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ABSTRACT

We study a variant of the variational autoencoder model with a Gaussian mix-
ture as a prior distribution, with the goal of performing unsupervised cluster-
ing through deep generative models. We observe that the standard variational
approach in these models is unsuited for unsupervised clustering, and mitigate
this problem by leveraging a principled information-theoretic regularisation term
known as consistency violation. Adding this term to the standard variational opti-
misation objective yields networks with both meaningful internal representations
and well-defined clusters. We demonstrate the performance of this scheme on
synthetic data, MNIST and SVHN, showing that the obtained clusters are distinct,
interpretable and result in achieving higher performance on unsupervised cluster-
ing classification than previous approaches.

1 INTRODUCTION

Unsupervised clustering remains a fundamental challenge in machine learning research. While long-
established methods such as k-means and Gaussian mixture models (GMMs) (Bishopl [2006) still lie
at the core of numerous applications (Aggarwal & Reddy, 2013), their similarity measures are lim-
ited to local relations in the data space and are thus unable to capture hidden, hierarchical dependen-
cies in latent spaces. Alternatively, deep generative models can encode rich latent structures. While
they are not often applied directly to unsupervised clustering problems, they can be used for dimen-
sionality reduction, with classical clustering techniques applied to the resulting low-dimensional
space (Xie et al., 2015)). This is an unsatisfactory approach as the assumptions underlying the di-
mensionality reduction are generally independent of the assumptions of the clustering techniques.

Deep generative models try to estimate the density of observed data under some assumptions about
the latent structures, i.e., hidden causes. They allow us to reason about data in more complex ways
than a general input-output mapping scheme. However, inference in models with complicated latent
structures can be difficult. Recent breakthroughs in approximate inference have provided tools for
constructing tractable inference algorithms. As a result of combining differentiable methods with
variational inference, it is possible to scale up inference to datasets of sizes that would not have been
possible with earlier inference methods (Rezende et al., 2014). One popular algorithm under this
framework is the variational autoencoder (VAE) (Kingma & Welling} 2013)).

In this paper, we propose an algorithm to perform unsupervised clustering within the VAE frame-
work. To do so we postulate that generative models can be tuned for unsupervised clustering by
making the assumption that the observed data is generated from a multimodal prior distribution, and
construct a recognition network with a Gaussian mixture prior that can be directly optimised using
the reparameterization trick. We also show that in the VAE framework, the standard mean-field ap-
proximation used is not suitable for clustering, and can be mitigated with an information theoretic
regularisation term known as consistency violation.
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1.1 RELATED WORK

Unsupervised clustering can be considered a subset of the problem of disentangling latent variables,
which aims to find structure in the latent space in an unsupervised manner. Recent efforts have
moved towards training models with disentangled latent variables corresponding to different factors
of variation in the data. Inspired by the learning pressure in the ventral visual stream, [Higgins et al.
(2016) were able to extract disentangled features from images by adding a regularisation coefficient
to the lower bound of the VAE. As with VAEs, there is also effort going into obtaining disentangled
features from generative adversarial networks (GANs) (Goodfellow et al.|[2014). This has been re-
cently achieved with InfoGANs (Chen et al.| [2016)), where structured latent variables are included
as part of the noise vector, and the mutual information between these latent variables and the gen-
erator distribution is then maximised as a mini-max game between the two networks. Similarly,
Tagger (Greff et al.,|2016)), which combines iterative amortized grouping and ladder networks, aims
to perceptually group objects in images by iteratively denoising its inputs and assigning parts of the
reconstruction to different groups.

The work that is most closely related to ours would be the stacked generative semi-supervised model
M1+M2) by Kingma et al|(2014). One of the main differences is the fact that their prior distri-
bution is a neural network transformation of both continuous and discrete variables, with Gaussian
and categorical priors respectively. The prior for our model, on the other hand, is a neural network
transformation of Gaussian variables which parametrise the means and variances of a mixture of
Gaussians, with categorical variables for the mixture components. As such, the categorical variables
from |Kingma et al.| (2014) are additional inputs to a neural network mapping, whereas our model
uses categorical variables as mixture components. Furthermore, we introduce a regularizer to im-
prove unsupervised clustering performance. Crucially, Kingma et al.| (2014) apply their model to
semi-supervised classification tasks, whereas we focus on unsupervised clustering. Therefore, our
inference algorithm is more specific to the latter.

