description of the
whole set of tree queries to extract the rest of ATDP elements is left out of this work
for the sake of space.

The techniques described in this section can be used to quickly bootstrap an
initial annotation of a textual description. We have found the proposed techniques
to be empirically accurate for the chosen domains and writing styles. However, it is
still required for a domain expert to audit the output of the automatic annotator,
and very different writing styles or document structures may require a partial
redesign of the extraction rules.

6.1.1 Extraction of activity fragments

Activity fragments represent the units of execution inside the process model. In
order to extract activity fragments we rely on the output of FreeLing NLP pro-
cessing, which marks as predicates all non-auxiliary verbs as well as some nominal
predicates (e.g. reception, delivery, etc). However, many verbs in a process descrip-
tion may be predicates from a linguistic perspective, but do not correspond to
actual process activities. Thus, we use a set of patterns that discard predicates
unlikely to be describing a relevant process task. Some examples are the following:

– /want/=toRemove

This pattern simply removes the verb want as an activity. Subjective verbs
(e.g. want, think, believe) are unlike to describe activities and thus are filtered
out. For instance in the sentence “If the customer wants an individual ticket, he

must prepare his personal information”, wants is removed from the activity list,
while prepare is kept.

– /<ACTION>/=toRemove >> /<ACTION>/=result !>> /and|or/

The second pattern removes any action candidate that is in a subordinate
clause under another action. The idea is that a subordinate clause is describing
some details about one actor in the main clause, but not a relevant activity. For
instance, in the sentence “the examination is prepared based on the information

provided by the outpatient section”, the verbs base and provide would be removed
as activities, since the main action described by this sentence is just prepare

(examination). The pattern has an additional constraint checking that the tree
does not contain a coordinating conjunction (and/or), since in that case, both
predicates are likely to be activities (e.g. in “He sends it to the lab and conducts

the follow-up treatment”, although conduct is under the tree headed by send, the
presence of and in between blocks the rule application).

6.1.2 Extraction of role entity fragments

To identify the roles –or autonomous actors– of the process we leverage the results
from the NLP analysis and focus on the elements with a semantic role of Agent. For
each of those elements, the extracted text should be modified to better represent
the role: fragments that begin with the or prepositions such as by, of or from
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can be modified to not contain these elements. For example, in the sentence “The
process starts when the female patient is examined by an outpatient physician, who

decides whether she is healthy or needs to undertake an additional examination” the
results of the semantic role labelling step would return the whole subtree headed
by physician (i.e. an outpatient physician, who decides. . . ). The role entity fragments
rule will stript down such a long actor removing the determiner and the relative
clause, while keeping the core actor and its main modifiers: outpatient physician.
To that end, the following Tregex pattern is recursively applied to the dependency
tree to obtain the relevant modifiers of the main entity word:

– /noun|adjective/=result > /mainEntityWord/

6.1.3 Extraction of conflict temporal relations

Conflict relations naturally arise when conditions are introduced in a process de-
scription. In ATDP the only conflict relation is NonCoOccurrence. To that end, we
consider discourse markers that mark conditional statements, like: if, whether, ei-
ther and in case of. Each discourse marker needs to be tailored to a specific gram-
matical structure.

For instance, the following pattern would extract the knowledge that the sam-
ple can’t both be safely used and contaminated at the same time from the sentence
“she decides whether the sample can be used for analysis or whether it is contaminated”:

– /whether/ << (<ACTION>/=origin << (/or/ << /<ACTION>/=destination))

6.1.4 Extraction of some order temporal relations

The Precedence, Response and WeakOrder constraints are used to express the order
of execution of the activities in an ATDP specification. This first pattern can be
used to identify a particular case of Response that typically occurs in conditional
sentences:

– /<ACTION>/=destination >: (/if/ > /<ACTION>/=origin)

