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With the development of alternative fuel (AF) vehicle technologies, studies on finding the potential location of AF refueling stations 
in transportation networks have received considerable attention. Due to the strong limited driving range, AF vehicles for long-
distance intercity trips may require multiple refueling stops at different locations on the way to their destination, which makes the 
AF refueling station location problem more challenging. In this paper, we consider that AF vehicles requiring multiple refueling 
stops at different locations during their long-distance intercity trips are capable of making detours from their preplanned paths and 
selecting return paths that may be different from original paths for their round trips whenever AF refueling stations are not available 
along the preplanned paths. �ese options mostly need to be considered when an AF refueling infrastructure is not fully developed 
on a highway system. To this end, we first propose an algorithm to generate alternative paths that may provide the multiple AF 
refueling stops between all origin/destination (OD) vertices. �en, a new mixed-integer programming model is proposed to locate 
AF refueling stations within a preselected set of candidate sites on a directed transportation network by maximizing the coverage of 
traffic flows along multiple paths. We first test our mathematical model with the proposed algorithm on a classical 25-vertex network 
with 25 candidate sites through various scenarios that consider a different number of paths for each OD pair, deviation factors, and 
limited driving ranges of vehicles. �en, we apply our proposed model to locate liquefied natural gas refueling stations in the state 
of Pennsylvania considering the construction budget. Our results show that the number of alternative paths and deviation distance 
available significantly affect the coverage of traffic flows at the stations as well as computational time.

1. Introduction

Reducing greenhouse gas (GHG) emissions in the transpor-
tation sector is one of the most vital steps in fighting against 
global warming in the United States (U.S.). According to the 
U.S. Environmental Protection Agency [1], the transportation 
sector generates the largest share of GHG emissions. In order 
to cut down tail-pipe emissions in the transportation sector, 
vehicles using alternative fuel (AF), such as biodiesel, hydro-
gen, electrical energy, and natural gas, have received signifi-
cant attention in recent years because they emit less 
well-to-wheel GHG than that of vehicles using traditional 
fossil fuels, such as diesel and gasoline. Currently, 367 

light-duty and 216 medium- and heavy-duty vehicles for the 
2018 and 2019 model years are available in the U.S. AF vehicle 
market [2].

While the public interest in using AF vehicles instead of 
conventional vehicles has increased, the number of public 
refueling stations for AF vehicles is still insufficient, especially 
for intercity trips between urban and rural counties. Table 1 
shows the 2010 census total population, number of electric 
charging stations, and the number of electric charging stations 
per 100,000 residents in the U.S. based on the Census Bureau’s 
urban-rural classification [3, 4]. In this table, counties are cat-
egorized into three groups according to their population den-
sity: mostly urban, mostly rural, and completely rural. It 

Hindawi
Journal of Advanced Transportation
Volume 2020, Article ID 9473831, 27 pages
https://doi.org/10.1155/2020/9473831

https://orcid.org/0000-0002-3573-1896
https://orcid.org/0000-0003-1334-4614
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/9473831


Journal of Advanced Transportation2

indicates that urban areas have more than twice as many elec-
tric charging stations than rural areas with a similar popula-
tion size. One of the barriers to the invigoration and 
development of AF infrastructures in highway systems, which 
play a major role in intercity trips among urban and rural 
counties, is high construction cost. For example, the construc-
tion cost of one natural gas refueling station is at least $1.8 
million in the Pennsylvania Turnpike [5].

Due to the sparse distribution of AF refueling stations 
between urban areas in highway systems, AF vehicles with a 
short driving range that travel long-distance intercity trips 
may need to use longer paths with refueling availability, 
including multiple refueling stops at different locations on the 
way to their destination, rather than their shortest paths with-
out available refueling stations, so they can safely complete 
their trips. �us, AF vehicle drivers may need to make detours 
to be able to refuel their vehicles.

Generally, road structures in highway systems are different 
than those in other transportation networks. First, highway 
roads are divided into two pathways separated by either a 
raised barrier or an unpaved median. In order to offer unin-
terrupted traffic flow, highway roads do not have any traffic 
intersections, and vehicles are only able to enter/leave highway 
systems through entrance and exit ramps. Next, highway sys-
tems have built-in service facilities where drivers are able to 
take a rest and refuel their vehicles. Since highway roads are 
physically partitioned by a barrier or an unpaved median, 
some built-in service facilities, called single-access stations, 
can only be accessed from one side of the road, while the rest, 
called dual-access stations, can be accessed from both sides of 
the road. Hwang et al. [6, 7] and Ventura et al. [5] model this 
type of transportation systems as directed transportation 
networks.

In general, concerning the design of an AF refueling infra-
structure along transportation networks, a number of studies 
allowing repeated trips between origin/destination (OD) ver-
tices assume that vehicles make symmetric round trips trav-
eling along preplanned (shortest) paths between the 
corresponding OD vertices. It also assumes that the set of 
candidate station locations is a subset of vertices in the net-
work, and therefore, all the candidate locations are dual-access 
sites. �ese assumptions imply that, if a vehicle travels from 
an origin to a destination on a single path by filling up at some 
stations, it also stops by the same stations on the return path 
back to the origin. �ese assumptions, however, have made 
the refueling station location problem for AF vehicles less 
practical since they do not reflect the characteristics of AF 
vehicles well at its early stage of market.

By relaxing the assumptions listed above, this paper aims 
at determining more reliable locations of AF refueling stations 
in real-world applications based on the distinct features of AF 
vehicles traveling intercity trips on directed transportation 
networks. We first consider that some candidate sites for AF 
refueling stations are single-access and drivers may choose 
different return paths from original paths to be able to refuel 
their vehicles in both directions. Also, since several paths are 
available between ODs, AF refueling availability is considered 
as one of the AF vehicle drivers’ top priorities when they select 
paths to travel in highway systems. �us, we allow AF vehicles 
to make nonsymmetric round trips between their ODs. We 
first generate multiple paths between all OD pairs through a 
revised �-th shortest path algorithm considering a maximum 
deviation distance. �en we formulate a new mixed-integer 
programming model that considers a set of predetermined 
paths for each OD pair and a preliminary set of candidate 
station location sites, including single-access and dual-access 
sites, on a directed transportation network in which AF vehi-
cles are able to use any of the corresponding OD paths 
depending on the availability of refueling service. �e pro-
posed model determines the optimal set of station locations 
for a given number of stations and the selected round trips 
for all ODs that maximize the total traffic flow covered (in 
round trips per time unit) by the stations. For computational 
experiments, we first apply the proposed model to a classical 
25-vertex network with 25 candidate sites through various 
scenarios. We also validate our proposed model with a budget 
constraint to construct AF refueling stations in the state of 
Pennsylvania.

Our model proposed in this study is applicable to various 
types of AF vehicles, especially to liquefied natural gas (LNG) 
vehicles, with their refueling station location problems. LNG 
vehicles are similar to the existing long-haul vehicles powered 
by diesel in terms of powertrain and refueling, but LNG vehi-
cles are known to provide economic and environmental ben-
efits; thus, LNG vehicles are well-suited for replacing the 
current long-haul vehicles powered by diesel on a highway 
road system. For example, UPS has been working to shi� their 
high carbon-fueled vehicles to new generation of LNG vehicles 
since the late 20th century and has been increasing their num-
ber [8]. In the U.S., UPS has deployed their LNG vehicles 
mainly in Indianapolis, Chicago, Earth City, and Nashville, 
and plans to use these LNG vehicles in larger areas [9]. In 
addition to LNG vehicles, battery-electric vehicles and hydro-
gen fuel cell vehicles will also be applied to our proposed 
model once they are fully available for long haul logistics on 
a highway system.

Table 1: Number of electric charging stations per 100,000 residents at urban and rural counties in the U.S.

2010 Census total population (�) Number of electric charging 
stations (�)

Number of electric charging 
stations per 100,000 residents 

(�퐶/�푃 × 100, 000)
Mostly urban counties 266,567,329 17,330 6.50
Mostly rural counties 36,811,523 989 2.69
Completely rural counties 5,360,991 156 2.91
Total 308,739,843 18,475 5.98
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�e remaining of this paper is organized as follows. Section 
2 reviews the related literature and shortly discusses the main 
distinctions of our research work over the existing studies as 
well. In Section 3, we first introduce the AF refueling station 
location problem with detour traffic flows on a highway road 
system and provide properties of feasible paths. Next, an algo-
rithm that generates a set of multiple feasible paths for which 
the properties are satisfied on a given network is proposed. In 
Section 4, we provide covering conditions with candidate sites 
to cover round trips for each OD pair. �en, we propose a 
mixed-integer programming model to locate a given number 
of AF refueling stations on a directed transportation network 
with the objective of maximizing the total traffic flow covered, 
considering multiple paths for each OD pair. In Section 5, the 
proposed model is tested on a well-known 25-vertex network 
to evaluate the effects of the number of multiple paths, maxi-
mum deviation distance, and vehicle driving range on the 
coverage of traffic flows. �e proposed model is then validated 
in Section 6 with an application to the state of Pennsylvania 
to demonstrate its performance on a large-size problem. Lastly, 
we provide conclusions and discuss the future work of AF 
refueling station location problems in Section 7.

2. Literature Review

In this section, we take a look at the literature relevant to this 
paper. First, in Subsection 2.1, we review the literature address-
ing �-shortest path problems, and in Subsection 2.2, we exam-
ine the literature related to AF refueling station location 
problems. �en, we organize the main distinctions of our 
research work by comparing with the relevant literature in 
Subsection 2.3.

2.1. �-shortest Path Problems. �e �-shortest path problem 
is to find � shortest paths between two vertices in a given 
network in a nondecreasing order of length, where � refers 
to the number of shortest paths to find. �e �-shortest path 
problem can be classified into two types according to whether 
paths are allowed to have cycles or required to be simple with 
no cycles.

�e first type of �-shortest path problem, proposed by 
Hoffman and Pavley [10], allows repeated vertices along any 
path. Fox [11] develops an algorithm to apply this type of 
problem to probabilistic networks. Eppstein [12] uses the con-
cept of binary heap data structure in a nondecreasing order 
of additional path length due to deviation to find the � shortest 
paths in polynomial time. Since the experimental results of 
Eppstein’s algorithm still take considerable time to find the � 
shortest paths, Jiménez and Marzal [13] present a modified 
version of Eppstein’s algorithm to improve its practical per-
formance. Aljazzar and Leue [14] propose a directed search 
algorithm to search for the � shortest paths between two given 
vertices of a network. �eir algorithm provides the same 
asymptotic worst-case complexity but uses less memory than 
Eppstein’s algorithm. Liu et al. [15] propose a novel �-shortest 
path algorithm for neural networks. Given a set of battery 
exchange stations, Adler et al. [16] suggest a polynomial time 
algorithm to solve the electric vehicle shortest-walk problem 

with battery exchanges considering vehicle’s limited driving 
range. �is algorithm shows the chance of extension to the �
-shortest path problem by transforming the original traffic 
network into the so called refueling shortest path network.

�e second type of �-shortest path problem does not allow 
any repeated vertex along a path, and is thus called the �-short-
est simple (or loopless) path problem. Since this type of prob-
lem needs an additional constraint to allow only loopless paths, 
it turns out to be more challenging than the first type of prob-
lem [17]. Pollack [18] introduces the concept of the �-shortest 
simple path problem and solves it by modifying Hoffman and 
Pavley’s method [10], so as to avoid paths containing repeated 
vertices. Clarke et al. [19] present a branch-and-bound proce-
dure to find the �-shortest simple paths, but this method 
requires a significant computational effort and storage require-
ments in the main memory. Sakarovitch [20] first identifies 
several shortest paths that may contain repeated vertices by 
using the efficient version of Hoffman and Pavley’s method 
[10], and then picks up �-shortest simple paths among them. 
By applying a procedure that partitions a path into two sub-
paths, Yen [21] develops an efficient algorithm to find the  
�-shortest simple path. Lawler [22] generalizes a procedure 
that can reduce the amount of storage required in solving the 
�-shortest simple path problem. Katoh et al. [23] present an 
improved version of Yen’s algorithm that solves the problem 
efficiently in an undirected network. �e practical performance 
of Yen’s algorithm is comparatively analyzed with other  
�-shortest path algorithms [24, 25]. An implementation of Yen’s 
algorithm is also studied to improve its practical performance 
[17, 26]. Hershberger and Suri [27, 28] suggest the efficient 
replacement path algorithm for finding � shortest simple paths 
in a directed network. Zeng et al. [29] present a heuristic  
�-shortest path algorithm that is based on Yen’s algorithm when 
determining an eco-friendly path that results in minimum 
carbon dioxide emissions from light-duty vehicles.

2.2. Alternative Fuel Refueling Station Location Problems. �e 
maximal covering location and the set-covering location 
approaches are two main streams of research for addressing 
AF refueling station location problems. Kuby and Lim [30] are 
one of the first applying a maximal covering location model to 
solve an AF refueling station location problem. �ey introduce 
the flow-refueling location model (FRLM) to find the optimal 
location of refueling stations for AF vehicles by considering 
their limited driving range per refueling with the objective 
of maximizing the total traffic flow covered. Upchurch and 
Kuby [31] show that the FRLM identifies more stable locations 
for AF refueling stations than the �-median model, especially 
in a statewide case study. In general, the FRLM requires a 
significant computational effort to pregenerate all feasible 
location combinations of refueling stations that allow vehicles 
to make round trips between ODs. Lim and Kuby [32] propose 
three heuristic versions for the FRLM. Kuby et al. [33] apply 
two of them to locate hydrogen refueling stations in Florida. 
Capar and Kuby [34] present a new formulation for the FRLM 
that skips the pregeneration of all feasible combinations on 
every path. Capar et al. [35] suggest an arc-cover-path-cover 
model that focuses on the arcs comprising each path, so as to 
solve the problem efficiently without the pregeneration of all 
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In general, drivers o�en deviate from their original paths 
of shortest travel time or distance to be able to refuel their 
vehicles [53]. Both the maximal covering location and the 
set-covering location approaches have been extended to con-
sider driver’s deviation options under a variety of situations. 
Kim and Kuby [54] address the deviation version of the FRLM 
(DFRLM) where drivers are able to deviate from their paths 
of shortest length between ODs, and Kim and Kuby [55] pro-
pose a heuristic algorithm for the DFRLM to solve large-scale 
problems. Huang et al. [56] develop a new model, called the 
multipath refueling location model (MPRLM), by considering 
multiple deviation paths between ODs. For intracity trips that 
require at most one refueling stop, Miralinaghi et al. [47, 48] 
suggest deviation versions of the set-covering location prob-
lem to find potential locations of AF refueling stations. For 
intercity trips of large-scale problems, Yıldız et al. [57] use a 
branch and price algorithm, which does not need pregenera-
tion of path generation, for the AF refueling station location 
problem adding the routing aspect of drivers. Most recently, 
Göpfert and Bock [58] and Arslan et al. [59] suggest novel 
projection and branch and cut methods in dealing with the 
deviation version of the refueling infrastructure planning, so 
as to extend the computational efficiency even further to solve 
large-size problem instances with less computational effort.