We compare our results against several orthogonal state-of-the-art techniques in unsupervised clus-
tering with deep generative models: deep embedded clustering (DEC) (Xie et al., 2015)), adversarial
autoencoders (AAEs) (Makhzani et al.,|2015)) and CatGANSs (Springenberg], [ 2015)).

2  VARIATIONAL AUTOENCODERS

VAE:s are the result of combining variational Bayesian methods with the flexibility and scalability
provided by neural networks (Kingma & Welling| 2013; Rezende et al.,|2014)). Using variational in-
ference it is possible to turn intractable inference problems into optimisation problems (Wainwright
& Jordan, [2008), and thus expand the set of available tools for inference to include optimisation
techniques as well. Despite this, a key limitation of classical variational inference is the need for
the likelihood and the prior to be conjugate in order for most problems to be tractably optimised,
which in turn can limit the applicability of such algorithms. Variational autoencoders introduce the
use of neural networks to output the conditional posterior (Kingma & Welling| [2013)) and thus al-
low the variational inference objective to be tractably optimised via stochastic gradient descent and
standard backpropagation. In addition, a technique known as the reparametrisation trick has been
proposed to enable backpropagation through continuous stochastic variables. While under normal
circumstances backpropagation through stochastic variables would not be possible without Monte
Carlo methods, this is bypassed by constructing the latent variables with a deterministic function
and a separate source of noise. We refer the reader to|Kingma & Welling| (2013) for more details.

3  GAUSSIAN MIXTURE VARIATIONAL AUTOENCODERS

In regular VAEs, the prior over the latent variables is commonly an isotropic Gaussian. This choice
of prior causes each dimension of the multivariate Gaussian to be pushed towards learning a separate
continuous factor of variation from the data, which can result in learned representations that are
structured and disentangled. While this allows for more interpretable latent variables (Higgins et al.,
2016)), the Gaussian prior is limited because the learnt representation can only be unimodal and does
not allow for more complex representations. As a result, numerous extensions to the VAE have been
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developed, where more complicated latent representations can be learned by specifying increasingly
complex priors (Chung et al.,|2015} |Gregor et al., [2015} [Eslami et al., 2016).

In this paper we choose a mixture of Gaussians as our prior, as it is an intuitive extension of the uni-
modal Gaussian prior. If we assume that the observed data is generated from a mixture of Gaussians,
inferring the class of a data point is equivalent to inferring which mode of the latent distribution the
data point was generated from. While this gives us the possibility to segregate our latent space into
distinct classes, inference in this model is non-trivial. It is well known that the reparametrisation
trick which is generally used for VAEs cannot be directly applied to discrete variables. One possi-
bility for estimating the gradient of discrete variables is to calculate the likelihood ratio estimator
using Monte Carlo sampling; however, this is known to have high variance (Eslami et al.| [2016).
Instead, we show that by adjusting the architecture of the standard VAE, our estimator of the vari-
ational lower bound of our Gaussian mixture variational autoencoder (GMVAE) can be optimised
without having to sample directly from the discrete distribution.

3.1 GENERATIVE MODEL AND VARIATIONAL INFERENCE MODEL

Consider the generative model pg ¢(y,,w,2) = p(w)p(2)ps(x|w, z)ps(y|x), where an observed
sample y is generated from a set of latent variables z, w and z under the following process:

w ~ N(0,1) (1a)

z ~ Mult(r) (1b)
K

zlz,w ~ [[ N (w2, (w; B), diag (a2, (w3 8))) ™ (1c)
k=1

ylz ~ N (u(x;0), diag (0 (x;0))) or B(u(z;0)) . (1d)

where K is a predefined number of components in the mixture, and g, (+; 5), agk (;8),1(+;6), and
o?(-;0) are given by neural networks with parameters 3 and 6, respectively. That is, the observed
sample y is generated from a neural network observation model parametrised by # and continuous
latent variable z. Furthermore, the distribution of z is a GMM with means and variances specified

by another neural network model parametrised by 5 and with input w.