The pattern captures the case where an identified condition is inside an if

clause (that is, below the if token in the dependency tree), which has a candidate
action as the condition’s consequent. In those cases, it is safe to assume that the
action in the consequent responds to the occurrence of the condition. For example,
in the sentence “If the bank confirms the payment request, the total amount is then

charged to the user account.”, this rule would extract the knowledge that charge

(total amount) responds to confirm (payment request).
For more general cases, the subtleties between the different order constraints

cannot be easily distinguished by an automatic analyzer. In those cases, we take
a conservative approach and extract the least restrictive constraint, WeakOrder.
To illustrate this, we can infer that generates and pays are in WeakOrder in the
sentence “The Payment Office of SSP generates a payment report and then pays the

vendor” by using the following pattern:

– /<ACTION>/=origin < (/and/ << (/<ACTION>/=destination < /then/))

Using this kind of local information alone, it is not safe to infer neither
Precedence nor Response in the above example. We thus defer the strengthening
of these constraints to a manual annotator.
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a1 .. an

STOP

STOP

Fig. 6 Automata representation of the transition system used for the model checker encod-
ing. Activities in a1..an represent both the activity fragments modelled by the user and the
start/end activities for every scope in the ATDP specification.

6.2 Reasoning on ATDP Specifications

A specification in ATDP is the starting point for reasoning over the described pro-
cess. This section shows how to encode the reasoning as a model checking instance,
so that a formal analysis can be applied on the set of interpretations of the model.
Furthermore, we present three use cases in the scope of business process manage-
ment: checking model consistency, compliance checking and conformance checking.

6.2.1 Casting Reasoning as Model Checking

Reasoning on ATDP specifications can be encoded as an instance of model checking,
which allows performing arbitrary temporal LTLf queries ((cf. Section 5.3) on the
model. We do this in two steps.

As a first step, we observe that determining whether an ATDP specification
entails a given LTLf formula Q can be encoded as standard LTLf satisfiability

checking for the following formula:

(A ∧ CF ∧ CTF
) =⇒ Q (1)

where A is the conjunction of all LTLf formulae defined by the axioms, CF is
the conjunction of the activity temporal constraints, CTF

is the conjunction of all
LTLf defined by the semantics of the process tree.

As a second step, we recall that satisfiability via model checking can in principle
be realized, as described in [39], by building a so-called universal transition system

that generates all possible traces over a given alphabet, then verifying whether
such system satisfies the formula of interest (in our case, (1)).

We adopt this idea to encode reasoning on ATDP processes into the well-
established NuSMV model checker [9]. To make the approach operationally correct,
we have to consider two crucial aspects of our approach:

(Interleaving semantics) At each moment in time, only one propositional symbol
is true, witnessing that the corresponding activity is executed.

(Finite-trace semantics) Formula (1) is interpreted over finite traces, whereas
NuSMV natively works over infinite traces.

We tackle these two aspects as follows. The universal transition system is con-
structed following the schema of the state machine (with activity-labeled edges)
in Figure 6.

Essentially, the universal transition system picks an arbitrary number of times
activities to be executed (at each time, just one activity is actually executed, as
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the interleaving semantics dictates). Then, a special STOP activity (not present in
the original ATDP, but introduced artificially) signals that the trace has reached its
end, and once this occurs, then STOP is repeated forever. If we ensure that, on top
of this transition system, STOP is eventually selected, then the resulting universal
transition system generates infinite traces containing an initial, finite prefix with
genuine activities, followed by an infinite suffix where STOP is repeated forever.

