28,371 research outputs found

    Finding k-Dissimilar Paths with Minimum Collective Length

    Full text link
    Shortest path computation is a fundamental problem in road networks. However, in many real-world scenarios, determining solely the shortest path is not enough. In this paper, we study the problem of finding k-Dissimilar Paths with Minimum Collective Length (kDPwML), which aims at computing a set of paths from a source s to a target t such that all paths are pairwise dissimilar by at least \theta and the sum of the path lengths is minimal. We introduce an exact algorithm for the kDPwML problem, which iterates over all possible s-t paths while employing two pruning techniques to reduce the prohibitively expensive computational cost. To achieve scalability, we also define the much smaller set of the simple single-via paths, and we adapt two algorithms for kDPwML queries to iterate over this set. Our experimental analysis on real road networks shows that iterating over all paths is impractical, while iterating over the set of simple single-via paths can lead to scalable solutions with only a small trade-off in the quality of the results.Comment: Extended version of the SIGSPATIAL'18 paper under the same titl

    An Alternative Fuel Refueling Station Location Model considering Detour Traffic Flows on a Highway Road System

    Get PDF
    With the development of alternative fuel (AF) vehicle technologies, studies on finding the potential location of AF refueling stations in transportation networks have received considerable attention. Due to the strong limited driving range, AF vehicles for long-distance intercity trips may require multiple refueling stops at different locations on the way to their destination, which makes the AF refueling station location problem more challenging. In this paper, we consider that AF vehicles requiring multiple refueling stops at different locations during their long-distance intercity trips are capable of making detours from their preplanned paths and selecting return paths that may be different from original paths for their round trips whenever AF refueling stations are not available along the preplanned paths. These options mostly need to be considered when an AF refueling infrastructure is not fully developed on a highway system. To this end, we first propose an algorithm to generate alternative paths that may provide the multiple AF refueling stops between all origin/destination (OD) vertices. Then, a new mixed-integer programming model is proposed to locate AF refueling stations within a preselected set of candidate sites on a directed transportation network by maximizing the coverage of traffic flows along multiple paths. We first test our mathematical model with the proposed algorithm on a classical 25-vertex network with 25 candidate sites through various scenarios that consider a different number of paths for each OD pair, deviation factors, and limited driving ranges of vehicles. Then, we apply our proposed model to locate liquefied natural gas refueling stations in the state of Pennsylvania considering the construction budget. Our results show that the number of alternative paths and deviation distance available significantly affect the coverage of traffic flows at the stations as well as computational time

    Route Planning in Transportation Networks

    Full text link
    We survey recent advances in algorithms for route planning in transportation networks. For road networks, we show that one can compute driving directions in milliseconds or less even at continental scale. A variety of techniques provide different trade-offs between preprocessing effort, space requirements, and query time. Some algorithms can answer queries in a fraction of a microsecond, while others can deal efficiently with real-time traffic. Journey planning on public transportation systems, although conceptually similar, is a significantly harder problem due to its inherent time-dependent and multicriteria nature. Although exact algorithms are fast enough for interactive queries on metropolitan transit systems, dealing with continent-sized instances requires simplifications or heavy preprocessing. The multimodal route planning problem, which seeks journeys combining schedule-based transportation (buses, trains) with unrestricted modes (walking, driving), is even harder, relying on approximate solutions even for metropolitan inputs.Comment: This is an updated version of the technical report MSR-TR-2014-4, previously published by Microsoft Research. This work was mostly done while the authors Daniel Delling, Andrew Goldberg, and Renato F. Werneck were at Microsoft Research Silicon Valle
    corecore