More specifically, the neural network 3 outputs a set of K means p, and K variances o> . Withw as
input. A one-hot vector z is sampled from the mixing probability © which chooses one component
from the GMM. We set the prior parameter 7 to the uniform distribution 7, = K ~!. The generative
and variational views of this model are depicted in Fig.
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Figure 1: Graphical models for the Gaussian mixture variational autoencoder (GMVAE) showing
the generative model (left) and the variational family (right).

3.2 INFERENCE WITH RECOGNITION NETWORKS

The generative model is trained with the variational inference objective, i.e. the log-evidence lower
bound (ELBO), which can be written as

Lerpo = E, [

pﬁﬂ(yvm7w7z):|. (2)

q(z,w,zly)
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We assume the mean-field variational family ¢(z,w, z|y) as a proxy to the posterior which factorises
as q(x,w,2|y) =[], 95, (®:|Y:) 4o, (Wil¥i)as. (2i|y;), where i indexes over data points. To simplify
further notation, we will drop 7 and consider one data point at a time. We parametrise each variational
factor with the recognition networks ¢,, ¢,, and ¢, that output the parameters of the variational
distributions. We specify the form of g4, (z|y) and g4, (w|y) to be Gaussian posteriors. gy, (2|y)
has the form of a multinomial distribution. The lower bound can then be written as,

Lero = Eq@y) [1ogpe¥|T)] — Eqiy)aly) [K L(gs, @[y)||ps(zw, 2))]

3)
— KL (g4, (wly)l[p(w)) — nK L(ge. (2[y)||p(2))-

We refer to the terms in the lower bound as the reconstruction term, conditional prior term, w-prior

term and z-prior term respectively. We introduce 7 as a hyperparameter which adjusts the strength

of the z-prior. We will discuss this term in more detail in sections [3.2.2]and [4.1]

3.2.1 THE CONDITIONAL PRIOR TERM

The reconstruction term can be estimated by drawing Monte-Carlo samples from ¢(z|y), where the
gradient can be backpropagated with the standard reparameterisation trick (Kingma & Welling,
2013). w and z prior terms can be calculated analytically.

Importantly, by constructing the model this way, the conditional prior term can be estimated using
equation E] without the need to sample from the discrete distribution g(z).

E,winyatetn) | KL (06, (@ly)l|ps @hw, 2)) | ~

K 1 M _ (4)
> a0 (o = )57 D KL (a6, @)l o (e, 2 = 1))
k=1 j=1

Since g4, (2|y) can be taken directly from the output of the recognition network, the expectation
over ¢y, (2|y) can be calculated straightforwardly and backpropagated as usual. The expectation
over g, (wly) can be estimated with M/ Monte Carlo samples and gradients can be backpropagated
via the reparameterisation trick.

3.2.2 MEAN-FIELD APPROXIMATION AND CLUSTERING

In variational optimisation settings, a mean-field approximation is usually a good compromise be-
tween tractability and performance. In our GMVAE clustering setting, however, the z-prior term in
the ELBO cost K L(qy. (2|y)||p(2)) is problematic and results in poor clustering. The source of this
problem lies in the assumption of independence between observations.

Using exact inference, the z-prior term would force the system to produce a uniform label distribu-
tion over the whole dataset — i.e. to assign the same number of samples to each class on average
However, under the mean-field approximation, this constraint is enforced on each sample, and min-
imising the KL divergence between gy, (2|y) and the uniform prior p(z) will force the label distri-
bution of each sample to be close to the uniform distribution. In this scenario there is no notion of
clustering or multimodal latent space, and the z-prior becomes essentially an anti-clustering term.