2.3. Main Distinctions of Our Research Work. Comparing 
with the literature listed above, we shortly provide the main 
distinctions of our research work over the existing studies as 
follows:

(i)  Our problem is an extension of Hwang et al. [6] prob-
lem to consider potential deviation paths on directed 
transportation networks, such as highway network 
systems. �is leads to consider (1) the mixed set of 
single-access and dual-access candidate sites to locate 
AF refueling stations, and (2) nonsymmetric round 
trips between ODs, where return paths are allowed to 
be different from original paths for refueling services 
in both directions.

(ii)  Our study is well-suited for the AF refueling sta-
tion location problem, specially with LNG vehicles 
traveling long-distance intercity round trips. Some 
number of recent studies, including Miralinaghi  
et al. [47, 48], limits this type of problem only for AF 
vehicles with intracity trips, which needs at most one 
refueling stop per trip. On the other hand, we apply 
covering condition procedures depending on LNG 
vehicle driving range, so as for LNG vehicles trave-
ling intercity trips to allow multiple refueling stops 
at different locations.

(iii)  In our research work, paths are not fixed for every 
OD pair. Instead, paths are flexible to consider 
detour traffic flows. While Kim and Kuby [54, 55] 
and Huang et al. [56] apply Hoffman and Pavley’s 
algorithm [10] and Yen’s algorithm [21] to take devi-
ation paths into account, we develop a new algorithm 
based on Eppstein’s algorithm [12] to rigorously and 
efficiently find � shortest paths allowing repeated ver-
tices along paths within the tolerance (i.e., maximum 

feasible location combinations of stations on each path for the 
FRLM. Jochem et al. [36] apply the Capar et al. [35] model 
to allocate charging stations in the German autobahn. While 
most AF refueling station location problems assume that 
the AF refueling stations can only be located at the vertices, 
Kuby and Lim [37] and Ventura et al. [38] consider additional 
candidate sites along arcs. Kweon et al. [39] extend the 
approach suggested in Ventura et al. [38] to locate a refueling 
station anywhere along a tree network to the case where a 
portion of drivers are willing to deviate to receive refueling 
service. He et al. [40] propose a bilevel model to solve the 
optimal locations of electric charging stations, through taking 
the driving range limitation of an electric vehicle, the battery 
charging time required, and the situation in which some 
electric vehicle drivers possibly charge at home into account.

While Kuby and Lim [30] and the following studies solve 
the AF refueling station location problem using a maximal 
covering location problem, Wang and Lin [41] solve this prob-
lem using a set-covering model with the objective of minimiz-
ing the total cost of locating stations to cover all the traffic flow 
on a given transportation network. Wang and Wang [42] inte-
grate Wang and Lin’s model [41] into the classic set-covering 
model considering vertex-based and flow-based demands for 
the AF refueling station location problem. Since Wang and 
Lin’s model [41] requires a significant computational effort to 
evaluate the effect of the limited vehicle driving range on the 
number of charging stations needed for achieving multiple 
origin-destination intercity travel with electric vehicles on 
Taiwan, MirHassani and Ebrazi [43] propose a novel approach 
by using the conservation of flow law, which is able to solve 
large-scale problems. Chung and Kwon [44] extend MirHassani 
and Ebrazi’s model [43] to a multiperiod planning problem for 
allocating charging stations in the Korea Expressway. Hosseini 
and MirHassani [45] use the idea of MirHassani and Ebrazi’s 
model [43] to propose a two-stage stochastic mixed integer 
programming model for the refueling station location problem, 
where the traffic flow of AF vehicles is uncertain and portable 
AF refueling stations are considered. Kang and Recker [46] use 
the idea of the set-covering problem to locate hydrogen refu-
eling stations with the assumption that at most one refueling 
stop per trip is required in a city. Assuming that vehicles only 
require one refueling stop per trip, two refueling station loca-
tion models, including the versions that consider limited capac-
ity of refueling stations [47], and refueling demand uncertainty 
and driver route choice behavior [48], are developed to mini-
mize the total cost imposed on a planner and drivers over mul-
tiple time periods. Using the Adaptive Large Neighborhood 
Search algorithm [49] and the Adaptive Variable Neighborhood 
Search algorithm [50], locations for battery swap stations and 
electric vehicle routes are determined to provide services with 
the objective of minimizing the sum of the station construction 
cost and routing cost. To minimize the total cost to locate elec-
tric vehicle charging stations in road networks, Gagarin and 
Corcoran [51] suggest a novel approach that searches for the 
dominating set of locations among the candidate locations 
whose distance is below a certain threshold from a given driver. 
Using a parallel computing strategy, Tran et al. [52] propose 
an efficient heuristic algorithm for location of AF refueling 
stations based on the solution of a sequence of subproblems.
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deviation distance) of the driver. �is helps reduce 
the computational effort in solving our proposed 
mixed-integer programming model.

(iv)  We conduct computational experiments on a classical 
25-vertex network (with 300 OD pairs) and a large 
network at Pennsylvania state (with 2,211 OD pairs) 
(1) to evaluate the performance of our research work; 
and (2) to analyze the effects of number of alternative 
paths including deviation paths, maximum deviation 
distance, and vehicle driving range on the optimal 
location as well as the corresponding total traffic flow 
covered.

�e major differences between the proposed model and 
the existing studies that are directly relevant to ours are sum-
marized in Table 2.

3. The AF Refueling Station Location Problem 
with Detour Traffic on a Highway Road System

In this section, we first introduce the AF refueling station loca-
tion problem with detour traffic flows on a highway road sys-
tem, where AF vehicles are able to make detours for refueling 
and to select different paths between original and return trips. 
Next, we provide three small instances to describe concepts 
of feasible paths on a directed simple network in this problem. 
Also, based on the examples, we derive four properties of fea-
sible paths. �en, an algorithm is presented to determine mul-
tiple paths for which the four properties are satisfied for all 
ODs. �is paper aims to locate a given number of AF refueling 
stations on a directed transportation network so as to maxi-
mize the coverage of detour traffic flows by considering mul-
tiple paths between ODs. To this end, a mixed-integer 
programming model will be presented in Section 4.

3.1. Problem Statement. We define the problem on a simple 
directed network �퐺(�푉, �퐸), where �푉 = {v�|�푖 = 1, ⋅ ⋅ ⋅ , �푛�} is the  
set of vertices for ODs, �퐸 = {(v�, v�)|for some v�, v� ∈ �푉} is the set 
of arcs having nonnegative lengths, |�푉| = �푛�, and |�퐸| = �푛�. �e 
road network in this problem has neither loops nor multiple 
parallel road segments in the same direction between any pair 
of vertices. Let �푄 = {�푞(v�, v�)

�儨�儨�儨�儨�儨v�, v� ∈ �푉, �푖 < �푗} be the set of OD 
pairs. For any �푞(v�, v�) ∈ �푄, vehicles perform the same round 
trip, which can be divided into the original path �푃(v�, v�) from 
origin v� to destination v�, and the return path �푃(v�, v�) from 
v� to v�. For convenience, �퐿� = {�푃(v�, v�)| for �푞(v�, v�) ∈ �푄} 
and �퐿 � = {�푃(v�, v�)| for �푞(v�, v�) ∈ �푄} are defined as the sets 
of original and return paths, respectively. Let �푉(�푃(v�, v�)) 
be the set of constituent vertices in path �푃(v�, v�); then, each 
path can be represented as a sequence of vertices such that 
⟨v�푖 = v(0), v(1), ⋅ ⋅ ⋅ , v�푗 = v(w)⟩, where v(�푟), �푟 = 0, 1, ⋅ ⋅ ⋅ ,w, is 
the �-th vertex in �푉(�푃(v�, v�)) and �儨�儨�儨�儨�儨�푉(�푃(v�, v�))

�儨�儨�儨�儨�儨 = w + 1 
is the number of vertices in �푃(v�, v�). Also, the length  
of �푃(v�, v�) is calculated as �푑(�푃(v�푖, v�푗)) = ∑w−1

�푟=0 �푑(v(�푟), v(�푟+1)),  

where �푑(v(�푟), v(�푟+1)) is the arc length from the �-th vertex 
to the next vertex in �푃(v�, v�). Similarly, �푑(�푃(v�, v�)) is 
defined as the length of the return path. If �푑(�푃(v�, v�)) and 
�푑(�푃(v�, v�)) are the shortest distances from v� to v� and from v� 
to v�, respectively, then the corresponding original and return 
paths are denoted as �푃�(v�, v�) and �푃�(v�, v�). Also, we define 
�퐹�(v�, v�) and �퐹�(v�, v�) as the �-th shortest feasible original 
and return paths for OD pair �푞(v�, v�). In Subsections 3.2 and 
3.3, we will discuss in detail the properties of feasible paths.

Next, the locations of candidate sites for AF refueling sta-
tions, denoted as �푀 = {�푚�|�푡 = 1, ⋅ ⋅ ⋅ , �푛�}, are assumed to be 
predetermined, where some candidate sites can only be 
accessed from one side of the road (i.e., single-access) and the 
rest can be accessed from both sides of the road (i.e., dual- 
access). We define �퐶�푆(�퐹�푘(v�푖, v�푗)) = ⟨�푚(0), ⋅ ⋅ ⋅ , �푚(�푓)⟩ as  
the sequence of candidate sites in �퐹�(v�, v�), where 
�푚(0), ⋅ ⋅ ⋅ , �푚(�푓) ∈ �푀, such that 0 ≤ �푓 ≤ �푛� − 1. In order to rep-
resent the distances between v�푖 = v(0), v�푗 = v(w), and site 
�푚(�푙) ∈ �퐶�푆(�퐹�푘(v�푖, v�푗)), such that 0 ≤ �푙 ≤ �푓, �푑�푖�푗�푘(v(0), �푚(�푙)) 
denotes the distance from v(0) to �(�푙) in �퐹�(v�, v�). If (v(�푠), v(�푠+1)) 
is the arc that passes through �(�푙) in �퐶�푆(�퐹�(v�, v�)), such  
that 0 ≤ �푠 < w, then �푑�푖�푗�푘(v(0), �푚(�푙)) is calculated as 
∑�푠−1

�푟=0�푑(v(�푟), v(�푟+1)) + �푑(v(�푠), �푚(�푙)), where v(�푠) is the vertex adja-
cent to �(�푙) and �푑(v(�푠), �푚(�푙)) is the distance from v(�푠) to �(�푙). 
Similarly, �푑�푖�푗�푘(�푚(�푙), v(w)), which refers to the distance from �(�푙) 
to v(w), is calculated as �푑(�푚(�푙), v(�푠+1)) + ∑w−1

�푟=�푠+1�푑(v(�푟), v(�푟+1)), 
where �푑(�푚(�푙), v(�푠+1)) indicates the distance from �(�푙) to v(�푠+1). 
Furthermore, the distance between two candidate sites �(�푙) 
and �푚(��), where �푙 ̸= �푙�, is denoted as �푑�푖�푗�푘(�푚(�푙), �푚(�푙�)). When we 
select the two arcs, (v(�푠), v(�푠+1)) and (v(�푠�), v(�푠�+1)), which 
include �(�푙) and �푚(��), respectively, such that 0 ≤ �푠 ≤ �푠� < w, 

�푑�푖�푗�푘(�푚(�푙), �푚(�푙�)) = ∑�푠�
�푟=�푠�푑(v(�푟), v(�푟+1)) − �푑(v(�푠), �푚(�푙)) − �푑(�푚(�푙�),

v(�푠�+1)). Figure 1 shows a representation of vertex and candi-
date site sequences, as well as distances between vertices and 
candidate sites.

We consider that vehicles make a complete round trip 
between their ODs. �ey have a limited driving range under 
free flow conditions, denoted as �, which refers to the maxi-
mum travel distance with a single refueling. Since vehicles’ 
home locations or final destinations are generally far away 
from highway interchanges, we assume they have at least a 
half-full tank when they enter and exit the road network. From 
now on, we call this assumption the half-full tank assumption. 
�e half-full tank assumption was first introduced by Kuby 
and Lim [30], considering that data about the actual fuel tank 
level of vehicles when entering and exiting a highway road 
system are hard to obtain or likely to be inaccurately estimated. 
�is assumption has been then followed by the existing liter-
ature. �e half-full tank assumption originally aims at ensur-
ing that vehicles can repeat round trips several times without 
running out of fuel during their round trip. �at is, a vehicle 
accessing the last refueling station and reaching the origin/
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is calculated by multiplying the length of the shortest  
path by a positive deviation factor, denoted as �. �en, a pre-
determined maximum number of paths, denoted as �, whose 
length does not exceed the maximum deviation distance is 
nominated for each driving direction. �is implies that, if a 
shortest distance path does not provide refueling service, then 
drivers can select up to � alternative paths for the same OD 
pair depending on their refueling availability and the limited 
additional deviation travel distance. Table 3 summarizes the 

destination with at least a half-full tank is able to make the 
original/return trip from the origin/destination with a half-full 
tank and access the same station without running out of fuel. 
�e half-full tank assumption in our study similarly makes 
vehicles refueled at stations positioned within a distance of 
�푅/2 from their origin interchanges and again at stations placed 
within the same distance from their destination interchanges 
in both the original and return trips. In this respect, we define 
�푆�푆(�퐹�(v�, v�)), �퐸�푆(�퐹�(v�, v�)), and �퐼�푆(�퐹�(v�, v�)) as the follow-
ing three sets of candidate sites in �퐶�푆(�퐹�(v�, v�)), which are 
categorized depending on their distances from v� and v�:

Note that we consider �퐼�푆(�퐹�(v�, v�)) only for �퐹�(v�, v�) such 
that �푑(�퐹�(v�, v�)) > �푅. For return paths, we similarly define 
�퐶�푆(�퐹�(v�, v�)), �푆�푆(�퐹�(v�, v�)), �퐸�푆(�퐹�(v�, v�)), and �퐼�푆(�퐹�(v�, v�)). 
When a feasible set of AF refueling stations is located in 
�푆�푆(�퐹�(v�, v�)), �퐸�푆(�퐹�(v�, v�)), �퐼�푆(�퐹�(v�, v�)), �푆�푆(�퐹�(v�, v�)), 
�퐸�푆(�퐹�(v�, v�)), and �퐼�푆(�퐹�(v�, v�)), the corresponding paths can 
be covered by the refueling stations. In Section 4, we will dis-
cuss in detail the covering conditions that depend on path 
lengths. �e half-full tank assumption can be relaxed using 
Hwang et al.’s [7] model to consider different fuel tank levels 
of vehicles at their origins and destinations when detours are 
available on directed transportation networks, but it is le� for 
future research to mainly focus on addressing the refueling 
station location problem with deviation options on a highway 
road system in this study.