On top of this universal transition system, we then verify a variant of formula
(1) defined as follows:

(A ∧ CF ∧ CTF
∧ ♦STOP) =⇒ f(Q) (2)

This formula differs from (1) in two respects. First, it contains ♦STOP in the body
of the implication, so as to enforce that the universal transition systems generates
trace of the shape described above (i.e., finite trace prefixes followed by an infi-
nite repetition of STOP). Second, it does not use Q directly, but instead applies a
translation function f to it. This translation function is needed because Q is an
LTLf formula, while NuSMV adopts LTL over infinite traces. In fact, f is inductively
defined as in [22,12], in such a way that the original LTLf formula becomes a cor-
responding LTL formula that can be checked over the universal transition system
defined above:

f(a) = a

f(◦ϕ) = ◦(f(ϕ) ∧ ¬STOP)
f(¬ϕ) = ¬f(ϕ)

f(ϕ1Uϕ2) = f(ϕ1)U(f(ϕ2) ∧ ¬STOP)
f(ϕ1 ∧ ϕ2) = f(ϕ1) ∧ f(ϕ2)

One may wonder why this translation function is not applied to the entire formula,
but only to Q. The reason is that while Q is an arbitrary LTLf formula, the premise
of the implication of (2) has a fixed shape, determined by the LTLf encoding of
the ATDP semantics, and this shape is so that the formula and its translation are
semantically equivalent. This means that the premise is not able to distinguish
finite from infinite formulae or, using the technical terminology introduced in [12],
that the premise is “insensitive to infinity”.

Non-temporal information can be introduced in the queries without increasing
the problem complexity, since the information is statically defined. For example,
when the text mentions that several activities are performed by a certain role,
this information remains invariant during the whole model-checking phase. Thus,
queries concerning roles can be translated directly into queries about the set of
activities performed by that role. A possible encoding of this into a model checker
consists of adding additional variables during the system definition.

When dealing with multiple interpretations, the above framework is extended
with two types of queries:

Existential: Is the proposition true in any interpretation of the process?
∃I ∈ ATDP : (AI ∧ CFI

∧ CTFI
) =⇒ Q

Complete: Is the proposition true in all interpretations of the process?
∀I ∈ ATDP : (AI ∧ CFI

∧ CTFI
) =⇒ Q

Existential and complete queries can be used to reason in uncertain or incomplete
specifications of processes.

An application of complete queries would be finding invariant properties of
the process. That is, a property that holds in all possible process interpretations.
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a,o

b,o
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b,o
o a,b,o

b

a

Fig. 8 Automata implementing two ATDP constraints: Response(a, b) (left) and NonCoOccur-
rence(a, b) (right). The symbol o is used to indicate any other activities in the scope not affected
by this constraint.

S1

S2

Fig. 9 Process Tree visualization of the scope-level behaviour of the ATDP in Figure 7

simulation is the evaluation of process mining algorithms. In this section we detail
how to generate event logs from ATDP specifications.

As previously mentioned, ATDP specifications can be seen as a multi-perspective
variant of process trees, where each of the leaf elements are declarative process
models instead of atomic activities. Thus, in order to implement the simulation of
ATDP, we combine two well-known algorithms [24,8] for the simulation of Process
Trees and Declare models respectively. An outline of the algorithm is shown in
Algorithm 1.

Simulation of Process Trees follows the implementation described in [24]. The
algorithm simulates each of the tree operator nodes by recursively simulating its
children, and combining the traces that are obtained according to the semantics
of each operator. Following our running example, let us focus on the scope I1,
shown in Figure 7. If the first scope generates trace t1 = 〈a, b, c, d, e, g, f, h, i〉 and
the second scope generates trace t2 = 〈k, l,m〉. The Sequential operator between
the first and second scope would combine t1 and t2 by concatenating them. To
better illustrate this example, Figure 9 shows the Process Tree corresponding
to interpretation I1 of Figure 3. Other operators are implemented in a similar
fashion: The Exclusive operator would choose one of t1 and t2 at random, and the
Concurrent operator would randomly interleave t1 and t2. See [24] for more details
on how to simulate process trees.