Empirically, as illustrated in Section[4.1] this term encourages the density mixture to become degen-
erate, with the means and variances of all components converging to very similar values. This is a
very undesirable scenario. To experiment with the interplay between this term and the information-
theoretic regularisation introduced below, we introduce an ad-hoc tuning parameter 7 that we use to
adjust the strength of the z-prior term.

It is worth noting that this problem is not present in the structured VAE of Johnson et al.|(2016).
Unlike us, they use neural networks in some, but not all, parts of the inference model. This allows
them to circumvent the problem by not making the independence assumption and using stochastic
variational inference. One shortcoming of this approach is that during evaluation inferring the label
of a sample is more expensive, as there is no explicit classifier network analogous to our g4_(2|y).

!This is suboptimal if the natural clusters in the dataset are unbalanced, but it is not a prohibitive constraint.
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3.3 INFORMATION THEORETIC REGULARISATION WITH CONSISTENCY VIOLATION

It has been consistently observed that hidden stochastic layers in VAEs are hard to optimise. A
common issue is that the higher layers are not fully utilised because they collapse early on in training
before they are able to learn a useful representation. One way to mitigate this problem, suggested
by [Sgnderby et al.| (2016), is to gradually turn on the prior terms in Eq. (3). In this paper we adopt
a different, more principled approach based on information theory (Cover & Thomas| [2006) and
adapted from |Ver Steeg et al.|(2014). In short, we introduce an information-theoretic regularisation
term to ensure that our discrete latent variables learn a meaningful representation.

According to [Ver Steeg et al.| (2014), a good clustering must satisfy what in information theory is
known as consistency under coarse-graining — i.e. any measure of uncertainty should not increase
if the data is grouped together into clusters. Interestingly, it is possible to quantify precisely to what
extent a proposed cluster assignment violates this condition. In a “shallow” clustering setting, with
Z being the cluster labels and X the observed variables, this consistency violation (CV) is defined
as

OV = H(Z|X), 5)

where H is an empirical estimator of conditional entropy from observed data. Although seemingly
simple, CV has a very strong theoretical underpinning. In this setting, CV is merely the entropy
of the labels given the visible variables. Intuitively, CV is minimised if each data point belongs
unequivocally to one cluster, and is far from the borders of any other cluster.

In our deep clustering framework, however, it is not so clear how to apply this consistency condi-
tion. For example, it could be applied to the observed variables H (Z|Y') or to the latent variables
H(Z|X). To bypass this conundrum, we note that there is no reason to expect the data to be nat-
urally clustered in y-space — if that were the case there would be no need for an encoding network
or a VAE at all. Instead, it is more sensible to require that the latent representation of the data is
properly clustered and well-defined. For this reason we add to our cost function a regularising term
that corresponds to the consistency violation of the latent variables.

With this theoretical framework, we now face the problem of estimating H. In their original paper,
Ver Steeg et al.| use nonparametric nearest-neighbour estimators for H in an attempt to avoid any
assumptions about p(z). In our case, however, we have reason to follow a different approach. Since
the generative mechanism assumes that x is GMM-distributed, we will use this same assumption to
estimate CV. This also entails that the CV cost remains differentiable, and can therefore be optimised
using standard backpropagation.

With the considerations above, we estimate the consistency violation of the latent variables &, w and
the clustering label z as

Lov =H(Z|X,W)

= —Eqw)q@) | D _ P2z, w)log p(z;|z, w)]
7
1 M
xS S e ) log (e 2w ) ©
i=1 j
where
p(z; = Dp@?]z; = 1,w)
Sy plan = Dp(@®]z; = 1,w()
_ mNEO ;)05 8))
S TN (@D | (w3 B), o (w; B))

By incorporating this information-theoretic term to the lower bound, our full optimisation objective
becomes

p(z =1z w) =

L=Lgrpo —alcv , (7)
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where « is a trade-off hyperparameter that specifies the relative strength of the information-theoretic
regularisation. Note that by embedding CV into this deep GMM clustering setting we have provided
a principled way of optimising the partition of the data, an issue which was only preliminarily
explored in [Ver Steeg et al.| (2014).