In general, drivers deviate from their preferred paths, e.g., 
the least time or shortest distance paths, in as short a distance 
as possible if the preferred paths do not offer refueling availa-
bility. Also, a GPS navigation system provides a certain number 
of routes to travelers who detour from their familiar paths. In 
this respect, we first consider that vehicles can deviate from 
their shortest path up to a maximum deviation distance, which 

(1)
�푆�푆(�퐹�푘(v�푖, v�푗)) = {�푚(�푙) ∈ �퐶�푆(�퐹�푘(v�푖, v�푗))

�儨�儨�儨�儨�儨�푑�푖�푗�푘(v(0), �푚(�푙)) ≤ �푅
2 },

(2)
�퐸�푆(�퐹�푘(v�푖, v�푗)) = {�푚(�푙) ∈ �퐶�푆(�퐹�푘(v�푖, v�푗))

�儨�儨�儨�儨�儨�儨�푑�푖�푗�푘(�푚(�푙), v(w)) ≤ �푅
2 },

(3)
�퐼�푆(�퐹�푘(v�푖, v�푗)) = {�푚(�푙) ∈ �퐶�푆(�퐹�푘(v�푖, v�푗))

�儨�儨�儨�儨�儨�儨�푑�푖�푗�푘(v(0), �푚(�푙))

> �푅
2 and �푑�푖�푗�푘(�푚(�푙), v(w)) > �푅

2 }.

v(0)

vi

v(1)

m(1)m(0)

dijk (v(0), m(l)) dijk (m(l), m(l´)) dijk (m(l´), v(w))

v(s) v(s+1) v(s´) v(s´+1)

m(l´)m(l)

v(w)

m(f)

vj

Figure 1: A sequence of vertices in �퐹�(v�, v�) with a sequence of candidate sites and distances between vertices and candidate sites.

Table 3: Definition of notations and parameters.

� Simple directed network
� Set of vertices for OD interchange pairs
� Set of arcs
� Set of OD interchange pairs

�푃(v�, v�), �푃(v�, v�)
Original and return paths between inter-
changes v� and v�

�퐿�, �퐿 � Sets of original and return paths
�푉(�푃(v�, v�)) Set of constituent vertices in path �푃(v�, v�)
�푑(�푃(v�, v�)) Length of �푃(v�, v�)

�푃�(v�, v�)
Shortest original path from interchange v� 
to interchange v�

�퐹�(v�, v�)
�-th shortest feasible original path from 
interchange v� to interchange v�

� Set of all candidate sites for AF refueling 
stations

�퐶�푆(�퐹�(v�, v�)) Sequence of candidate sites in �퐹�(v�, v�)

�푑�푖�푗�푘(v(�푟), �푚(�푙))
Distance from the �-th interchange v(�푟) to 
the �-th candidate site �(�푙) in �퐹�(v�, v�)

�푑�푖�푗�푘(�푚(�푙), �푚(�푙
�耠
))

Distance between two candidate sites �(�푙) 
and �(�

�
) in �퐹�(v�, v�)

�푆�푆(�퐹�(v�, v�))
Set of candidate sites that are located 
within a distance of �푅/2 from interchange 
v� in �퐹�(v�, v�)

�퐸�푆(�퐹�(v�, v�))
Set of candidate sites that are located 
within a distance of �푅/2 from interchange 
v� in �퐹�(v�, v�)

�퐼�푆(�퐹�(v�, v�))
Set of candidate sites that are located 
beyond a distance of �푅/2 from both inter-
changes v� and v� in �퐹�(v�, v�)

� Vehicle’s maximum travel distance with a 
single refueling

� Positive deviation factor
� Predetermined maximum number of paths
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cannot reach v11 with at least a half-full tank when they 
exit the network. For the shortest return path, vehicles 
that reenter the network with a half-full tank at v11 cannot 
reach the AF refueling station at site �3. �us, vehicles in 
�푞(v6, v11) would need to make detours using vertex sequence 
⟨v6 = v(0), v7 = v(1), v8 = v(2), v9 = v(3), v10 = v(4), v7 = v(5), v8 = v(6),
v11 = v(7)⟩ for the original path and opposite sequence 
⟨v11 = v(0), v8 = v(1), v9 = v(2), v10 = v(3), v7 = v(4), v6 = v(5)⟩ for  
the return path. �ese two deviation paths are feasible paths 
for �푞(v6, v11). Lastly, suppose that sites �5 and �6 are selected 
as AF refueling stations. Vehicles in �푞(v12, v17) cannot be 
refueled by these two AF refueling stations if they use the 
shortest original and return paths. However, if vehicles 
make multiple cycles at vertex v13, then vertex sequence 
⟨v12 = v(0), v13 = v(1), v14 = v(2), v13 = v(3), v15 = v(4), v13 = v(5),
v17 = v(6)⟩ becomes a feasible original path and vertex sequence 
⟨v17 = v(0), v15 = v(1), v13 = v(2), v12 = v(3)⟩ turn out to be a feasible 
return path for �푞(v12, v17). Note that another vertex sequence 
⟨v17 = v(0), v13 = v(1), v14 = v(2), v13 = v(3), v15 = v(4), v13 = v(5)
v12 = v(6)⟩ also provides AF refueling availability for the return 
path, but drivers would not choose this vertex sequence because 
this path is longer than the path defined by the previous vertex 
sequence ⟨v17 = v(0), v15 = v(1), v13 = v(2), v12 = v(3)⟩. From 
these observations, we can state four feasible path properties 
in the next subsection.

3.3. Four Properties of Feasible Paths. We derive four properties 
of feasible paths on a directed transportation network. Based on 
these four properties, an existing �-th shortest path algorithm 
will be modified in the next subsection to generate multiple 
feasible paths for all OD pairs. Since we consider round trips, 

relevant notation and parameters. Note that data about the 
actual values of deviation factor � and maximum number of 
paths � for each OD pair are difficult to obtain or likely to be 
inaccurately predicted. Besides, different drivers would have 
different standards for the proper values of � and �, as well as 
different vehicle driving ranges �. �us, this study does not fix 
their values. Instead, in Section 5 we change their values for a 
given number of refueling stations to demonstrate the coupled 
effects of these parameters on the coverage of OD traffic flows.

3.2. �ree Small Instances. �e concept of feasible path on a 
directed transportation network is illustrated with three small 
disconnected networks with seventeen vertices {v1, ⋅ ⋅ ⋅ , v17},  
two dual-access candidate sites {�푚1, �푚3}, and five single-
access candidate sites {�푚2, �푚4, �푚5, �푚6, �푚7} in Figure 2. 
Suppose we are trying to determine whether vehicles with 
�푅 = 100 can perform round trips without running out of fuel. 
First, since vehicles are considered to have at least a half-full 
tank at theirs ODs, for �푞(v2, v4), shortest paths �푃�푆(v2, v4) and 
�푃�푆(v4, v2) are feasible because the corresponding trips can 
be covered by placing a single refueling station at site �1.  
However, for �푞(v1, v3), since candidate sites are available 
in neither �푃�푆(v1, v3) nor �푃�푆(v3, v1), drivers need to deviate 
from these paths to receive refueling service in their round 
trips. If a refueling station is located at site �1, then vertex 
sequence ⟨v1 = v(0), v2 = v(1), v4 = v(2), v2 = v(3), v3 = v(4)⟩ 
for the original path and opposite sequence 
⟨v3 = v(0), v2 = v(1), v4 = v(2), v2 = v(3), v1 = v(4)⟩ for the 
return path are feasible paths for �푞(v1, v3). Second, suppose 
that there are two AF refueling stations available at sites 
�3 and �4. �en, the shortest original path of �푞(v6, v11) 
does not offer AF refueling availability because vehicles 
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Figure 2: �ree detour examples of a directed transportation network.
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of �푞(v1, v3) in Figure 2, a feasible vertex sequence 
⟨v1 = v(0), v2 = v(1), v4 = v(2), v2 = v(3), v3 = v(4)⟩ passes through a 
refueling station at dual-access site �1 twice, but in opposite 
directions. In this respect, prior to checking whether paths go 
over candidate sites multiple times, we treat a dual-access 
candidate site as two distinct single-access sites. From this 
observation, we derive the second property for candidate sites 
of feasible paths.

Property 2. For �푞(v�, v�) ∈ �푄, suppose that �퐹�1(v�, v�) is an 
original path that satisfies Property 1 and passes through a 
single-access candidate site �푚�1 ∈ �푀 twice:

�en, there must exist an original path, denoted as 
�퐹�2(v�, v�), that satisfies Property 1 and goes over site ��1 only 
one time, such that �퐶�푆(�퐹�2(v�, v�)) < �퐶�푆(�퐹�1(v�, v�)):

�us, �푑(�퐹�2(v�, v�)) < �푑(�퐹�1(v�, v�)).

Proof. Let �(�푎) and �(�푏) be the �-th and �-th candidate sites in 
�퐶�푆(�퐹�푘1(v�푖, v�푗)) = ⟨�푚(0), ⋅ ⋅ ⋅ �푚(�푎), �푚(�푎+1) ⋅ ⋅ ⋅ , �푚(�푏), �푚(�푏+1), ⋅ ⋅ ⋅ , �푚(�푓)⟩ 
which are located at the same site ��1 such that 0 ≤ �푎 < �푏 ≤ �푓, 
where �푓 = �儨�儨�儨�儨�儨�퐶�푆(�퐹�1(v�, v�))

�儨�儨�儨�儨�儨 − 1. By eliminating all consecutive 
candidate sites from �(�푎+1) to �(�푏) and the corresponding 
arcs in �퐹�1(v�, v�), we can construct path �퐹�2(v�, v�) with 
�퐶�푆(�퐹�푘2(v�푖, v�푗)) = ⟨�푚(0), ⋅ ⋅ ⋅ �푚(�푎), �푚(�푏+1), ⋅ ⋅ ⋅ , �푚(�푓)⟩. �en, 
from Property 1, since �푑�푖�푗�푘1(�푚(�푏), �푚(�푏+1)) ≤ �푅, vehicles at 
�(�푏) can reach �(�푏+1) in �퐹�1(v�, v�). �is implies that vehicles 
at �(�푎) can reach �(�푏+1) in �퐹�2(v�, v�) because �(�푎) and �(�푏) 
are placed at the same site ��1. �us, �퐶�푆(�퐹�2(v�, v�)) is 
a feasible sequence of candidate sites for �퐹�2(v�, v�) and 
�푑(�퐹�2(v�, v�)) < �푑(�퐹�1(v�, v�)). ☐

When drivers decide to make detours from their pre-
planned paths for refueling, they would be reluctant to travel 
along unnecessary paths to reach available refueling stations. 
For instance, let us take an original path of �푞(v1, v3) from the 
previous network in Figure 2. Recall that a vertex  
sequence ⟨v1 = v(0), v2 = v(1), v4 = v(2), v2 = v(3), v3 = v(4)⟩ is 
one of the feasible original paths for �푞(v1, v3). Now, let  
us consider a different vertex sequence defined by 
⟨v1 = v(0), v2 = v(1), v4 = v(2), v5 = v(3), v4 = v(4), v2 = v(5), v3 = v(6)⟩. 
�e candidate site sequence for this second path is 
⟨�푚1 = �푚(0), �푚2 = �푚(1), �푚1 = �푚(2)⟩, which enables successful 
trips from v1 to v3 without running out of fuel. However, drivers 
would not travel further along the subpath of the second path, 
⟨v4 = v(2), v5 = v(3), v4 = v(4)⟩ because they can reach v3 with-
out refueling at site �2. �ey would return at v4 a�er visiting 
the refueling station at site �1, i.e., they would use the first 
feasible path, ⟨v1 = v(0), v2 = v(1), v4 = v(2), v2 = v(3), v3 = v(4)⟩, 

(4)

�퐶�푆(�퐹�푘1(v�푖, v�푗))

= ⟨�푚(0), ⋅ ⋅ ⋅ �푚(�푎), �푚(�푎+1) ⋅ ⋅ ⋅ , �푚(�푏), �푚(�푏+1), ⋅ ⋅ ⋅ , �푚(�푓)⟩,
where �푚�푡1 = �푚(�푎) = �푚(�푏).

(5)�퐶�푆(�퐹�푘2(v�푖, v�푗)) = ⟨�푚(0), ⋅ ⋅ ⋅ �푚(�푎), �푚(�푏+1), ⋅ ⋅ ⋅ , �푚(�푓)⟩.

the four properties are applicable to both feasible original and 
return paths. �e first property represents that feasible paths 
have a proper sequence of candidate sites to be selected for AF 
refueling stations which cover trips in feasible paths.

Property 1. Let �퐹�(v�, v�) be the �-th shortest feasible original 
path from v� to v� that contains feasible candidate sites for AF 
refueling stations to be able to cover trips in �푃(v�, v�), and 
�퐶�푆(�퐹�푘(v�푖, v�푗)) = ⟨�푚(0), ⋅ ⋅ ⋅ , �푚(�푓)⟩ denote the sequence 
of candidate sites in �퐹�(v�, v�), where �푚(0), ⋅ ⋅ ⋅ , �푚(�푓) ∈ �푀.  
According to the cardinality of �퐶�푆(�퐹�(v�, v�)), denoted 
as 

�儨�儨�儨�儨�儨�퐶�푆(�퐹�(v�, v�))
�儨�儨�儨�儨�儨, one of the following two cases must be 

satisfied:

(a)  If �儨�儨�儨�儨�儨�퐶�푆(�퐹�(v�, v�))
�儨�儨�儨�儨�儨 = 1, then �푆�푆(�퐹�(v�, v�)) ∩ �퐸�푆(�퐹�

(v�, v�)) ̸= Ø.
(b)  If 

�儨�儨�儨�儨�儨�퐶�푆(�퐹�(v�, v�))
�儨�儨�儨�儨�儨 > 1, then �푆�푆(�퐹�(v�, v�)) ̸= Ø, 

�퐸�푆(�퐹�(v�, v�)) ̸= Ø, and �푑�푖�푗�푘(�푚(�푙), �푚(�푙+1)) ≤ �푅 for any 
two adjacent candidate sites �푚(�푙), �푚(�푙+1) ∈ �퐶�푆(�퐹�푘(v�푖, v�푗)).