Being closely related to the Declare modeling language, the simulation of Leaf
Scopes is implemented by following the algorithm described in [8]. The algorithm
works by implementing the Declare semantics with regular expressions. Each of
the temporal constraints defines a Deterministic Finite Automaton (DFA). For
instance, Figure 8 shows the resulting automata for two basic Declare constraints
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Algorithm 1 Simulation of an ATDP

def simulate_scope(scope):
result = []

if scope.type == "Leaf":
constraints = scope.constraints
automata = [constraint_to_automaton(c)

for c in constraints]
leaf_automaton = intersect_all(automata)
result = random_walk(leaf_automaton)

else if scope.type == "Iterating":
while not stop_criterion():

result = concatenate(result,
simulate_scope(scope.children[0])

else:
left_trace = simulate_scope(scope.children[0])
right_trace = simulate_scope(scope.children[1])

if scope.type == "Sequential":
return concatenate(left_trace, right_trace)

else if scope.type == "Conflicting":
return choose_one(left_trace, right_trace)

else if scope.type == "Concurrent":
return interleave_at_random(left_trace,

right_trace)

else if scope.type == "Inclusive":
return choose_one(

left_trace,
right_trace,
interleave_at_random(left_trace, right_trace))

return result

also present in ATDP. The DFA for all temporal constraints in the leaf scope are
then intersected to form an automaton that accepts the regular language of the
traces accepted by that scope. By performing random walks on this automaton,
random traces can be obtained that conform to each Leaf Scope specification. By
random-walking the automaton for Response(a,b) in Figure 8, one may obtain the
traces t3 = 〈a, b〉 and t4 = 〈a, a, b, a, b〉 but not t5 = 〈a, b, a〉.

7 Tool Support and Use Case Examples

The techniques described in this paper have been implemented and are available
as five standalone tools:

– The ATDP library. The library is available at https://github.com/PADS-UPC/

atdplib-model.
– The ATDP extractor, which extracts ATDP elements from textual descriptions,

using tree query techniques on the result of NLP analysis. The tool is available
at https://github.com/PADS-UPC/atdpextractor.

– The ATDP reasoner, which translates ATDP specifications into the model check-
ing language for NuSMV tool, thus enabling to use this model checking envi-
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Fig. 10 Example of automatic ATDP extraction used in real application.

ronment for reasoning. The tool is available at https://github.com/PADS-UPC/
atdp2nusmv.

– The ATDP simulator, which enables simulating ATDP specifications for deriving an
event log in XES format corresponding to the simulated traces. The simulator
is available at https://github.com/PADS-UPC/atdp-simulator.

– The ATDP editor, which enables to edit manually an ATDP specification for some
of the relations of this paper. The tool is available at https://github.com/

PADS-UPC/atd-editor.

In the remainder of this section, we focus in the three ones presented in this
paper: the ATDP extractor, the ATDP reasoner and the ATDP simulator.

7.1 ATDP Extractor: a Tool to Annotate Textual Descriptions

Figure 10 is an example of what a text looks like before and after using the ATDP

extractor. On the left, a textual description of a process is shown, and its automatic
annotation is reported on the right part of the figure.

Use Case: The Model Judge

A real application currently using the ATDP extractor is the Model Judge [15,42],
available at https://modeljudge.cs.upc.edu.

Model Judge is an educational platform for learning and teaching process mod-
els in the Business Process Model and Notation (BPMN) graphical language.

Instructors of the Model Judge can select exercises for their students to practice
modeling. An exercise consists of a textual description of a process that the student
needs to model in BPMN. At anytime, a student can validate its solution, which
is compared against the gold standard ATDP solution provided by the platform.

In order to make the platform extensible, instructors can propose new exercises.
For this, they can use an exercise editor that is provided with the platform, so that
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describing our model. Since this implication only holds in the case ⊥ → ⊥, if the
proof succeeds we will have proven that A ∧ CF ∧ CTF

≡ ⊥, i.e. that our model is
not consistent. On the contrary, if the proof fails we can be sure that our model
does not contain any contradiction.