4 EXPERIMENTS

The main objective of our experiments is not only to evaluate the accuracy of our proposed model,
but also to understand the interplay between the different factors involved in the construction of
meaningful, differentiated latent representations of the data. This section is divided in three parts:

1. We first study the inference process in a low-dimensional synthetic dataset, and focus in
particular on how the relative strengths of the different terms in £ affect the final result;

2. We then evaluate our model on an MNIST unsupervised clustering task; and

3. We finally show the generated images from the model conditioned on different values of the
latent variables, which illustrate that the model can learn interpretable latent representation.

Throughout this section we make use of the following datasets:

o Synthetic data: We create a synthetic dataset mimicking the presentation of Johnson et al.
(2016)), which is a 2D dataset with 10,000 data points created from the arcs of 5 circles.

e MNIST: The standard handwritten digits dataset, composed of 28x28 grayscale images
and consisting of 60,000 training samples and 10,000 testing samples (LeCun et al.,[1998)).

e SVHN: A collection of 32x32 images of house numbers (Netzer et al., [2011). We use
the cropped version of the standard and the extra training sets, adding up to a total of
approximately 600,000 images.

4.1 SYNTHETIC DATA

First, we study the contribution of the different clustering-related costs in Eq. in a simple 2D
synthetic dataset. The dataset consists of 10,000 points, distributed in 5 distinct non-Gaussian clus-
ters, and is depicted in Fig. This presents a perfect scenario to experiment with and understand
the GMVAE’s properties.

The results displayed in Fig. [2] highlight several features of the GMVAE. Black dots represent the
original samples, and coloured dots represent either the reconstructed samples — in Fig. [2b]— or the
points’ representations in latent space as determined by the recognition network gy, (z|y) — in all
other subfigures. Each dot is coloured according to the cluster label assigned by the classification
network gy, (2|y). Finally, to visualise the mixture density induced in the latent space we setw = 0
and plot the 20 contours of the Gaussian components obtained in latent space. Throughout this
section we employ a GMVAE with K = 8 mixture components.

If the system is optimised with the standard ELBO cost the trained mixture components do not
correspond to the natural clustering at all, as shown in Fig. This is an empirical verification of
the issues pointed out in Section and illustrates that the z-prior term has an anti-clustering
effect. A naive approach towards mitigating this problem is to set = 0, effectively ignoring p(z).
This time, as depicted in Fig. [2d] there is a non-trivial cluster structure in the latent space. In this
setting, however, there is no force making the clusters separated, so they tend to overlap in arbitrary
ways.

As can be seen in Fig.[2¢] adding the consistency violation term dramatically helps with the problem
of overlapping clusters. Intuitively, minimising CV will push clusters away from each other and
reduce the boundaries between them, since these are the regions with highest label entropy. Now,
however, we run into the opposite problem as before: this will tend to assign most of the samples to
one big cluster and eliminate other components.

Finally, we achieve very good correspondence with the dataset’s natural clustering by optimising a
trade-off between the z-prior and the CV terms (see Fig2f), typically with a stronger contribution
from CV. The effect of the small z-prior contribution is most noticeable before convergence: it
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effectively prevents the recognition network from deciding too quickly on the label assignments,
which allows more time for the encoding network to learn a useful mapping from the visible to the
latent space.

Altogether, we find that including a CV regularisation is necessary for effective deep unsupervised
clustering. Additionally, a small contribution from the variational z-prior term usually helps the
system converge to more desirable clusterings.

(a) Data points in data space (b) Data reconstructions (c) Latent space,n =1, =0

(d) Latent space,n =0, =0 (e) Latent space,n =0, = 1 (f) Latent space, n = 1, o« = 2

Figure 2: Visualisation of the synthetic dataset: (a) Data is distributed with 5 modes on the 2
dimensional data space. (b) After the data is mapped onto the latent space, reconstruction is carried
out by mapping it back onto data space using the observation network. (c) Using the standard
ELBO cost all clusters are completely degenerate. (d) After removing the z-prior term we observe
a non-trivial cluster structure, but with overlapping clusters. (e) The CV regularisation penalises
overlapping cluster boundaries, but tends to assign data to one big cluster. (f) Balancing the z-
prior and the CV terms we obtain distinct and interpretable clusters, which shows the network has
developed a meaningful internal representation.