Proof. Since �퐹�(v�, v�) is a feasible path, the half-full tank 
assumption implies that �儨�儨�儨�儨�儨�퐶�푆(�퐹�(v�, v�))

�儨�儨�儨�儨�儨 ≥ 1. In case (a), 
there is a single candidate site available for a refueling 
station on �퐹�(v�, v�), and by the half-full tank assumption, 
this site is located within a distance of �푅/2 from v� and 
v� to ensure that vehicles on �퐹�(v�, v�) make a successful 
trip from v� to v�. �en, by definition of �푆�푆(�퐹�(v�, v�)) and 
�퐸�푆(�퐹�(v�, v�)), this site should be located in the common 
segment in �푆�푆(�퐹�(v�, v�)) ∩ �퐸�푆(�퐹�(v�, v�)). �is implies that 
�푆�푆(�퐹�(v�, v�)) ∩ �퐸�푆(�퐹�(v�, v�)) ̸= Ø.

In case (b), there are at least two candidate sites available 
on �퐹�(v�, v�). If either �푆�푆(�퐹�(v�, v�)) = Ø or �퐸�푆(�퐹�(v�, v�)) = Ø, 
then �퐹�(v�, v�) cannot offer any AF refueling service. �us, 
�푆�푆(�퐹�(v�, v�)) ̸= Ø and �퐸�푆(�퐹�(v�, v�)) ̸= Ø. For any two adja-
cent candidate sites �푚(�푙), �푚(�푙+1) ∈ �퐶�푆(�퐹�푘(v�푖, v�푗)), if 
�푑�푖�푗�푘(�푚(�푙), �푚(�푙+1)) > �푅, then vehicles at site �(�푙) cannot reach site 
�(�푙+1), i.e., �퐹�(v�, v�) does not have AF refueling availability. It 
also contradicts the definition of �퐹�(v�, v�). �us, 
�푑�푖�푗�푘(�푚(�푙), �푚(�푙+1)) ≤ �푅 for any two adjacent candidate sites 
�푚(�푙), �푚(�푙+1) ∈ �퐶�푆(�퐹�푘(v�푖, v�푗)). ☐

In practice, vehicles do not need to visit the same refueling 
station located at a single-access site several times. For exam-
ple, let us consider two return path alternatives of 
�푞(v14, v16) in Figure 2. While a vertex sequence ⟨v16 = v(0),
v15 = v(1), v13 = v(2), v17 = v(3), v15 = v(4), v13 = v(5), v14 = v(6)⟩ 
goes over site �6 twice, vehicles can also use a vertex  
sequence ⟨v16 = v(0), v15 = v(1), v13 = v(2), v14 = v(3)⟩ to travel 
from v16 to v14 with a single visit to site �6. �at is, a shorter 
feasible path is always preferred to a longer feasible path that 
goes through a single-access candidate multiple times.  
On the other hand, it is unavoidable for vehicles to revisit the 
same refueling station when the station is placed at a  
dual-access candidate site. From one of the original paths  
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then we say that �퐹�2(v�, v�) is dominated by �퐹�1(v�, v�). �is 
implies that �퐹�2(v�, v�) is unnecessary to be considered in our 
proposed model. In practice, drivers would use only �퐹�1(v�, v�) 
because �푑(�퐹�1(v�, v�)) ≤ �푑(�퐹�2(v�, v�)). For example, let us take 
the previous example of �푞(v6, v11) in Figure 2. Recall that 
�퐹1(v6, v11) = ⟨v6 = v(0), v7 = v(1), v8 = v(2), v9 = v(3), v10 = v(4),
v7 = v(5), v8 = v(6), v11 = v(7)⟩. �en, we can find another  
feasible original path, which is �퐹2(v6, v11) = ⟨v6 = v(0), v7 = v(1),
v10 = v(2), v9 = v(3), v10 = v(4), v7 = v(5), v8 = v(6), v11 = v(7)⟩ for 
vehicles with �푅 = 100. �ey have the same sequence of 
 candidate sites, but vehicles may prefer �퐹1(v6, v11) to  
�퐹2(v6, v11) because �푑(�퐹1(v6, v11)) = 125 < �푑(�퐹2(v6, v11)) = 145. 
Furthermore, in order to clarify the concept of dominated 
feasible paths, let us see another example of �푞(v14, v16) in 
Figure 2. For the return path, we have two feasible return 
paths, �퐹1(v16, v14) = ⟨v16 = v(0), v15 = v(1), v13 = v(2), v14 = v(3)⟩ and 
�퐹2(v16, v14) = ⟨v16 = v(0), v15 = v(1), v17 = v(2), v13 = v(3), v14 = v(4)⟩, 
such that �퐶�푆(�퐹1(v16, v14)) = ⟨�푚7 = �푚(0), �푚6 = �푚(1), �푚5 = �푚(2)⟩ 
and �퐶�푆(�퐹2(v16, v14)) = ⟨�푚7 = �푚(0), �푚5 = �푚(1)⟩. For �퐹1(v16, v14), 
we have five possible sets of candidate sites to cover the trip, 
i.e., {�6}, {�푚6, �푚5}, {�푚7, �푚6}, {�푚7, �푚5}, and {�푚7, �푚6, �푚5}. In 
case of �퐹2(v16, v14), {�푚7, �푚5} is the only feasible set. �at is, 
�퐶�푆(�퐹2(v16, v14)) ⊆ �퐶�푆(�퐹1(v16, v14)). It means that �퐹2(v16, v14) 
is dominated by �퐹1(v16, v14) because �푑(�퐹1(v16, v14)) = 65
< �푑(�퐹2(v16, v14)) = 100. In this respect, Property 4 shows that 
the shortest feasible paths can dominate other feasible paths 
when the candidate sites of the shortest feasible paths include 
the candidate sites of the other paths.

Property 4. Given �푞(v�, v�) ∈ �푄, let �퐹�1(v�, v�) be the shortest 
feasible original path with �퐶�푆(�퐹�1(v�, v�)). Suppose that 
there exists another feasible original path, denoted as 
�퐹�2(v�, v�), such that �퐶�푆(�퐹�2(v�, v�)) ⊆ �퐶�푆(�퐹�1(v�, v�)) and 
�푑(�퐹�1(v�, v�)) ≤ �푑(�퐹�2(v�, v�)). �en, �퐹�2(v�, v�) is dominated 
by �퐹�1(v�, v�).

Proof. By definition of dominated paths, we need to show that 
any subset of candidate sites to cover the trips in �퐹�2(v�, v�) 
is also able to cover the trips in �퐹�1(v�, v�). Suppose that 
�퐹�푆(�퐹�2(v�, v�)) is a set of candidate sites that covers trips in  
�퐹�2(v�, v�). �is implies that �퐹�푆(�퐹�2(v�, v�)) ⊆ �퐶�푆(�퐹�2(v�, v�)),  
and therefore, �퐹�푆(�퐹�2(v�, v�)) ⊆ �퐶�푆(�퐹�1(v�, v�)) because 
�퐶�푆(�퐹�2(v�, v�)) ⊆ �퐶�푆(�퐹�1(v�, v�)). If �儨�儨�儨�儨�儨�퐹�푆(�퐹�2(v�, v�))

�儨�儨�儨�儨�儨 = 1, then  
it is trivial to show that �퐹�푆(�퐹�2(v�, v�)) can cover trips in  
�퐹�1(v�, v�) because �푑(�퐹�1(v�, v�)) ≤ �푑(�퐹�2(v�, v�)). If  
�儨�儨�儨�儨�儨�퐹�푆(�퐹�2(v�, v�))

�儨�儨�儨�儨�儨 > 1, then we select the first and last 
sequences of candidate sites in �퐹�푆(�퐹�2(v�, v�)), denoted as  
�(�푎) and �(�푏), respectively. When we decompose �퐹�1(v�, v�)  
into ⟨v�푖 = v(0), ⋅ ⋅ ⋅ , �푚(�푎)⟩, ⟨�푚(�푎), ⋅ ⋅ ⋅ , �푚(�푏)⟩, and ⟨�푚(�푏), ⋅ ⋅ ⋅ , v�푗 = v(w)⟩,  
we have that �푑(�퐹�푘1(v�푖, v�푗)) = �푑�푖�푗�푘1(v(0), �푚(�푎)) +�푑�푖�푗�푘1(�푚(�푏), v(w))
+�푑�푖�푗�푘1(�푚(�푎), �푚(�푏)). If �푑�푖�푗�푘2(v(0), �푚(�푎)) ≤ �푅/2 < �푑�푖�푗�푘1(v(0), �푚(�푎)),  
then we can construct a shorter feasible path whose  
length is �푑�푖�푗�푘2(v(0), �푚(�푎)) + �푑�푖�푗�푘1(�푚(�푎), �푚(�푏)) + �푑�푖�푗�푘1(�푚(�푏), v(w)).   

instead of the second one for the original path of �푞(v1, v3). 
Similarly, drivers can consider two possible paths for the 
return path of �푞(v12, v17). While vehicles using a vertex 
sequence ⟨v17 = v(0), v13 = v(1), v14 = v(2), v13 = v(3), v15 = v(4)
v13 = v(5), v12 = v(6)⟩ require each refueling stop at both sites 
�5 and �6, vehicles in a vertex sequence 
⟨v17 = v(0), v15 = v(1), v13 = v(2), v12 = v(3)⟩ need only one refu-
eling stop at site �6. Since the length of the latter path is 
shorter, vehicles in the return path of �푞(v12, v17) would use the 
second vertex sequence instead of the first one. Based on these 
observations, we conclude that drivers would not make detours 
along a vertex sequence which requires unnecessary travel to 
reach available refueling stations. From now on, we call a site 
in unnecessary subpaths an irrelevant candidate site, so that 
feasible paths can be represented by vertex sequences without 
irrelevant candidate sites. Property 3 provides conditions under 
which there exist irrelevant candidate sites in paths.

Property 3. Given two paths, �퐹�1(v�, v�) and �퐹�2(v�, v�), such 
that �푑(�퐹�1(v�, v�)) < �푑(�퐹�2(v�, v�)), which satisfy Properties 1  
and 2, �퐹�2(v�, v�) includes irrelevant candidate sites in set 
�퐶�푆(�퐹�2(v�, v�))\ �퐶�푆(�퐹�1(v�, v�)) when one of the following 
conditions is satisfied:

(a)  If �儨�儨�儨�儨�儨�퐶�푆(�퐹�1(v�, v�))
�儨�儨�儨�儨�儨 = 1, then (1)    �퐶�푆(�퐹�1(v�, v�)) ⊂ �퐶�푆(�퐹�2  

(v�, v�)), and (2) either �푆(�퐹�1(v�, v�)) = �푆�푆(�퐹�2(v�, v�)) 
or �퐸�푆(�퐹�1(v�, v�)) = �퐸�푆(�퐹�2(v�, v�)).

(b)  If �儨�儨�儨�儨�儨�퐶�푆(�퐹�1(v�, v�))
�儨�儨�儨�儨�儨 > 1, then (1) �퐶�푆(�퐹�1(v�, v�)) ⊂ �퐶�푆(�퐹�2

(v�, v�)), (2) �푆�푆(�퐹�1(v�, v�)) = �푆�푆(�퐹�2(v�, v�)), (3)  
�퐸�푆(�퐹�1(v�, v�)) = �퐸�푆(�퐹�2(v�, v�)), and (4) 0 < �푑���1  
(�푚(0), �푚(�푓)) ≤ �푅, where �퐶�푆(�퐹�푘1(v�푖, v�푗)) = ⟨�푚(0), ⋅ ⋅ ⋅ ,

�푚(�)⟩.

Proof. In case (a), suppose that �푚(0) ∈ �푆�푆(�퐹�푘1(v�푖, v�푗)) =
= �푆�푆(�퐹�2(v�, v�)). By Property 1, �푚(0) ∈ �퐸�푆(�퐹�푘1(v�푖, v�푗)), 
which implies that �푑�푖�푗�푘1(�푚(0), v�푗) ≤ �푅/2. �us, any candidate 
site in �퐶�푆(�퐹�2(v�, v�))\ �퐶�푆(�퐹�1(v�, v�)) is irrelevant because 
vehicles covered by a single refueling station at site �(0) can 
complete trips from v� to v�. Similarly, it can be shown when 
�푚(0) ∈ �퐸�푆(�퐹�푘1(v�푖, v�푗)) = �퐸�푆(�퐹�푘2(v�푖, v�푗)).

In case (b), by Condition (4), �푑�푖�푗�푘1(�푚(�푎), �푚(�푏)) ≤ �푅 such that 
�푚(�푎) ∈ �푆�푆(�퐹�푘1(v�푖, v�푗)), �푚(�푏) ∈ �퐸�푆(�퐹�푘1(v�푖, v�푗)), and 0 ≤ �푎 < �푏 ≤ �푓. �is 
implies that any additional refueling stop is unnecessary 
between �(�푎) and �(�푏). �en, by Conditions (1), (2), and (3), 
�퐼�푆(�퐹�2(v�, v�)) ̸= Ø, which implies that �퐹�2(v�, v�) includes 
irrelevant candidate sites. ☐

Given two feasible paths, �퐹�1(v�, v�) and �퐹�2(v�, v�) such 
that �푑(�퐹�1(v�, v�)) ≤ �푑(�퐹�2(v�, v�)), for the same OD pair 
�푞(v�, v�) ∈ �푄, if any subset of candidate sites that covers the 
trips in �퐹�2(v�, v�) is also able to cover the trips in �퐹�1(v�, v�), 
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path of �푃(v�, v�), for �푘 = 1, ⋅ ⋅ ⋅ , �퐾, generated through the min-
heap data structure, is called a candidate path from v� to v� and 
is denoted as �퐹�(v�, v�).