To illustrate this use case, we use interpretations hosp-1 and hosp-1-bad, avail-
able in our repository. The first interpretation consists of a complete version of
the specification in Figure 3, where F.activities includes a1 = takes (the sample)

and a2 = validates (sample state), and constraints in CF include: Mandatory(a1),
Precedence({a1}, a2) and Response(a1, {a2}). NuSMV falsifies the query in interpreta-
tion hosp-1 with a counter-example. When the model is consistent, the property
is false, and the resulting counter example can be any valid trace in the model.

The second specification, hosp-1-bad adds Precedence({a2}, a1) to the set of
relations R. This relation contradicts the previously existing Precedence({a1}, a2),
thus resulting in an inconsistent model. Consequently, NuSMV cannot find a counter-
example for the query in interpretation hosp-1-bad. This result can be interpreted
as the model being impossible to fulfill by any possible trace, and thus inconsistent.

Use Case 2: Compliance Checking.

Business rules, as those arising from regulations or SLAs, impose further restric-
tions that any process model may need to satisfy. On this regard, compliance
checking methods assess the adherence of a process specification to a particular
set of predefined rules.

The presented reasoning framework can be used to perform compliance check-
ing on ATDP specifications. An example rule for our running example might be:
“An invalid sample can never be used for diagnosis”. The relevant activities
for this property are annotated in the text: a3 = (the sample) can be used,
a4 = (the sample) is contaminated, a5 = makes the diagnosis, and the prop-
erty can be written in LTL as: Q = �(a4 → (¬a5 U a3)).

In the examples from our repository, interpretations hosp-2-i, with i={1,2,3},
correspond to the three interpretations of the process shown in Figure 3. Particu-
larly, the ambiguity between the three interpretations is the scope of the repetition
when the taken sample is contaminated. The three returning points correspond
to: sign an informed consent, sampling is prepared and take the sample. NuSMV
finds the property true for all three interpretations, meaning that we can prove the
property �(a4 → (¬a5 U a3)) without resolving the main ambiguity in the text.

Use Case 3: Conformance Checking.

Conformance checking techniques put process specifications next to event data, to
detect and visualize deviations between modeled and observed behavior [6]. On its
core, conformance checking relies on the ability to find out whereas an observed
trace can be reproduced by a process model.

A decisional version of conformance checking can be performed, by encoding
traces inside Q as an LTL formulation. Given a trace t = 〈a1, a2, · · · , aN 〉, we can
test conformance against an ATDP interpretation with the following query6:

6 The proposed query does not account for the start and end activities of scopes, which are
not present in the original trace. A slightly more complex version can be crafted that accounts
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Q = ¬(a1 ∧ ◦(a2 ∧ ◦(... ∧ ◦(aN ∧ ◦STOP))))
This query encodes the proposition “Trace t is not possible in this model”.

This proposition will be false whenever the trace is accepted by the model. Other
variants of this formulation allow for testing trace patterns: partial traces or pro-
jections of a trace to a set of activities. In this case, the counter-example produced
will be a complete trace which fits the model and the queried pattern.

As an example of this use-case, we provide the example ATDP interpre-
tation hosp-3 in our repository. We project the set of relevant activities to
the set a6 = informs (the patient), a7 = signs (informed consent) a8 =
arranges (an appointment). Two trace patterns are tested, the first: t1 =
〈· · · a6, a7, a8, · · · 〉 and t2 = 〈· · · a7, a6, a8, · · · 〉. NuSMV finds the trace pattern t1 fit-
ting the model, and produces a full execution trace containing it. On the other
hand, t2 does not fit the model, which is successfully proven by NuSMV.

7.3 ATDP Simulator: Extracting Event Logs from ATDP Simulations

The ATDP Simulator is an implementation of the algorithm described in Section 6.3.
The implementation uses the atdplib-model library as the reference Java imple-
mentation to parse and handle the ATDP file format. The ATDP Simulator itself, is
available as a separate tool and is implemented in Clojure, a functional language
for the Java Virtual Machine.

The ATDP Simulator is implemented as a command line tool which takes an
ATDP specification with a single interpretation, and will produce a log file in the
XES[55] file format with the requested number of traces.