4.2 UNSUPERVISED IMAGE CLUSTERING

We now evaluate the model’s ability to represent discrete information present in the data through an
image clustering task. We train a GMVAE on the MNIST training dataset and evaluate its clustering
performance on the test dataset. To compare the cluster assignments given by the GMVAE with the
true image labels we follow the evaluation protocol of Makhzani et al.[(2015), which we summarise
here for clarity. In this method, we find the element of the test set with the highest probability of
belonging to cluster ¢ and assign that label to all other test samples belonging to ¢. This is then
repeated for all clusters ¢ = 1, ..., K, and the assigned labels are compared with the true labels to
obtain an unsupervised classification error rate.

A summary of the results of this and other methods is shown in Table[T} With only a coarse parameter
grid search, we achieve classification scores competitive with the current state of the art. Details of
the network architecture can be found in Appendix [A]

Empirically, we observe that increasing the number of Monte Carlo samples used for gradient prop-
agation makes GMVAE more robust to initialisation and in finding all the modes of the data distri-
bution. If fewer samples are used GMVAE can occasionally converge faster to poor local minima of
the sort of Fig.|2e| missing some of the modes of the data distribution.
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Table 1: Unsupervised classification accuracy for MNIST (reported as percentage of correct labels)

Method K Best Run Average Run
CatGAN (Springenberg, 2015) 20  90.30 -
AAE (Makhzani et al., [2015)) 16 - 90.45 £2.05
AAE (Makhzani et al., 2015) 30 - 95.90 £+ 1.13
DEC (Xie et al.,[2015) 10 84.30 -
GMVAE M =1) 10 87.71 74.47 +10.20
GMVAE (M = 10) 10 93.67 86.94 £ 6.62
GMVAE M =1) 16 88.36 84.80 £ 3.11
GMVAE (M = 10) 16 97.50 90.24 +£5.74

4.2.1 IMAGE GENERATION

So far we have argued that GMVAE picks up natural clusters in the dataset, and that these clusters
share some structure with the actual classes of the images. Now we train GMVAE with K = 10 on
MNIST to show that the learnt components in the distribution of the latent space actually represent
some meaningful property of the data. First, we note that there are two sources of stochasticity in
play when sampling from GMVAE, namely

1. Sampling w from its prior, which will generate the means and variances of x through a
neural network 3; and

2. Sampling & from the GMM determined by w and z, which will generate the image through
a neural network 6.

In Fig. 3a] we explore the latter option by setting w = 0 and sampling multiple times from the
resulting GMM. Each row in Fig. [3a] corresponds to samples from a different component of the
GMM, and it can be clearly appreciated that samples from the same component consistently result
in images from the same digit. This confirms that the learned latent representation contains well
differentiated clusters, and exactly one per digit. Additionally, in Fig. [3b] we explore the sensitivity
of the generated image to the GMM components by smoothly varying w and sampling from the
same component. We see that while 2 reliably controls the class of the generated image, w sets the
“style” of the digit

Finally, we show in Fig.[d]images sampled from a GMVAE trained on SVHN, with and without CV
regularisation. Activating CV results in more distincts clusters, spanning wider sections of the space
and highlighting more relevant features of the images.

5 CONCLUSION

We have introduced a class of variational autoencoders in which the latent encoding space has the
form of a Gaussian mixture model, and specified a generative process that allows us to formulate a
variational Bayes optimisation objective. We then discuss the undesirable implications for unsuper-
vised clustering of variational mean-field methods, which result in a problematic term involving the
prior distribution over cluster labels. Importantly, we alleviate this problem by introducing a prin-
cipled regularisation term based on an information-theoretic measure called consistency violation.
Our experiments show that including this term is necessary for effective deep unsupervised cluster-
ing, and in combination with the standard variational Bayes approach can uncover natural cluster
structure in the data.