When generating �퐹�(v�, v�), we determine whether or not 
�퐹�(v�, v�) is included in the set of SNDF paths for �푞(v�, v�) by 
Properties 1, 2, 3, and 4. First, �퐹�(v�, v�) needs to have  
AF refueling availability by Property 1. If either 
�푆�푆(�퐹�(v�, v�)) ∩ �퐸�푆(�퐹�(v�, v�)) ̸= Ø when 

�儨�儨�儨�儨�儨�퐶�푆(�퐹
�(v�, v�))

�儨�儨�儨�儨�儨 = 1 
or �푆�푆(�퐹�(v�, v�)) ̸= Ø, �퐸�푆(�퐹�(v�, v�)) ̸= Ø, and �푑�푖�푗�푘(�푚(�푙), �푚(�푙+1)) 
≤ �푅 for �푚(�푙), �푚(�푙+1) ∈ �퐶�푆(�퐹�耠(v�푖, v�푗)) when �儨�儨�儨�儨�儨�퐶�푆(�퐹

�(v�, v�))
�儨�儨�儨�儨�儨 > 1, 

then �퐹�(v�, v�) has AF refueling availability. Second, if �퐹�(v�, v�) 
repeats some single-access candidate sites, then the path is 
excluded from the set of SNDF paths because we also construct 
a similar feasible path without repeating these candidate sites 
whose length is shorter than �푑(�퐹�(v�, v�)) by Property 2. Next, 
regarding Properties 3 and 4,  we compare �퐶�푆(�퐹�(v�, v�)) with 
�퐶�푆(�퐹�(v�, v�))’s when �푘 > 1. If �퐶�푆(�퐹�(v�, v�)) ⊂ �퐶�푆(�퐹�(v�, v�))  
for �푘 = 1, ⋅ ⋅ ⋅ , �퐾 − 1, we diagnose whether or not �퐹�(v�, v�) has 
irrelevant candidate sites by Property 3. If �퐶�푆(�퐹�(v�, v�))
⊆ �퐶�푆(�퐹�(v�, v�)) for �푘 = 1, ⋅ ⋅ ⋅ , �퐾 − 1, then �퐹�(v�, v�) is 
removed from the set of SNDF paths for �푞(v�, v�) because the 
associated OD pair already has shortest feasible paths which 
dominate �퐹�(v�, v�) by Property 4. Until reaching the maxi-
mum number, �, of SNDF paths, Eppstein’s algorithm updates 
a binary heap that includes sets of sidetracked arcs to find the 
next paths. However, the �-th SNDF path algorithm can even 
stop before reaching � if the sum of sidetracked arcs’ δ

v�
(v�, v�) 

on the root of the binary heap becomes greater than the value 
of �훽 ⋅ �푑(�푃�(v�, v�)). �is represents that the length of a newly 
constructed path cannot exceed a maximum deviation dis-
tance of drivers. A�er determining at most � SNDF paths 
from interchanges v�’s to a certain interchange v�, we similarly 
apply the above procedures to other interchanges v�’s. 
Regarding 2�퐾 SNDF paths in �푞(v�, v�), Algorithm 1 describes 
the pseudocode of the �-th SNDF path algorithm for all OD 
pairs.

We prove below that at most 2�퐾 SNDF paths (i.e., up to � 
original paths and another up to � SNDF return paths) for each 
OD pair can be determined by the �-th SNDF path algorithm.

Theorem 1. Given a value for the maximum number of paths, 
�, the �-th SNDF path algorithm generates at most 2�퐾 SNDF 
paths for each OD pair in �.

Proof. A�er transforming � into ��, given �푞(v�, v�) ∈ �푄,  
�퐹�(v�, v�) is generated by Eppstein’s algorithm. �e �-th  
SNDF path algorithm determines �퐶�푆(�퐹�(v�, v�)), and then 
classifies the sequence of candidate sites into �푆�푆(�퐹�(v�, v�)),  
�퐸�푆(�퐹�(v�, v�)), and �퐼�푆(�퐹�(v�, v�)) by measuring 
distances between the sites, v� and v�. �e algorithm 
checks first whether or not �퐹�(v�, v�) meets Properties  
1 and 2. Next, if the corresponding OD pair already 
has SNDF paths, then �퐶�푆(�퐹�(v�, v�)) is compared with 
�퐶�푆(�퐹�(v�, v�)) for �푘 = 1, ⋅ ⋅ ⋅ , �퐾 − 1 by Properties 3 and 4.  

It contradicts that �퐹�1(v�, v�) is the shortest feasible 
path. �us, �푑�푖�푗�푘1(v(0), �푚(�푎)) ≤ �푅/2. Similarly, it can be 
shown that �푑�푖�푗�푘1(�푚(�푏), v(w)) ≤ �푅/2. Furthermore, if 
�푑�푖�푗�푘2(�푚(�푙), �푚(�푙+1)) ≤ �푅 < �푑�푖�푗�푘1(�푚(�푙), �푚(�푙+1)) such that �푎 ≤ �푙 < �푏, 
then it also contradicts that �퐹�1(v�, v�) is the shortest feasible 
path. �us, �퐹�푆(�퐹�2(v�, v�)) can cover trips in �퐹�1(v�, v�) by 
Property 1. ☐

3.4. �-th Shortest Nondominated Feasible Path Algorithm. In 
this subsection, we describe the �-th shortest nondominated 
feasible (SNDF) path algorithm to generate multiple paths that 
(1) offer AF refueling availability, (2) contain unique single-
access candidate sites, (3) do not have irrelevant candidate 
sites, and (4) are not dominated by other paths for all OD 
pairs. We extend the �-th shortest path algorithm developed 
by Eppstein [12] to first construct candidate paths between 
ODs for SNDF paths, and then eliminate some of the paths 
that violate the four properties discussed on the previous 
subsection. Finally, given a deviation factor � and a maximum 
number � of SNDF paths, the �-th SNDF path algorithm 
determines up to � SNDF paths from v� to v� and another up 
to � SNDF paths from v� to v�.

�e first step of the �-th SNDF path algorithm is to trans-
form a simple directed network �퐺(�푉, �퐸) with the set of �� ver-
tices and the set of �� arcs into an expanded directed network, 
denoted as �퐺�(�푉�, �퐸�), by transforming each dual-access can-
didate site in � into two distinct single-access candidate sites, 
one in each side of the road, and setting all candidate sites in 
� as vertices in ��. �en, the maximum cardinalities of  
�� and �� can be written as �儨�儨�儨�儨�푉��儨�儨�儨�儨 = �푛� + �푛�� + 2�푛�� and �儨�儨�儨�儨�퐸��儨�儨�儨�儨 = �푛� + 2�푛�� + 4�푛��, respectively, where ��� and ��� refer 
to the number of single- and dual-access candidate sites. Next, 
for interchange v� ∈ �푉�, �

v�
 denotes a shortest path arbores-

cence rooted at vertex v� containing the shortest path to each 
v� in �푉�\ {v�}. �e shortest path arborescence �

v�
 for inter-

change v� in �퐺�(�푉�, �퐸�) can be constructed using Dijkstra’s 
algorithm in time �푂(�儨�儨�儨�儨�퐸��儨�儨�儨�儨 + �儨�儨�儨�儨�푉��儨�儨�儨�儨log�儨�儨�儨�儨�푉��儨�儨�儨�儨). Let �(�

v�
) denote the 

set of arcs composing �
v�

. If we select arc (v�, v�) ∈ �퐸�\ �퐸(�푇
v�
) 

and follow the shortest path from v� to v� instead of  
taking the shortest path in �

v�
, then the additional  

distance from �
v�

, denoted as δ
v�
(v�, v�), is computed as: 

δ
v�
(v�, v�) = �푑(v�, v�) + �푑(�푃�(v�, v�)) − �푑(�푃�(v�, v�)) ≥ 0. 

Note that δ
v�
(v�, v�) > 0 for (v�, v�) ∈ �퐸�\ �퐸(�푇

v�
) and 

δ
v�
(v�, v�) = 0 for (v�, v�) in �

v�
. �is implies that we can cal-

culate the length of path �푃(v�, v�) by adding the values of 
δ
v�
(v�, v�) for the arcs in �푃(v�, v�) to the length of �푃�(v�, v�) 

since δ
v�
(v�, v�) = 0 for (v�, v�) in �푃�(v�, v�). �ese arcs aside 

from �푃�(v�, v�) do not belong to �
v�

, and Eppstein’s algorithm 
calls these arcs the sidetracks of �푃�(v�, v�). �e sidetracks are 
used to generate the k-shortest path of �푃(v�, v�). For �푃(v�, v�),  
a special tree-based data structure, called the min-heap data 
structure, in which it is a completely binary tree with data 
structure in a nondecreasing order of values of sidetracks, is 
applied to build � shortest paths of �푃(v�, v�) using the depth 
first search algorithm in time �(� log �). �e k-th shortest 
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for �푘 = 1, ⋅ ⋅ ⋅ , �퐾 − 1, then �퐹�(v�, v�) is not included in the 
set of SNDF paths for �푞(v�, v�). Otherwise, the algorithm 
assigns �퐹�(v�, v�) to the �-th SNDF path �퐹�(v�, v�) and 
increases the value of � by one. If �푘 ≤ �퐾, a next temporary 
path can be constructed by adding new sequences of 
sidetracked arcs into �

v�
. �e additional distance of the 

next path can be calculated as ∑(v� ,v�)∈�퐴�퐸(�푃�(v� ,v�))δv�(v�푎, v�푏),  
where �퐴�퐸(�푃�(v�, v�)) is the set of newly added arcs and 
δ
v�
(v�, v�) = �푑(v�, v�) + �푑(�푃�(v�, v�)) − �푑(�푃�(v�, v�)). If the 

additional travel distance does not exceed �훽 ⋅ �푑(�푃�(v�, v�)), 
then the above processes are repeated until �푘 > �퐾. Otherwise, 
the algorithm moves to the next interchange v� in the shortest 
path arborescence �

v�
. A�er determining at most � SNDF 

paths, we repeat the algorithm by building a new shortest path 
arborescence for other interchanges. �erefore, for each OD 
pair, this algorithm determines up to � SNDF paths from origin 
to destination and up to � other SNDF paths from destination 
to origin, which leads to at most 2�퐾 SNDF paths. ☐

Since the original network � has single- and dual-access can-
didate sites for AF refueling stations, vehicles can select differ-
ent return paths from their SNDF original paths when they 
come back to their origin interchanges. �is means that non-
symmetric round trips can be considered for each OD pair in 
our proposed model. In practice, drivers would make different 
detours from their SNDF original paths if the original paths 
do not provide AF refueling service in the opposite direction. 
For convenience, �̂퐿� = {�퐹�(v�, v�)|�푘 = 1, ⋅ ⋅ ⋅ , �퐾, ∀�푞(v�, v�) ∈ �푄} 
and �̂퐿� = {�퐹�(v�, v�)|�푘 = 1, ⋅ ⋅ ⋅ , �퐾, ∀�푞(v�, v�)∈ �푄} denote the 
sets of all � SNDF original paths and � SNDF return paths 
for all OD pairs, respectively.

Theorem 2. In order to generate 2�퐾 SNDF original 
and return paths for all OD pairs, the complexity 
of the �-th SNDF path algorithm takes time 
�푂(|�푉|(�儨�儨�儨�儨�퐸�耠�儨�儨�儨�儨 + �儨�儨�儨�儨�푉�耠�儨�儨�儨�儨log�儨�儨�儨�儨�푉�耠�儨�儨�儨�儨 + |�푉|(�퐾|�푀|2 + �儨�儨�儨�儨�퐸�耠�儨�儨�儨�儨)�퐾 log�퐾)), where �儨�儨�儨�儨�푉��儨�儨�儨�儨 = �푛� + �푛�� + 2�푛�� and �儨�儨�儨�儨�퐸��儨�儨�儨�儨 = �푛� + 2�푛�� + 4�푛��. Recall 
that |�푉| = �푛�, |�퐸| = �푛�, and |�푀| = �푛�. Also, ��� and ��� 
refer to the number of single- and dual-access candidate sites, 
respectively.

Proof. Time �(���) is required to transform �퐺(�푉, �퐸) with 
the set of all candidate sites to a simple expanded directed 
network �퐺�(�푉�, �퐸�) by regarding dual-access candidate 
sites as two distinct single-access candidate sites on arcs. 
Given ��, the basic version of Eppstein’s algorithm takes 
time �푂(�儨�儨�儨�儨�푉��儨�儨�儨�儨 + �儨�儨�儨�儨�푉��儨�儨�儨�儨log�儨�儨�儨�儨�푉��儨�儨�儨�儨 + |�푉|�퐾 log �퐾) to find the �-th 
shortest path to v� from any other interchanges. In time 
�푂(�儨�儨�儨�儨�퐸��儨�儨�儨�儨 + �儨�儨�儨�儨�푉��儨�儨�儨�儨log�儨�儨�儨�儨�푉��儨�儨�儨�儨), the algorithm constructs a shortest 
path arborescence and a min-heap data structure to output 
 �퐹�(v�, v�). �en, in time �(� log�), it generates �퐹�(v�, v�)’s  
from a specific interchange to v�. A�er we construct 
�퐶�푆(�퐹�(v�, v�)) and classify �퐶�푆(�퐹�(v�, v�)) into �푆�푆(�퐹�(v�, v�)),  
�퐸�푆(�퐹�(v�, v�)), and �퐼�푆(�퐹�(v�, v�)), it takes time �푂(|�푀|2 + �儨�儨�儨�儨�퐸�耠�儨�儨�儨�儨)  
for Property 1. Next, we find out which candidate sites are  
repeated in �퐹�(v�, v�) in time �푂(|�푀|2) for Property 2. Also,  

If �퐶�푆(�퐹�(v�, v�)) ⊂ �퐶�푆(�퐹�(v�, v�)) for �푘 = 1, ⋅ ⋅ ⋅ , �퐾 − 1,  
then the algorithm checks whether or not �퐹�(v�, v�) has 
irrelevant candidate sites. If �퐶�푆(�퐹�(v�, v�)) ⊆ �퐶�푆(�퐹�(v�, v�)) 

Algorithm 1:  �-th SNDF Path Algorithm
Input:  �퐺(�푉, �퐸),�푀, �푅, �훽, and �
Output:  �퐺�(�푉�, �퐸�), sets of all � SNDF original paths, 

and � SNDF return paths for all OD pairs
 Construct an expanded directed network �� by trans-
forming dual-candidate sites into two separate sin-
gle-candidate sites on each direction and adding all sites 
to � as vertices.
 Set �푗 = 1.
Repeat
   Build a shortest path arborescence �

v�
 rooted at vertex 

v�.
  Set �푖 = 1, �푖 ̸= �푗.
  Repeat
    Set �푘 = 0.
     Construct a min binary heap data structure, 

denoted as �퐻(v� ,v�), with sequences of sidetracked 
arcs using the corresponding values of δ

v�
(v�, v�),  

∀(v�, v�) ∈ �퐸(�퐺�), through Eppstein’s algorithm. 
Note that the binary heap initially has the empty 
sequence of sidetracked arcs because the empty 
sequence of sidetrack arcs represents �푃�(v�, v�).

    Repeat
        Construct a candidate path �퐹�(v�, v�) by insert-

ing a sequence of sidetracked arcs on the root of 
�퐻(v� ,v�) into �

v�
.