We now use the ATDP specification of an academic example text describing the
process of a client obtaining a membership at Barcelona’s Zoo. Figure 12 shows
the complete ATDP specification for this example. In the visual representation, some
high-level abbreviations for temporal constraints not described in [40] are used:
Alternatives (in the figure, ALTS.), used to describe multiple branches of a decision
and Succession (in the figure, SUCC.), which combines the Precedence and Response

relations. These relations use the base relations from [40] as building blocks and
can thus be considered syntactic sugar. In this specification, only the temporal
aspects of the process is shown for illustrative purposes.

We used the ATDP Simulator to produce example traces for the process in
Figure 12. Table 2 shows some example traces. In order to validate the resulting
traces, we used the well-known Inductive Miner [25] to discover a process model.
As seen in Figure 13, the resulting BPMN is consistent with the ATDP specification.

In order to validate the simulation, we have done another experiment: we have
used three realistic examples to test the simulation method. The experiment con-
sists in three pairs of process representations, where each pair is a process model as
a Petri net, and the corresponding faithful textual description as an ATDP specifica-
tion. Then we have simulated the textual description and tested the conformance
of the generated event log with respect to the process model. In particular, we

for any invisible activity to be present between the visible activities of the trace. We do not
show it here for the sake of simplicity.
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Trace Frequency

〈a, b, c, f, g, i, o, h, j, k, l,m, n, p〉 34
〈a, d, e, f, g, i, o, h, j, k, l,m, n, p〉 27
〈a, d, e, f, g, h, i, o, j, k, l,m, n, p〉 22
〈a, b, c, f, g, h, i, o, j, k, l,m, n, p〉 22

· · · · · ·

Table 2 Example log with several traces obtained by simulating the ATDP specification of
Figure 12.

have analyzed the fitness of each pair, i.e., the ability of the model in reproduc-
ing the traces of the log generated, a real number between 0 and 1 [6]. A high
fitness indicates that the model and the log agree on the main behavior described
in both process representations. For analyzing fitness, we have used the ProM
platform [54].

From the results on Table 3 one can see that the results match the expecta-
tions one may have when relating structured information (i.e., a formal graphical
notation like a Petri net), and a less structured information like an ATDP specifi-
cation where some of the relations have a declarative form and the main actions
and relations highlighted in each may differ. Still, in spite of this representational
difference, the simulation obtains an object that keeps in average a significant
portion of the behavior as described in the original model.

Aside from validation of the generated event logs, we believe enabling synthetic
event log generation for ATDP specifications can open new applications for this
paradigm. Allowing use of well-established techniques from the field of process
mining on top of semi-structured representations. A more thorough exploration of
this topic has been considered for future work.

7.4 Discussion

Although the previous use cases provide applications of the paradigm introduced
in this paper, further investigation needs to be carried out to relate the design
decisions made with the actual deployment of the ideas as reported in this section.
On the automatic extraction of ATDP from text, for instance, we have realized
that the notion of scopes is a real challenge, since it requires a deep analysis of the
textual description. Another challenge arises when operationalizing the reasoning
of ATDP specifications, where the proposed translation to LTLf (as described in
Section 6.2.1) needs to be adapter for enabling current model checking technology
to be applied, due to the state-explosion problem. Finally, we have realized that
when simulating an ATDP specification there may be some hidden biases arising
from its structure.

8 Conclusions and Future Work

This paper presents a first attempt to automatically bridge the existing gap be-
tween unstructured process information and its operational use in organizations.
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Process Fitness

Reimbursement Process 0.69

Dispatch Process 0.64

Zoo Process 0.96

Average 0.76

Table 3 Conformance checking for simulated ATDP specifications and the corresponding gold
models.

The paper proposes annotated textual descriptions of process as the right balance
between formalization and accessibility, and contributes in all the necessary steps
to make the operationalization of unstructured data that talks about processes
possible.