We evaluate our model on unsupervised clustering tasks using popular datasets, achieving competi-
tive results compared to the current state of the art. Finally, we show via sampling from the gener-
ative model that the learned clusters in the latent representation correspond to meaningful features
of the visible data. Images generated from the same cluster in latent space share relevant high-level
features (e.g. correspond to the same MNIST digit) while being trained in an entirely unsupervised
manner.
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Figure 3: Generated MNIST samples: (a) Each row contains 10 randomly generated samples
from different Gaussian components of the Gaussian mixture. The GMVAE learns a meaningful
generative model where the discrete latent variables z correspond directly to the digit values in an
unsupervised manner. (b) Samples generated by traversing around w space, each position of w
correspond to a specific style of the digit.
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Figure 4: Generated SVHN samples : Each row corresponds to 10 samples generated randomly
from different Gaussian components. GMVAE groups together images that look similar in terms
of fonts and colours as opposed to taking into consideration the digit itself, i.e. they are clustering
based on visual similarity as opposed to semantic.

Altogether, we have advanced the state of the art in deep unsupervised clustering both in theory
and practice, while showcasing the power of information-theoretic considerations in unsupervised
learning.
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A NETWORK PARAMETERS

For optimisation, we use Adam (Kingma & Ba, [2014)) with a learning rate of 10—* and standard
hyperparameter values 3; = 0.9, 32 = 0.999 and ¢ = 10~8. The model architectures used in our
experiments are shown in Tables[A.T] [A.2]and[A3]

Table A.1: Neural network architecture models of ¢,(z,w,z): The hidden layers are shared
between ¢(z), ¢(w) and ¢(z) except the output layer where the neural network is split into 5 output
streams, 2 with dimension N, 2 with dimension N,, and 1 with dimension K. We exponentiate
the variance components to keep their value positive. An asterisk (*) indicates the use of batch
normalization and ReLU layer. For convolutional layers, the numbers in parentheses indicate stride-
padding.

Dataset  Input Hidden Output

Synthetic 2 fc 120 ReLLU 120 ReLU K (SoftMax),
N, =2, N, =2 (Exp),
Ny =2, N =2 (Exp)

MNIST 28x28 conv 16x6x6* (1-0) 32x6x6* (1-0) K (SoftMax),
64x4x4* (2-1) 500%* N, =200, N, =200 (Exp)
Ny, =150, N, = 150 (Exp)

SVHN  32x32  conv 64xdxd* (2-1) 128x4x4* (2-1) K (SoftMax),
246x4x4* (2-1) 500* N, =200, N, =200 (Exp),
N, = 150, N,, = 150 (Exp)

11



Under review as a conference paper at ICLR 2017

Table A.2: Neural network architecture models of ps(z|w, 2): The output layers are split into 2K
streams of output, where K streams return mean values and the other K streams output variances of
all the clusters.

Dataset Input Hidden Output

Synthetic 2 fc 120 Tanh  {N, = 2}2x

MNIST 150 fc 500 Tanh  {N, = 200}2x

SVHN 150  fc500 Tanh {N, = 200}2

Table A.3: Neural network architecture models of py(y|z): The network outputs are Gaussian
parameters for the synthetic dataset and Bernoulli parameters for MNIST and SVHN where we use
sigmoid function to keep value of Bernoulli parameters between 0 and 1. An asterisk (*) indicates
the use of batch normalization and ReLU layer. For convolutional layer, the numbers in parenthesis
indicate stride-padding.

Dataset Input Hidden Output

Synthetic 2 fc 120 ReLU 120 ReLU {2}2

MNIST 200  500* full-conv 64x4x4* (2-1) 32x6x6* (1-0)  28x28 (Sigmoid)
16x6x6* (1-0)

SVHN 200  500%* full-conv 246x4x4* (2-1) 128x4x4* (2-1)  32x32 (Sigmoid)
6dxdxd* (2-1)
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