         Construct �퐶�푆(�퐹�(v�, v�)), �푆�푆(�퐹�(v�, v�)),
�퐸�푆(�퐹�(v�, v�)), and �퐼�푆(�퐹�(v�, v�)).

       If �퐹�(v�, v�) is satisfied with Properties 1, 2, 3, 
and 4, then define �퐹�(v�, v�), �푆�푆(�퐹�(v�, v�)),  
�퐸�푆(�퐹�(v�, v�)) and �퐼�푆(�퐹�(v�, v�)) as �퐹�(v�, v�),  
�푆�푆(�퐹�(v�, v�)), �퐸�푆(�퐹�(v�, v�)), and �퐼�푆(�퐹�(v�, v�)),  
respectively, and set �푘 = �푘 + 1.

       Remove the current sequence of sidetracked arcs 
on the root of �퐻(v� ,v�), and insert new sequences 
of sidetracked arcs from the min-heap data 
structure to the binary heap �퐻(v� ,v�) by main-
taining the min-heap property.

    Until �푘 > �퐾, ∑(v� ,v�)∈�퐴�퐸(�푃�(v� ,v�))δv�(v�푎, v�푏) > �훽 ⋅ �푑
(�푃�(v�, v�)), or the min-heap data structure does 
not have any sidetracked arcs.

   Set �푖 = �푖 + 1.
   Until � reaches �푛� + 1.
   Set �푗 = �푗 + 1.
Until � reaches �푛� + 1.

Algorithm 1: Overview of the �-th SNDF path algorithm for 
constructing at most 2�퐾 SNDF paths.
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(iii)   Type 2 �-th SNDF original path: �퐹(2)
�푘 (v�푖, v�푗) = {�퐹�푘(v�푖,

v�) ∈ �̂퐿�|�푅 < �푑(�퐹�(v�, v�))},
(iv)   Type 2 �-th SNDF return path: �퐹(2)

�푘 (v�푗, v�푖) = {�퐹�푘(v�푗,
v�) ∈ �̂퐿�|�푅 < �푑(�퐹�(v�, v�))}.

4.1. Coverage for Type 1 �-th SNDF Path. In case of Type 1 
�-th SNDF original paths, since the distance between two 
candidate sites in �푆�푆(�퐹(1)

�푘 (v�푖, v�푗)) and �퐸�푆(�퐹(1)
�푘 (v�푖, v�푗)) is 

at most �, vehicles can travel from v� to v� by visiting two 
refueling stations at the sites. Sometimes, if there exists a 
single candidate site in the common area of �푆�푆(�퐹(1)

�푘 (v�푖, v�푗)) 
and �퐸�푆(�퐹(1)

�푘 (v�푖, v�푗)), then locating a refueling station at this 
common area is sufficient to cover trips on Type 1 �-th SNDF 
original paths. �us, for proper AF refueling availability 
on Type 1 �-th SNDF original paths, AF refueling stations 
should be located at either one common or two distinct 
candidate sites in �푆�푆(�퐹(1)

�푘 (v�푖, v�푗)) and �퐸�푆(�퐹(1)
�푘 (v�푖, v�푗)). 

Figure 3 depicts trips in �퐹(1)
�푘 (v�푖, v�푗) covered by AF refueling 

stations at either �푚(1) ∈ �푆�푆(�퐹(1)
�푘 (v�푖, v�푗)) ∩ �퐸�푆(�퐹(1)

�푘 (v�푖, v�푗)) or 
�푚(0) ∈ �푆�푆(�퐹(1)

�푘 (v�푖, v�푗)) and �푚(2) ∈ �퐸�푆(�퐹(1)
�푘 (v�푖, v�푗)). Similar 

covering conditions are also applied to Type 1 �-th SNDF 
return paths.

4.2. Coverage for Type 2 �-th SNDF Path. When two candidate 
sites in each �푆�푆(�퐹(2)

�푘 (v�푖, v�푗)) and �퐸�푆(�퐹(2)
�푘 (v�푖, v�푗)) are available 

to locate AF refueling stations on Type 2 SNDF original paths, 
the distance between the two sites can be longer than � because 
the length of Type 2 �-th SNDF original paths is greater than 
�. �at is, if vehicles at a station in �푆�푆(�퐹(2)

�푘 (v�푖, v�푗)) cannot 
reach the other stations in �퐸�푆(�퐹(2)

�푘 (v�푖, v�푗)) due to the limited 
driving range, then additional refueling stations at candidate 
sites in �퐼�푆(�퐹(2)

�푘 (v�푖, v�푗)) should be located to ensure that the 
distance between consecutive stations is less than or equal to 
�. In order to consider this covering condition for Type 2 �-th 
SNDF original paths, we define identification coefficients that 
indicate whether a vehicle that is refueled at a station located in a 
candidate site can reach another station located at a subsequent 
candidate site to receive refueling services. For candidate sites 
in �푈�푆(�퐹(2)

�푘 (v�푖, v�푗)) = {�푚(�푙�) ∈ �퐼�푆(�퐹(2)
�푘 (v�푖, v�푗)) ∪ �퐸�푆(�퐹(2)

�푘 (v�푖, v�푗))},  
we determine identification coefficients and use them as 
constraint coefficients for covering conditions of Type 2 �-th 
SNDF original paths in our proposed model.

�e values of identification coefficients �훼�푘,�푚(�푙) ,�푚(�푙�耠), where 
�푚(�푙) ∈ �퐶�푆(�퐹(2)

�푘 (v�푖, v�푗)) and �푚(�푙�) ∈ �푈�푆(�퐹(2)
�푘 (v�푖, v�푗)), are deter-

mined as follows:

Identification coefficient �훼�푘,�푚(�푙) ,�푚(�푙�耠) = 1 indicates that site  
�푚(��) follows �(�푙) along the �-th path and their distance is  
less than or equal to �. In an example in Figure 4, we have 

(6)

�훼�푘,�푚(�푙) ,�푚(�푙�耠) =
{{{
{{{
{

1, if �푑�푖�푗�푘(v(0), �푚(�푙)) < �푑�푖�푗�푘(v(0), �푚(�푙�耠)) and

0 < �푑�푖�푗�푘(�푚(�푙), �푚(�푙�耠)) ≤ �푅,
0, otherwise.

when �푘 > 1, time �푂(�퐾|�푀|2) is required to compare 
�퐶�푆(�퐹�(v�, v�)) with �퐶�푆(�퐹�(v�, v�)) for Properties 3 and 4. 
�ese processes are repeated until either � feasible paths are 
generated or the length of a newly constructed path does not 
exceed (1 + �훽) ⋅ �푑(�푃�(v�, v�)) in time �푂((�퐾|�푀|2 + �儨�儨�儨�儨�퐸�耠�儨�儨�儨�儨)�퐾 log �퐾).  
Next, we move to other interchanges v�’s, ∀v� ∈ �푉(�퐺), �푖 ̸= �푗, 
which requires time �푂(|�푉|(�퐾|�푀|2 + �儨�儨�儨�儨�퐸�耠�儨�儨�儨�儨)�퐾 log �퐾). In summary, 
generating � SNDF paths from other interchanges to a  
certain interchange v� requires time �푂(�儨�儨�儨�儨�퐸��儨�儨�儨�儨 + �儨�儨�儨�儨�푉��儨�儨�儨�儨log�儨�儨�儨�儨�푉��儨�儨�儨�儨 + |�푉|
(�퐾|�푀|2 + �儨�儨�儨�儨�퐸�耠�儨�儨�儨�儨)�퐾 log �퐾). Finally, since the number of 
interchanges for ODs is |�푉|, the total computational 
complexity of the algorithm takes time �푂(|�푉|(�儨�儨�儨�儨�퐸��儨�儨�儨�儨 + �儨�儨�儨�儨�푉��儨�儨�儨�儨log�儨�儨�儨�儨�푉��儨�儨�儨�儨+|�푉|(�퐾|�푀|2 + �儨�儨�儨�儨�퐸�耠�儨�儨�儨�儨)�퐾 log �퐾)) in order to generate 2�퐾 SNDF 
original and return paths in all OD pairs. ☐

4. Model Formulation

Due to the limited driving range and the amount of fuel 
remaining at ODs, AF refueling stations should be properly 
placed at candidate sites along paths to ensure vehicles safely 
travel from one point to another without running out of fuel. 
In other words, in order to cover trips on �퐹�(v�, v�), when 
�푑(�퐹�(v�, v�)) > �푅, at least one AF refueling station should be 
located at each candidate site in �푆�푆(�퐹�(v�, v�)) and 
�퐸�푆(�퐹�(v�, v�)), and then locating additional stations at candi-
date sites in �퐼�푆(�퐹�(v�, v�)) are required if the distance between 
the two candidate sites in �푆�푆(�퐹�(v�, v�)) and �퐸�푆(�퐹�(v�, v�)) is 
greater than �. On the other hand, when �푑(�퐹�(v�, v�)) ≤ �푅, 
since the distance between the two candidate sites in 
�푆�푆(�퐹�(v�, v�)) and �퐸�푆(�퐹�(v�, v�)) is less than or equal to �, 
additional AF refueling stations are unnecessary to be consid-
ered for AF refueling stations between the sites in �푆�푆(�퐹�(v�, v�)) 
and �퐸�푆(�퐹�(v�, v�)). Similar covering conditions are applied to 
the return path. From this observation, the following types of 
�-th SNDF path are defined according to �푑(�퐹�(v�, v�)) and 
�푑(�퐹�(v�, v�)) for �퐹�(v�, v�) and �퐹�(v�, v�), respectively, in OD 
pairs �푞(v�, v�) ∈ �푄:

(i)   Type 1 �-th SNDF original path: �퐹(1)
�푘 (v�푖, v�푗)

= {�퐹�(v�, v�) ∈ �̂퐿�|0 < �푑(�퐹�(v�, v�)) ≤ �푅},
(ii)  Type 1 �-th SNDF return path: �퐹(1)

�푘 (v�푗, v�푖)
= {�퐹�(v�, v�) ∈ �̂퐿�|0 < �푑(�퐹�(v�, v�)) ≤ �푅},

SS (Fk(1)(vi,vj))

vi vj

m(2)m(1)m(0)

ES (Fk(1)(vi,vj))

Figure 3: An example of Type 1 �-th SNDF original path.
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subject to

In this formulation, the objective function (10) maximizes the 
traffic flow that is covered by the set of AF refueling stations 

(11)
∑

�푚�∈�푆�푆(�퐹�(v� ,v�))
�푥�푚�

≥ �푦�푘,v� ,v� , ∀�퐹�푘(v�푖, v�푗) ∈ �̂퐿�표, �푘 = 1, ⋅ ⋅ ⋅ , �퐾,

(12)
∑

�푚�∈�퐸�푆(�퐹�(v� ,v�))
�푥�푚�

≥ �푦�푘,v� ,v� , ∀�퐹�푘(v�푖, v�푗) ∈ �̂퐿�표, �푘 = 1, ⋅ ⋅ ⋅ , �퐾,

(13)
∑

�푚�∈�푆�푆(�퐹�(v� ,v�))
�푥�푚�

≥ �푦�푘,v� ,v� , ∀�퐹�푘(v�푗, v�푖) ∈ �̂퐿�푟, �푘 = 1, ⋅ ⋅ ⋅ , �퐾,

(14)
∑

�푚�∈�퐸�푆(�퐹�(v� ,v�))
�푥�푚�

≥ �푦�푘,v� ,v� , ∀�퐹�푘(v�푗, v�푖) ∈ �̂퐿�푟, �푘 = 1, ⋅ ⋅ ⋅ , �퐾,

(15)

∑
�푚�푡∈�퐶�푆(�퐹(2)

�푘 (v�푖 ,v�푗))
�훼�푘,�푚�푡 ,�푚�푡�耠

�푥�푚�푡
≥ �푦�푘,v�푖 ,v�푗 , ∀�푚�푡�耠 ∈ �푈�푆(�퐹(2)

�푘 (v�푖, v�푗)),

∀�퐹(2)
�푘 (v�푖, v�푗) ∈ �̂퐿�표, �푘 = 1, ⋅ ⋅ ⋅ , �퐾,

(16)

∑
�푚�푡∈�퐶�푆(�퐹(2)

�푘 (v�푗 ,v�푖))
�훼�푘,�푚�푡 ,�푚�푡�耠

�푥�푚�푡
≥ �푦�푘,v�푗 ,v�푖 , ∀�푚�푡�耠 ∈ �푈�푆(�퐹(2)

�푘 (v�푗, v�푖)),

∀�퐹(2)
�푘 (v�푗, v�푖) ∈ �̂퐿�푟, �푘 = 1, ⋅ ⋅ ⋅ , �퐾,

(17)∑
�푘=1,⋅⋅⋅ ,�퐾

�푦�푘,v� ,v� ≥ �푧
v� ,v� , ∀�푞(v�푖, v�푗) ∈ �푄,

(18)∑
�푘=1,⋅⋅⋅ ,�퐾

�푦�푘,v� ,v� ≥ �푧
v� ,v� , ∀�푞(v�푖, v�푗) ∈ �푄,

(19)∑
�푚�∈�푀

�푥�푚�
= �푝,

(20)�푥��
∈ {0, 1}, ∀�푚� ∈ �푀,

(21)�푦�푘,v� ,v� ∈ {0, 1}, ∀�퐹�푘(v�푖, v�푗) ∈ �̂퐿�표, �푘 = 1 ⋅ ⋅ ⋅ �퐾,

(22)�푦�푘,v� ,v� ∈ {0, 1}, ∀�퐹�푘(v�푗, v�푖) ∈ �̂퐿�푟, �푘 = 1 ⋅ ⋅ ⋅ �퐾,

(23)�푧
v� ,v� ∈ {0, 1}, ∀�푞(v�푖, v�푗) ∈ �푄.

�퐶�푆(�퐹(2)
�푘 (v�푖, v�푗)) = ⟨�푚(0), �푚(1), �푚(2), �푚(3), �푚(4)⟩ and �푈�푆(�퐹(2)

�푘 (v�푖, v�푗))
= {�푚(2), �푚(3), �푚(4)}. If �푑�푖�푗�푘(�푚(0), �푚(3)) > �푅, �푑�푖�푗�푘(�푚(1), �푚(3)) ≤ �푅, 
and �푑�푖�푗�푘(�푚(2), �푚(3)) ≤ �푅, then the corresponding identification 
coefficients for site �(3) are set as �훼�푘,�푚(0) ,�푚(3)

= 0, �훼�푘,�푚(1) ,�푚(3)
= 1, 

�훼�푘,�푚(2) ,�푚(3)
= 1, �훼�푘,�푚(3) ,�푚(3)

= 0, and �훼�푘,�푚(4) ,�푚(3)
= 0. �ese values 

mean that a refueling station must be located at either site  
�(1) or �(2), so as to reach site �(3) in �퐹(2)

�푘 (v�푖, v�푗). Note that 
Hwang et al. [6] apply a similar procedure that uses identifi-
cation coefficients to setup coverage restrictions to a unique 
path for each OD pair. For Type 2 �-th SNDF return paths, 
�푈�푆(�퐹(2)

�푘 (v�푗, v�푖)) is similarly defined to determine identification 
coefficients.