We formalize ATDP specifications, and express its semantics in temporal logic,
thus opening the door to formal reasoning. We show how this reasoning can be
done by casting questions as model checking queries; several examples are provided
that witness the reasoning capabilities of our approach.

We also show that current NLP technology can assist into the automatic ex-
traction of ATDP elements. In particular, we propose methods for extracting au-
tomatically fragments of ATDP specifications, using NLP analysis and tree queries
over the dependency trees corresponding to sentences describing a process. We
show how this method is currently used in an educational platform for process
modeling.

Finally, we connect ATDP specifications with process mining [53], by proposing
a simulation approach that enables generating an event log that encompasses the
main behavior of the process. Techniques like process discovery or conformance

checking are then possible, to discover formal process models or to analyse the
conformance against real-life event data, respectively.

Several future research avenues are ahead of us, so we report on the most
promising ones. First, extending the extraction of ATDP specifications to capture all
the possible annotations is an investigation that we are currently tackling. Second,
to extend the formal connection between reasoning and model checking, and to
propose alternative encodings so that it can be applied on larger specifications,
will be an important matter to consider. Finally, to validate the usability of the
ATDP specifications with real users would let us to have a better understanding of
the accessibility of the language proposed.
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Abstract. Process models are a fundamental element in the BPM lifecycle. Hence,
it is of paramount importance for organizations to rely on high-quality, accurate
and up-to-date process models, to avoid taking decisions on the basis of a wrong
picture of the reality. In this demo we present modeljudge.cs.upc.edu,
a platform to boost the training of novice modelers when confronted with the
task of translating a textual description into a process model in BPMN notation.
The platform is integrated with Natural Language Processing (NLP) analysis and
textual annotation, together with a novel model-to-text alignment technique. By
using this platform, a novice modeler will receive diagnostics in real-time, which
may contribute to a more satisfactory modeling experience.

Keywords: Process Modeling · Natural Language Processing · Education

1 Introduction

Due to the wide usage of process models in organizations, correctness and quality of
models have a direct influence in the execution of business processes. However, research
has shown that industrial process models often contain errors, which can lead to many
problems, like increased costs in production.

Automating the detection of syntactic errors is a common feature in modeling soft-
ware. However, the error types more closely related to the natural language sections
of the model are usually not checked, due to the difficulties in the automatic analysis
of such elements. Model Judge is a web platform supporting students in the creation
of business process models by automatically detecting and reporting the most common
sources of semantic and pragmatic errors in modeling. The algorithm for the computa-
tion of diagnostics is based on the technique for automatic computation of alignments
between process model and textual descriptions presented in [6].

Significance of the tool for the BPM field. As it is pointed out in [1], process mod-
els play a central role in the management of processes within organizations. Although
recent automated techniques can help into the discovery of a process model [8], the
process of process modeling it is still a crucial element in the BPM lifecycle [5]. Frame-
works integrating different modeling notations, like the one presented in this paper for

F. Casati et al. (Eds.): Proceedings of the Dissertation Award and Demonstration, Industrial Track at BPM 2018,
CEUR-WS.org, 2018. Copyright c© 2018 for this paper by its authors. Copying permitted for private and academic
purposes. This volume is published and copyrighted by its editors.
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Fig. 1. Screenshot of the modeljudge workspace: textual description and model editor.

textual descriptions and BPMN, will help into narrowing the gap between processes
and their representations within organizations.

2 Tool Description and Features

The Model Judge is presented as a web-based platform, that can be accessed through
any web browser at http://modeljudge.cs.upc.edu. It is designed both for
helping students in the process of creating a process model and instructors in the task
of designing modeling activities in an agile way.

Working with the Model Judge is very much like creating a process model using
any BPMN editor. What makes the platform special is the underlying engine to provide
automatic feedback (see below). When modeling, a textual description of the process
model is available on the left part, while the modeling editor is shown in the right part.
Fig. 1 shows the workspace.

