35,370 research outputs found

    Machine learning for crystal identification and discovery

    Full text link
    As computers get faster, researchers -- not hardware or algorithms -- become the bottleneck in scientific discovery. Computational study of colloidal self-assembly is one area that is keenly affected: even after computers generate massive amounts of raw data, performing an exhaustive search to determine what (if any) ordered structures occur in a large parameter space of many simulations can be excruciating. We demonstrate how machine learning can be applied to discover interesting areas of parameter space in colloidal self assembly. We create numerical fingerprints -- inspired by bond orientational order diagrams -- of structures found in self-assembly studies and use these descriptors to both find interesting regions in a phase diagram and identify characteristic local environments in simulations in an automated manner for simple and complex crystal structures. Utilizing these methods allows analysis methods to keep up with the data generation ability of modern high-throughput computing environments.Comment: Fixed typo, added missing acknowledgment, added supplementary informatio

    Deep unsupervised clustering with Gaussian mixture variational autoencoders

    Get PDF
    We study a variant of the variational autoencoder model with a Gaussian mixture as a prior distribution, with the goal of performing unsupervised clustering through deep generative models. We observe that the standard variational approach in these models is unsuited for unsupervised clustering, and mitigate this problem by leveraging a principled information-theoretic regularisation term known as consistency violation. Adding this term to the standard variational optimisation objective yields networks with both meaningful internal representations and well-defined clusters. We demonstrate the performance of this scheme on synthetic data, MNIST and SVHN, showing that the obtained clusters are distinct, interpretable and result in achieving higher performance on unsupervised clustering classification than previous approaches

    Semi-supervised model-based clustering with controlled clusters leakage

    Full text link
    In this paper, we focus on finding clusters in partially categorized data sets. We propose a semi-supervised version of Gaussian mixture model, called C3L, which retrieves natural subgroups of given categories. In contrast to other semi-supervised models, C3L is parametrized by user-defined leakage level, which controls maximal inconsistency between initial categorization and resulting clustering. Our method can be implemented as a module in practical expert systems to detect clusters, which combine expert knowledge with true distribution of data. Moreover, it can be used for improving the results of less flexible clustering techniques, such as projection pursuit clustering. The paper presents extensive theoretical analysis of the model and fast algorithm for its efficient optimization. Experimental results show that C3L finds high quality clustering model, which can be applied in discovering meaningful groups in partially classified data
    corecore