4.3. Mixed-Integer Programming Model. Given a 
predetermined maximum number of feasible paths and 
predetermined locations of candidate sites for AF refueling 
stations on a directed transportation network, a mixed-integer 
programming model is formulated to select the � optimal 
station locations that maximize the traffic flow covered (in 
round trips per time unit) along multiple feasible original and 
return paths between ODs. We first introduce two types of 
parameters and three types of decision variables as follows:

4.3.1. Parameters.
�푓(v�, v�): average traffic flow in round trips per time unit 
between interchanges v� and v�,
��푘,�푚� ,�푚��

: identification coefficient for sites �� and ��� for Type 
2 �-th SNDF path.

4.3.2. Decision Variables.

�en, we propose the following a mixed-integer programming 
model:

(7)�푥��
= { 1, if refueling station location �푚� ∈ �푀 is selected,

0, otherwise,

(8)

�푦�푘,v� ,v� =
{{
{{
{

1, if the �푘 − th SNDF path from v�푖 �푡�표 v�푗 is covered
by the current set of refueling stations,

0, otherwise,

(9)

�푧
v� ,v� =

{{
{{
{

1, if the round trip of traffic flow �푓(v�푖, v�푗) i�푠
covered by the current set of refueling stations,

0, otherwise.

(10)
maximize ∑

�푞(v� ,v�)∈�푄
�푓(v�푖, v�푗)�푧v� ,v� ,

SS (Fk(2)(vi,vj))

vi

m(0) m(1)
m(2) m(3) m(4)

vj

IS (Fk(2)(vi,vj)) ES (Fk(2)(vi,vj))

Figure 4: An example of Type 2 �-th SNDF original path.
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candidate sites on Type 2 SNDF return paths. In addition, 
since round trips in OD pairs are considered in this problem, 
all possible combinations of original and return paths are 
determined by Constraint sets (17) and (18), respectively. 
�ese constraint sets ensure vehicles on a directed transpor-
tation network to make nonsymmetric round trips if necessary 
for refueling service. Constraint (19) allows exactly � AF refu-
eling stations to be located at the predetermined candidate site 
locations. Lastly, the three kinds of binary decision variables 
are defined in Constraint sets (20) to (23).

�e main stakeholders of the proposed model that maxi-
mizes the covered traffic flows can be shareholders, investors, 
employers and employees, and any other private entities whose 
stake is directly or indirectly tied to this objective function, 
assuming that the revenue is proportional to the traffic flow 

located at the � selected candidate sites on the transportation 
network. Constraint sets (11) and (12) guarantee that trips 
along � SNDF original paths of Types 1 and 2 receive refueling 
service from one station in set of candidate sites �푆�푆(�퐹�(v�, v�)) 
and another one in set of candidate sites �퐸�푆(�퐹�(v�, v�)). �e  
�-th SNDF return paths have similar refueling conditions in 
Constraint sets (13) and (14). Next, coefficients in Constraint 
set (15) are determined by identification coefficients ��푘,�푚� ,�푚��

 
for �푚�푡 ∈ �퐶�푆(�퐹(2)

�푘 (v�푖, v�푗)) and �푚�푡� ∈ �푈�푆(�퐹(2)
�푘 (v�푖, v�푗)), where 

�훼�푘,�푚� ,�푚��
= 1 if �푑���(v�, �푚�) < �푑���(v�, �푚��) and 0 < �푑���(�푚�, �푚��) ≤ �푅; 

otherwise, �훼�푘,�푚� ,�푚��
= 0. �is constraint set guarantees that, if 

a refueling station is located at ��� in �푈�푆(�퐹(2)
�푘 (v�푖, v�푗)), then one 

of sites in �퐶�푆(�퐹(2)
�푘 (v�푖, v�푗)) should be selected to locate another 

station which would provide refueling for vehicles to reach 
the station at ���. Similarly, Constraint set (16) is applied to 
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Figure 5: Test network with 300 OD pairs and 25 candidate sites [61].

Table 4: Computational time for �푝 = 1–25 (in sec).

� � �훽 = 0 �훽 = 50% �훽 = 100%
P1 P2 P3 P1 P2 P3 P1 P2 P3

1
15 24.22 0.33 0.55 30.28 0.41 0.88 33.16 0.45 0.94
20 23.88 0.30 0.67 24.07 0.34 0.75 24.42 0.32 0.80
30 23.82 0.24 0.65 23.83 0.24 0.75 23.88 0.26 0.69

3
15 24.31 0.40 0.68 36.42 0.99 2.97 45.05 0.98 3.68
20 24.21 0.38 0.86 28.03 0.68 2.72 31.74 0.74 3.74
30 24.11 0.35 0.85 26.26 0.44 2.03 27.42 0.48 2.82

5
15 24.16 0.48 0.75 43.09 1.49 4.79 56.30 1.61 8.40
20 24.04 0.44 0.95 33.46 1.07 4.42 39.98 1.10 8.40
30 24.25 0.40 1.22 30.61 0.68 2.76 33.53 0.69 3.86
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time because it is directly related to the problem size. In the  
�-th SNDF path algorithm, 2�퐾 SNDF original and return paths 
are generated for all OD pairs, so that the number of decision 
variables and constraints in the mathematical model for this 
optimization application largely increase as � increases. 
However, the results show that, the longer the limited driving 
range, the shorter the computational time. �is can be 
explained by the relationship between the limited driving 
range and Type 2 SNDF paths. �at is, if the limited driving 
range is sufficiently large, the paths that satisfy the four prop-
erties of feasible paths are quickly determined and the number 
of constraints for Type 2 SNDF paths decreases, so that the 
computational time also decreases.

5.1. Effect of the Number of SNDF Paths. We first analyze the 
effect of the different number of SNDF paths on the coverage 
of OD traffic flows for each deviation factor. �e three graphs 
in Figure 6 show the coverage of traffic flows (in %) with 
�훽 = 0%, 50%, and 100% of �푑(�푃�(v�, v�)) as we increase the 
number of refueling stations from �푝 = 1 to 25. Note that we 
fix �푅 = 20 in this subsection.

First, when �훽 = 0%, the coverage is not significantly 
affected by the values of �, but a slight improvement is 
obtained between �퐾 = 1 and �퐾 = 3, 5 when the number of 
refueling stations increases from �푝 = 3 to 15. For example, 
when �푝 = 8 and �퐾 = 1, the first SNDF return path of  
�푞(v3, v13), i.e., �퐹1(v13, v3) = ⟨v13 = v(0), v8 = v(1), v4 = v(2), v3 = v(3)⟩  
is not covered. In the case of �퐾 = 3 and 5 with �훽 = 0%, the 
mixed-integer programming model locates one refueling sta-
tion at site �14 and then �퐹3(v13, v3) = ⟨v13 = v(0), v10 = v(1),
v9 = v(2), v3 = v(3)⟩, which is the second SNDF return path of 
�푞(v3, v13), is covered by the one refueling station. �is indicates 
that some OD pairs have multiple shortest paths which satisfy 
the properties of feasible paths, so that all these paths can be 
selected in our model. Note that �퐾 = 3 is enough for multiple 
SNDF paths to be considered in the network when �훽 = 0% 
because there is no difference in coverage between �퐾 = 3 and 
�퐾 = 5 from �푝 = 1 to 25. Second, as we allow drivers to take 
paths with long detour distances, the effect of the value of � 
on the coverage of traffic flows by a given number of refueling 
stations is significantly noticeable. In particular, the coverage 
improvement between �퐾 = 1 and �퐾 = 5 ranges from 0% to 
8.31% when �훽 = 50%, while the improvement increases up to 
13.07% when �훽 = 100%. �e �-th SNDF path algorithm can 
generate more SNDF paths under �훽 = 100%, so that more 
paths can be considered to locate the optimal sets of refueling 
stations in the mixed-integer programming model. �en, 
more traffic flows using 2�퐾 SNDF original and return paths 
can be covered by a given number of stations. Note that the 
coverage improvement between different number of SNDF 
paths fades away slowly as the refueling network becomes 
mature. Lastly, in all cases, OD pairs are not fully covered when 
we locate refueling stations at all candidate sites. For example, 
considering �퐾 = 5 with �훽 = 100% for both original and return 
paths, which is the maximum deviation factor in the experi-
ments, 70.58% of all traffic flows can be refueled with  
�푝 = 25. �is is because some refueling stations at single-access 
candidate sites can provide refueling service only to traffic 

covered by a given number of stations; that is, the more traffic 
flow covered by the stations, the higher revenue the stakehold-
ers expect. If we assume that the construction cost does not 
significantly differ by station type or region, then Constraint 
(19) can play a role as the budget constraint. �is assumption, 
however, would not be always true in practice [60]. So, we can 
relax this assumption by replacing Constraint (19) by the fol-
lowing constraint:

where ���
 refers to the capital cost for building a refueling sta-

tion in candidate site �푚� ∈ �푀, and � the refueling infrastruc-
ture budget. Constraint (24) allows different capital costs by 
station type (e.g., single-access vs. dual-access) or by region 
and forces the model to determine candidate sites for refueling 
stations within the budget. �is constraint is used to build AF 
refueling stations in a statewide network to showcase that the 
proposed model is well-suited for solving practical problems 
in Section 6.

5. Computational Experiments

�e proposed mixed-integer programming model with the 
�-th SNDF path algorithm is applied to a well-known 
directed transportation network with 25 vertices, 43 arcs, 
and 300 OD pairs provided by Simchi-Levi and Berman 
[61]. Figure 5 shows the arc lengths next to each arc. It also 
displays 25 randomly selected candidate station locations, 
including 10 single- and 15 dual-access sites, to allocate the 
AF refueling stations in the test network. A single- 
access candidate site is symbolized by a triangular shape on 
one side of the arc, and a dual-access candidate site is 
depicted by a diamond shape in the middle of the arc. To 
analyze the effects of number of SNDF paths, maximum 
deviation distance, and vehicle driving range on the OD flow 
coverage, we consider three route options, �퐾 = 1, 3, and 5, 
three deviation factors, �훽 = 0%, 50%, and 100%, and three 
driving ranges, �푅 = 15, 20, and 30.

All computational experiments in Section 5 were con-
ducted on an Intel i5 2.2 GHZ Dual-Core laptop with 12 GB 
RAM. Our computational experiments have three procedures. 
In the first procedure that is denoted as P1, to determine 2�퐾 
SNDF original and return paths for all OD pairs, we ran the  
�-th SNDF path algorithm with the three limited driving 
ranges � (i.e., �푅 = 15, 20, and 30) and the three deviation fac-
tors � (i.e., �훽 = 0%, 50%, and 100%) using MATLAB R2013a. 
Note that the same deviation factors were applied to both 
original and return paths. �en, in the second procedure, 
denoted as P2, the mixed-integer programming model with 
the SNDF paths and set of candidate sites was programmed 
in MATLAB to generate CPLEX format files that follow the 
syntax rules of CPLEX. In the last procedure, denoted as P3, 
all the problems were solved by version 12.4 of CPLEX.

Table 4 provides the computational times for the three 
solution procedures above, P1, P2, and P3. In general, the 
overall computational time increases as the number of SNDF 
paths increases and the deviation factor is larger. Specifically, 
the large number of SNDF paths affects the computational 

(24)∑
�푚�∈�푀

�푐�푚�
�푥�푚�

≤ �퐵,
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deviation factor values of the vehicles that deviate from their 
shortest paths, denoted as �, when the number of refueling 
stations ranges from �푝 = 1 to 25. Note that we fix �푅 = 20 
and consider �퐾 = 1, 3, and 5 in the table. For example, given 
�푝 = 10, when vehicles are allowed to deviate to alternative 
paths whose lengths are at most 50% longer than those of the 
corresponding shortest paths and �퐾 = 1, the covered detour 
flows account for only 12.47% of the total covered flows and 
their average deviation factor is 19.99% of their shortest path 
lengths. First, regardless of the value of �, we observe that 
the value of �� generally increases from �푝 = 1 to 25 when we 
consider only one SNDF path between ODs. �is represents 
that the deviation factor largely affects the coverage if vehicles 
have few options to select their route regardless of the number 
of refueling stations. However, with �퐾 = 3 and 5, the value of 

flows in the same driving direction. Table 5 summarizes the 
coverage of traffic flows with �훽 = 0%, 50%, and 100% for 
�푝 = 1, ⋅ ⋅ ⋅ , 25 when we allow a different number of SNDF  
paths for each OD pair.

5.2. Effect of the Maximum Deviation Distance. �is 
subsection analyzes how much traffic flow makes detours 
from their preplanned paths for refueling and how long is 
the average deviation distance of covered detour traffic flows. 
For each OD pair, vehicles are able to deviate from shortest 
original path �푃�(v�, v�) and shortest return path �푃�(v�, v�) up 
to �푑(�푃�(v�, v�))(1 + �훽) and �푑(�푃�(v�, v�))(1 + �훽), respectively, 
in order to reach AF refueling stations. Table 6 shows the 
proportions of the covered detour traffic flows with respect 
to the total flow covered, denoted as ��, and the average 
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Figure 6: Tradeoff between number of stations and coverage for different number of SNDF paths. (a) �훽 = 0%. (b) �훽 = 50%. (c) �훽 = 100%.
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flows, the improvement in the coverage of detour flows is easily 
observed for both �푅 = 15 and �푅 = 30. For example, at most an 
additional 15% of traffic flows can be covered if vehicles with 
�푅 = 15 are allowed to travel an additional distance of up to 50% 
of �푑(�푃�(v�, v�)) for all OD pairs. �e coverage improvement 
rises as the deviation factor increases for both �푅 = 15 and 
�푅 = 30. On the other hand, the trends of improvement for 
�푅 = 15 and �푅 = 30 have different patterns. When �푅 = 15, the 
coverage difference between no-detour (�훽 = 0%) and detour 
flows (�훽 = 50% or �훽 = 100%) continuously increases until the 
number of refueling stations reaches to some level (�푝 = 21 
for �훽 = 50%, �푝 = 22 for �훽 = 100%), and then the coverage 
difference is steady. �is implies that, if an additional refueling 
station is added to a network, the coverge of vehicles with short 
driving ranges can increase significantly when a long deviation 
distance is allowable. Next, when �푅 = 30, the coverage 
difference between �훽 = 0% and �훽 = 50% is insignificant. 
However, if vehicles are able to deviate further from their 
preplanned paths, i.e., �훽 = 100%, the trends of improvement 
fluctuate according to the number of refueling stations, 
especially for �푝 = 1–8. �is shows that a significant coverage 
improvement can be expected by adding one refueling station 
at a time on a network where the infrastructure of AF refueling 
stations is insufficient if vehicles with a long driving range 
are allowed to make adequate detours. Table 7 summarizes 
comparisons of optimal coverages of no-detour versus detour 
flows and their coverage differences for �푅 = 15, 30 when �퐾 = 3.