With the goal of providing an accurate evaluation of students’ models, and inspired
by the success of judges to support learning to program ([2,4] among many others),
we have established a set of diagnostics that are suitable for being computed automati-
cally. We have split these diagnostics in three different categories: Syntactic diagnostics
consider the model well-formedness and control flow. Pragmatic diagnostics verify the
phrasing of the process model labels and enforce certain grammatical rules. Finally,
semantic diagnostics check for coverage (there is no missing information from the un-
derlying process) and for relevance (no irrelevant information is included in the model).
Fig. 2 provides different types of diagnostics reported for a particular example.

Two different types of feedback can be provided to the student, depending on the
granularity of the information required:

– Validation: returns an aggregated diagnostic that reflects if the model has some
errors of the types explained before, but it does not say what or where is exactly
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Fig. 2. Screenshot of the feedback for a model where a relevant task introduce user data into the
system has been replaced by a non-relevant task feed the dog.

the problem. The motivation for this check is to allow for a mild test to guide the
students without giving away the whole solution. The feedback provided in Fig. 2
is a validation.

– Complete Validation: apart from the overall information provided by the Valida-
tion, this check also provides a detailed list of all the problems detected, and indi-
vidually explained. The motivation for this check is to allow an assessment similar
to the one obtained if a teacher was correcting the model, and would be typically
provided once the student finishes and hands over the exercise.

In order to use the platform, a user (either student or instructor) needs an account,
with its associated storage space. This space acts as a cloud drive for models, allowing
to manually save multiple versions of an exercise. Moreover, the students enrolled in
a particular course, may enable the platform to record a history of their modeling ses-
sion. This can be used for analyzing their behavior, which can be reported back to the
instructor to get a clearer picture of the modeling process of their students.

Currently, there are 9 different exercises available in the platform. Any modeler can
register into the platform and practice with them. Instructors can also design a course,
by selecting the exercises that must be included. Fig. 3 shows the main page for defining
a course as instructor. Once a course is created, a unique code will be created that can
be shared with the students of this course.

Support for adding new exercises is restricted to the developers of the platform.
However, support is planned to allow instructors to create their own exercises. In order
to create a new exercise for the Model Judge, a textual description of a process is re-
quired. This textual description will be used as the problem statement for the students
so they can understand the process to be modeled. Instructors will then have to anno-
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Fig. 3. Screenshot of the interface for the definition new courses by an instructor.

tate the relevant parts of the process: Actions, Entities and Conditions as well as their
relations: Agent, Patient. This annotation process is partially performed by a Natural
Language Processing algorithm, which provides an initial annotation to be refined. Fig-
ure 4 shows a fragment of a text annotation corresponding to one of the exercises in the
platform.

Fig. 4. The annotation interface for the definition of exercises: (left) An automatically generated
annotation. (right) After the instructor performs a manual validation.

A screencast of the Model Judge which shows a typical session working with the
model judge can be found in https://youtu.be/xJ3TeKlvIfo.
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3 Architechture, Libraries Used and Maturity of the Tool

Model Judge is built as a web application. A distributed server manages several in-
stances of the application and balances the load between them. The front-end of it is
built using the PrimeFaces Java framework, which internally communicates with the
core Java application, responsible for the generation of diagnostics. Several functional-
ities in Model Judge rely on external libraries: FreeLing [3] is used for all the Natural
Language Processing tasks and the Gurobi ILP solver is used to compute optimal align-
ments, as described in [6]. Additionally, the BRAT [7] text annotation software is used
as an external tool in order to create new exercises for the platform.

The Model Judge has been tested in two separate modeling courses. The first was
performed on the Technical University of Denmark (DTU) during February 2018. The
second course was performed at the Catholic University of Santa Marı́a (UCSM) in Peru
during March 2018. For every student of these courses, we stored periodically (every
minute) information for the whole modeling session. Additionally, information was also
saved each time the user performed a simple or complete validation. In particular, we
recorded a total of 8410 intermediate models for 72 students.
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