�� tends to increase when refueling stations are scarce, while 
the value of �� starts decreasing a�er the traffic flows are 
mostly covered. �ese patterns imply that the effect of � on 
the traffic flow covered gradually diminishes as the number 
of refueling stations increases, especially when vehicles have 
multiple path options between OD pairs. Next, regarding �, we 
have an extreme case where the value of � drops rapidly when 
we consider �훽 = 100% and the number of refueling stations is 
small. However, in most cases, the value of � does not change 
significantly as the coverage of traffic flows increases. �is 
result can be explained by the predetermined locations of 
candidate sites. In other words, even though we allow trips 
along many feasible paths with long detour distances between 
OD pairs, the coverage proportion of detour flows is usually 
small with respect to all traffic flows because the candidate sites 
are predetermined before establishing AF refueling stations.

5.3. Effect of the Limited Driving Range. In order to observe the 
effect of the limited driving range on the coverage for different 
deviation factors, Figures 7(a) and 7(c) provide comparisons 
of optimal coverages of no-detour versus detour flows when 
�푅 = 15 and 30 for �푝 = 1, ⋅ ⋅ ⋅ , 25. We set the coverages of traffic 
flows with �훽 = 0%, i.e., the coverage of no-detour flows, as the 
reference value of comparisons. �en, Figures 7(b) and 7(d) 
show their differences between the coverages of no-detour and 
detour flows for �훽 =  50% and 100%. Note that we fix �퐾 = 3 in 
all the cases. In general, compared to the coverage of no-detour 

Table 5: Summary of coverages for different number of SNDF paths with �훽 = 0%, �훽 = 50%, and �훽 = 100% when �푅 = 20.

� �훽 = 0% �훽 = 50% �훽 = 100%
�퐾 = 1 �퐾 = 3 �퐾 = 5 �퐾 = 1 �퐾 = 3 �퐾 = 5 �퐾 = 1 �퐾 = 3 �퐾 = 5

1 17.33 17.33 17.33 17.33 17.33 17.33 17.33 18.03 18.87
2 30.14 30.50 30.50 30.14 30.75 32.33 30.15 34.80 39.74
3 35.09 35.45 35.45 35.09 37.41 39.96 36.82 43.79 49.89
4 39.26 39.91 39.91 39.72 42.81 45.35 42.58 50.65 55.37
5 43.57 44.23 44.23 44.18 46.78 49.80 47.27 56.12 59.82
6 45.27 46.73 46.73 46.50 49.91 52.87 51.96 59.95 64.05
7 46.32 48.43 48.43 48.23 53.35 55.44 53.84 63.19 66.28
8 47.36 49.65 49.65 49.76 55.26 58.00 55.58 64.76 67.61
9 48.27 50.41 50.41 51.23 57.74 59.54 57.11 66.86 68.74
10 49.32 50.98 50.98 52.92 58.98 60.45 58.53 68.48 69.47
11 50.36 51.52 51.52 54.45 59.92 61.08 60.27 69.13 69.90
12 50.98 51.86 51.86 55.92 60.52 61.47 61.80 69.81 70.17
13 51.50 51.93 51.93 56.96 61.11 61.85 62.89 70.20 70.47
14 51.86 52.05 52.05 58.17 61.70 61.95 64.19 70.39 70.52
15 52.05 52.12 52.12 59.11 61.94 62.13 65.31 70.49 70.56
16 52.12 52.15 52.15 59.74 62.13 62.19 66.46 70.53 70.58
17 52.15 52.15 52.15 60.70 62.19 62.24 67.57 70.55 70.58
18 52.15 52.16 52.16 61.29 62.24 62.28 68.53 70.57 70.58
19 52.16 52.16 52.16 61.74 62.28 62.31 69.27 70.58 70.58
20 52.16 52.16 52.16 62.07 62.31 62.34 69.92 70.58 70.58
21 52.16 52.16 52.16 62.26 62.34 62.34 70.27 70.58 70.58
22 52.16 52.16 52.16 62.30 62.34 62.34 70.43 70.58 70.58
23 52.16 52.16 52.16 62.34 62.34 62.34 70.51 70.58 70.58
24 52.16 52.16 52.16 62.34 62.34 62.34 70.55 70.58 70.58
25 52.16 52.16 52.16 62.34 62.34 62.34 70.58 70.58 70.58
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randomly add 50 of single- and 50 of dual-access candidate 
locations for LNG refueling stations. We use $2.75 M and 
$3.40 M as the construction cost of single- and dual-access 
LNG refueling stations, respectively, which are derived as the 
median values of the estimated construction costs to develop 
LNG refueling infrastructure in the Pennsylvania Turnpike by 
Ventura et al. [5]. �e OD flows between counties are esti-
mated by a simple gravity spatial interaction model [62]. We 
use the Freight Analysis Framework Version 4 long distance 
truck volume for the year of 2045 in the state of Pennsylvania, 
which was developed by the Federal Highway Administration 

6. Case Study: The State of Pennsylvania

In this section, we apply the proposed model with different 
capital costs to build LNG refueling stations for long haul 
logistics on a highway system by their station type (single- 
access vs. dual-access) into the state of Pennsylvania with  
2,211 OD pairs, so as to demonstrate the performance in a 
large-size problem.

From the Topologically Integrated Geographic Encoding 
and Referencing (TIGER) database, we first make a map of 
Pennsylvania with center points of 67 counties and cen-
troid-to-centroid routes, as shown in Figure 8. �en, we 
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Figure 7: Comparisons of the optimal coverages of no-detour versus detour flows and their coverage differences when �푅 = 15, 30 with �퐾 = 3.  
(a) Coverages of no-detour versus detour flows with �훽 = 50%. (b) Coverage differences between no-detour and detour flows for �푅 = 15, 30 
and �훽 = 50%. (c) Coverages of no-detour versus detour flows with �훽 = 100%. (d) Coverage differences between no-detour and detour flows 
for �푅 = 15, 30 and �훽 = 100%.
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stations, construction of additional single-access stations can 
be beneficial to trucks making detours between ODs.

Next, we observe that we can spend a large amount of 
budget effectively when trucks have more route options 
between ODs. If we have more than $120 M and trucks with 
�푅 = 300 have three SNDF paths (i.e., �퐾 = 3), more dual-access 
LNG refueling stations are selected instead of single-access 
LNG refueling stations comparing to the case of trucks with 
a single SNDF path (i.e., �퐾 = 1). It means that since trucks can 
have many alternative paths to make round trips between ODs, 
the proposed model with the budget constraint effectively 
selects more dual-access LNG refueling stations on their routes 
and improves the optimal coverage for a given budget. �e 
case of trucks with �푅 = 600 also shows a similar situation.

Next, as shown in Figure 9, the marginal optimal coverage 
resulting from additional refueling stations generally decreases 
with the amount of construction budget available. In other 
words, initially, a large percentage of the optimal coverage can 
be achieved with a relatively small construction budget. A�er 
that, the rate of increase of optimal coverage declines as the 
construction budget increases. One of the interesting things 
here is that the optimal coverage gap between no-detour and 
detour flows, however, increases as the construction budget 
increases. For example, for �푅 = 300, when the budget is ini-
tially $10 M, the optimal coverage gap between no-detour 
(�훽 = 0%) and detour flows (�훽 = 50%) with �퐾 = 3 is 7.91%; 

in 2016 [63]. Also, to consider a conservative range for current 
and older models of LNG trucks with a single fuel tank [64] 
and improving technologies of dual fuel tank systems [65], we 
set �푅 = 300 and 600 for LNG trucks. Lastly, we conduct this 
experiment by using Intel(R) i7-6700 K CPU 4.00 GHz and 
16 GB RAM desktop PC.

Table 8 provides comparisons of number of selected 
stations and optimal coverage for no-detour versus 50-percent 
detour flows with �퐾 = 1 and 3 when �푅 = 300 and 600.  
Also, Figure 9 shows trade-off between budget and  
optimal coverage for the two LNG truck driving ranges  
(�푅 = 300, 600) and three route options (�훽 = 0%, �훽 = 50% with 
�퐾 = 1, and �훽 = 50% with �퐾 = 3). We apply our coverage 
maximization model with the budget constraint to the state 
of Pennsylvania using the budget range from $10 M to $200 M 
in $10 M increments.

First, we easily identify the effect of detour flows (both � 
and �) on the optimal coverage for different budgets. For 
example, the smallest budget of $10 M allows only construction 
of two dual-access LNG refueling stations with the optimal 
coverages of 19.99% and 21.14% for �푅 = 300 and 600, respec-
tively, when trucks merely use shortest paths between each 
OD. When we allow trucks to make detours between ODs, the 
corresponding coverages increase to 27.91% and 29.40% for 
the both limited driving ranges. �is implies, when we do not 
have enough budget to construct dual-access LNG refueling 

Table 7: Comparisons of the optimal coverages of no-detour (�훽 = 0%) versus detour flows (�훽 = 50%, 100%) and their coverage differences 
when �푅 = 15, 30.

�
�푅 = 15 �푅 = 30

� Difference between 
0% and 50%

Difference between 
0% and 100%

� Difference between 
0% and 50%

Difference between 
0% and 100%0% 50% 100% 0% 50% 100%

1 10.38 10.38 10.88 0.00 0.50 21.23 21.23 28.12 0.00 6.89
2 16.80 16.88 19.93 0.08 3.13 33.98 34.18 38.56 0.20 4.58
3 20.68 21.21 27.73 0.53 7.05 39.76 44.29 49.07 4.53 9.31
4 24.47 25.02 32.14 0.55 7.67 44.61 50.35 55.26 5.74 10.65
5 27.28 29.44 37.14 2.16 9.86 48.90 53.71 60.00 4.81 11.10
6 28.64 32.59 41.74 3.95 13.10 51.08 56.44 63.33 5.36 12.25
7 29.44 34.82 44.54 5.38 15.10 52.95 57.88 65.91 4.93 12.96
8 29.94 37.13 47.15 7.19 17.21 53.72 59.09 67.70 5.37 13.98
9 30.42 39.32 49.41 8.90 18.99 54.33 59.62 69.25 5.29 14.92
10 30.80 41.70 51.22 10.90 20.42 54.90 60.73 69.77 5.83 14.87
11 31.09 43.43 52.43 12.34 21.34 55.29 61.26 70.04 5.97 14.75
12 31.31 44.22 53.23 12.91 21.92 55.85 61.54 70.34 5.69 14.49
13 31.42 45.12 53.86 13.70 22.44 56.24 61.78 70.51 5.54 14.27
14 31.63 45.54 54.45 13.91 22.82 56.51 62.01 70.54 5.50 14.03
15 31.72 45.83 54.80 14.11 23.08 56.58 62.19 70.58 5.61 14.00
16 31.79 46.22 55.10 14.43 23.31 56.70 62.26 70.58 5.56 13.88
17 31.82 46.42 55.24 14.60 23.42 56.77 62.31 70.58 5.54 13.81
18 31.82 46.59 55.36 14.77 23.54 56.80 62.35 70.58 5.55 13.78
19 31.82 46.74 55.38 14.92 23.56 56.80 62.35 70.58 5.55 13.78
20 31.82 46.78 55.45 14.96 23.63 56.80 62.35 70.58 5.55 13.78
21 31.82 46.81 55.47 14.99 23.65 56.80 62.35 70.58 5.55 13.78
22 31.82 46.82 55.48 15.00 23.66 56.80 62.35 70.58 5.55 13.78
23 31.82 46.82 55.49 15.00 23.67 56.80 62.35 70.58 5.55 13.78
24 31.82 46.82 55.49 15.00 23.67 56.80 62.35 70.58 5.55 13.78
25 31.82 46.82 55.49 15.00 23.67 56.80 62.35 70.58 5.55 13.78
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Figure 8: A road network in the state of Pennsylvania with 100 candidate sites for LNG stations.
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Figure 9: Trade-off between the optimal coverage and the construction budget for no-detour (�훽 = 0%) versus detour flows (�훽 = 50%) with 
�퐾 = 1, 3 when �푅 = 300, 600. (a) �푅 = 300. (b) �푅 = 600.
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with 10 single- and 15 dual-access candidate sites, and (ii) a 
statewide network of Pennsylvania state containing 2,211 OD 
pairs with 50 single- and 50 dual-access candidate sites. For our 
experiment on the classical 25-vertex network, we have analyzed 
the effects of number of SNDF paths, deviation distance, and 
vehicle driving range on the coverage of no-detour and detour 
flows for a given number of AF refueling stations. Computational 
experiments have shown that the number of SNDF paths and 
maximum deviation factor largely affect the coverage of traffic 
flows, especially when the network does not have enough AF 
refueling stations to cover most of the traffic flows. Next, for our 
experiment on the case study of Pennsylvania state, we have also 
analyzed the effects of detour flows, station type (single-access 
vs. dual-access), and longer driving range for different construc-
tion budget levels for the LNG refueling infrastructure to pres-
ent more insights into our society.

For future research, our proposed model can be applied to 
a variety of real-world problems to locate AF refueling stations 
in highways. To reduce the complexity of the �-th SNDF path 
algorithm, we can also attempt to develop a more efficient ver-
sion of the �-th SNDF path algorithm for large-scale networks. 
Upchurch et al. [66] consider available fueling capacity of AF 
refueling stations to cover traffic flows. Similarly, our proposed 
model can be extended to contemplate the limited capacity of 
AF refueling stations. Lastly, we generalize our solution 
approach to address the continuous version of the AF refueling 
station location problem where stations can be located any-
where along the network. As we have discussed the effect of 
predetermined candidate sites on the coverage in Subsection 
5.2, if we were able to locate stations anywhere along the net-
work, the suboptimality of the optimal solutions of the discrete 
version of the problem could be significantly improved.
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